
XCP: eXplicit Control Protocol

Dina Katabi
MIT Lab for Computer Science

dk@mit.edu
www.ana.lcs.mit.edu/dina

Sharing the Internet Infrastructure

Two Types of Requirements:
1. Efficiency: Use links to maximum capacity
2. Allocation: What is the share of each user?

• Fairness; Differential Bandwidth Allocation;
Priority …

• Is fundamental
q Much research in Congestion Control, QoS,
DiffServ, Pricing …

• Is difficult because of Scale!

Traditionally, a single mechanism controls both
Efficiency and Allocation

Example: In TCP, it is Additive-Increase
Multiplicative-Decrease (AIMD)

XCP Approach: Decouple Efficiency and Allocation
Controls

1. Find best mechanism to control aggregate traffic
at a link to achieve efficient links utilization

2. Find best mechanism to shuffle the bandwidth in
the aggregate traffic to converge to the desired
allocation

Decoupling Efficiency Control
from Allocation Control

Sharing Internet Resources

Show it via examples …

Congestion ControlExample 1:

Congestion ControlExample 1:

Queue

Congestion ControlExample 1:

Queue

Congestion ControlExample 1:

Queue

Congestion ControlExample 1:

Queue

Congestion ControlExample 1:

Queue

Congestion!
I should slow down!

Congestion ControlExample 1:

Congestion!
I should slow down!

Control the sources’ rates to get:

• Efficiency: good link utilization, small
queues, few drops

• Fairness: Senders congested at same link
get equal throughput

The Congestion Control Problem

Traditional Approach

TCP

TCP

TCP couples
Efficiency & Fairness

Control drops
at router [RED,
REM, AVQ, …]

TCP’s
Throughput

Drop

Time

TCP uses AIMD:
• No Drop: Increase by a

constant increment
(i.e., 1 packet/RTT)

• Drop: Halve throughput

Problems with Current Approaches:

• Good performance requires parameter tuning [RED,
ARED, REM, PI-controller, AVQ, …]

• Inefficient as bandwidth or delay increases [Low02]

Round Trip Delay (sec)

TC
P

U
ti

liz
at

io
n

Bottleneck Bandwidth (Mb/s)

TC
P

U
ti

liz
at

io
n

⇒ Need to change congestion control because:
• Bandwidth is increasing (demands for it are

increasing too!) making TCP more inefficient
• Delay is already a problem

⇒ Need to change congestion control because:
• Bandwidth is increasing (demands for it are

increasing too!) making TCP more inefficient
• Delay is already a problem

Congestion Control is Inefficient Because:

• Congestion feedback is binary (i.e., drop or
no-drop) and indifferent to the degree of
congestion
o As a result, TCP oscillates between over-utilizing

the link and under-utilizing it

Efficient congestion control requires
Explicit feedback

(I.e., routers tell senders the degree of congestion)

Efficient congestion control requires
Explicit feedback

(I.e., routers tell senders the degree of congestion)

Solution:

Answer: Per-flow state in
routers ⇒ Doesn’t Scale!

Unexpressive & Scalable

Expressive & ScalableUnexpressive &
Unscalable

TCP, TFRC, Binomial, …

Why Current Approaches Don’t Use
Expressive Feedback?

×

Expressive & Unscalable
In ATM: ERICA, Charny’s, OSU, …

(almost none in the Internet)

(Flow: packets from same sender)

• Efficient link utilization needs expressive feedback
• In coupled systems, expressive feedback led to

per-flow state (Unscalable!)

Efficiency Problem:

Solution: Use Decoupling

• Decoupling looks at efficiency as a problem about
aggregate traffic
• Match aggregate traffic to link capacity and drain the

queue

• Benefits: No need for per-flow information

Router computes a flow’s
fair rate explicitly

To make a decision, router
needs state of all flows

Unscalable

Shuffle bandwidth in
aggregate to converge to
fair rates

To make a decision, router
needs state of this flow

Put a flow’s state in its
packets [Stoica]

Scalable

Fairness Control

XCP: An eXplicit Control Protocol

1. Efficiency Controller
2.Fairness Controller

Feedback

Round Trip Time

Congestion Window

Congestion Header

Feedback

Round Trip Time

Congestion Window

How does XCP Work?

Feedback =
+ 0.1 packet

Feedback =
+ 0.1 packet

Round Trip Time

Congestion Window

Feedback =
- 0.3 packet

How does XCP Work?

Congestion Window = Congestion Window + Feedback

Routers compute feedback without
keeping any per-flow state

Routers compute feedback without
keeping any per-flow state

How does XCP Work?

How Does an XCP Router Compute the
Feedback?

Efficiency Controller Fairness Controller
Goal: Matches input traffic to
link capacity & drains the queue

Goal: Divides ∆ between
flows to converge to fairness

Looks at aggregate traffic &
queue

Looks at a flow’s state in
Congestion Header

Algorithm:
Aggregate traffic changes by ∆
∆ ~ Spare Bandwidth
∆ ~ - Queue Size
So, ∆ = α davg Spare - β Queue

Algorithm:
If ∆ > 0 ⇒ Divide ∆ equally
between flows
If ∆ < 0 ⇒ Divide ∆ between
flows proportionally to their
current rates
(Proven to converge to fairness)

MIMD AIMD

∆ = α davg Spare - β Queue

2
24

0 2αβ
π

α =<< and

Theorem: System is stable
(I.e., converges to efficiency)
for any link bandwidth, delay,
number of sources if:

(Proof based on Nyquist
Criterion)

It Is Tricky …

Efficiency Controller Fairness Controller

No Parameter TuningNo Parameter Tuning

Algorithm:
If ∆ > 0 ⇒ Divide ∆ equally between flows
If ∆ < 0 ⇒ Divide ∆ between flows
proportionally to their current rates

Need to estimate number of
flows N

∑ ×
=

.avgdinpkts iavg

i
Cwndd

RTTN

RTTi : Round Trip Time of pkt i

Cwndi : Congestion Window in pkt i
No Per-Flow StateNo Per-Flow State

Windows change by ∆ every davg

Traffic rate changes by every davg

Rate r(t) changes per time unit by
avgd
∆

2

)()(

avgavg d

tQ

d

tS
r

βα
−=&

2
avgd

r
∆

=&

∆ = α davg Spare - β Queue

2
24

0 2αβ
π

α =<< and

Theorem: System is stable
(I.e., converges to efficiency)
for any link bandwidth, delay,
number of sources if:

(Proof based on Nyquist
Criterion)

It Is Tricky …

Efficiency Controller Fairness Controller

No Parameter TuningNo Parameter Tuning

Algorithm:
If ∆ > 0 ⇒ Divide ∆ equally between flows
If ∆ < 0 ⇒ Divide ∆ between flows
proportionally to their current rates

Need to estimate number of
flows N

∑ ×
=

.avgdinpkts iavg

i
Cwndd

RTTN

RTTi : Round Trip Time of pkt i

Cwndi : Congestion Window in pkt i
No Per-Flow StateNo Per-Flow State

Implementation

Implementation uses few
multiplications & additions
per packet

Practical!

XCP can co-exist with TCP and can be
deployed gradually

Gradual Deployment

Performance

Simulations Show XCP is Better

• Extensive Simulations

• Compared with TCP over DropTail, RED,
REM, AVQ, CSFQ

XCP:
• Better utilization
• Near-zero drops
• Fairer
• Efficient & robust to increase in bandwidth
• Efficient & robust to increase in delay

BottleneckS1

S2

R1, R2, … , Rn

Sn

Subset of Results

Similar behavior over:

XCP Remains Efficient as Bandwidth or
Delay Increases

Bottleneck Bandwidth (Mb/s)

Utilization as a function
of Bandwidth

U
ti

liz
at

io
n

Round Trip Delay (sec)

U
ti

liz
at

io
n

Utilization as a function
of Delay

XCP Remains Efficient as Bandwidth or
Delay Increases

Bottleneck Bandwidth (Mb/s)

Utilization as a function
of Bandwidth

U
ti

liz
at

io
n

Round Trip Delay (sec)

U
ti

liz
at

io
n

Utilization as a function
of Delay

XCP increases
proportionally to spare
bandwidth rather than
by a constant amount

α and β chosen to
make system
robust to delay

Time (sec)Time (sec)

XCP is More Efficient than TCP
RTT = 40ms, C = 100 Mbps

Time (sec)Time (sec)
XCP shows fast adaptation!XCP shows fast adaptation!

Start
40 Flows

Start
40 Flows

Stop the
40 Flows

Stop the
40 Flows

XCP Deals Well with Short Web-Like Flows

Arrivals of Short Flows/sec

Average
Utilization

Average
Queue

Drops

XCP is Fairer than TCP

Flow IDFlow ID

Different Round Trip DelaySame Round Trip Delay

Th
ro

ug
hp

ut

Th
ro

ug
hp

ut

(RTT is from 40 ms to 330 ms)

XCP Summary

• XCP
o Outperforms TCP
o Efficient for any bandwidth
o Efficient for any delay
o Scalable

• Benefits of Decoupling
o Efficient utilization becomes about aggregate

traffic ⇒ No need for per-flow state
o Stability analysis looks only at Efficiency

Controller (independent of number of flows)

Decoupling Efficiency Control
from Allocation Control

Sharing Internet Resources

Differential Service

Problem Control sources’ rates to get:
• Efficiency :

o Good utilization, small queues, and few drops

• Differential Bandwidth Allocation [Kelly]):
o Each user pays a price per unit time
o Users congested at the same link obtain

throughputs proportional to their respective
prices

Example 2:

Efficiency Controller

Decoupling allows
us to use XCP’s
Efficiency Controller

Modularization

& Reuse

Allocation Controller

• Algorithm:
o If ∆ > 0 ⇒ Divide ∆ equally between flows

If ∆ < 0 ⇒ Divide ∆ between flows proportionally to
their current rate/price

• Implementation:
o Substitute the congestion window

field by congestion window/price

Round Trip Time

Congestion Window

Price

Feedback

• Goal:
o Converge to differential bandwidth allocation
o Decoupling ⇒ Don’t have to worry about efficiency

• Allocation Controller can use a new
class of algorithms that converge to
desired allocation but not to efficiency
o Doesn’t work without decoupling! E.g., modifying

TCP to “Increase by one packet & Decrease
proportionally to rate/price.” drops too many
packets

Benefits of Decoupling

Performance

Experiment:
3 sources transferring a
10 MB file each
o Price 0 = 5
o Price 1 = 10
o Price 2 = 15

Result:

Users share the link
proportionally to their
prices

2

Conclusion

• Decoupling Efficiency control from Allocation
control is useful for resource management
o Efficiency control is independent of varying

parameters such as number of flows
o Modularization & reuse of controllers
o Allocation control does not care about utilization

issues ⇒ Can use a new class of aggressive
allocation algorithms

• Currently applying decoupling to guaranteed
service, priority service, reaction over
different time scale, …

http://www.ana.lcs.mit.edu/dina/XCP

Questions?

