Reliable Adaptive Lightweight Multicast Protocol

Ken Tang, Scalable Network Technologies

Katia Obraczka, UC Santa Cruz

Sung-Ju Lee, Hewlett-Packard Laboratories

Mario Gerla, UCLA

Overview

- Ad hoc network introduction
- QualNet network simulator
- Reliable multicast in ad hoc networks
 - Scalable Reliable Multicast (SRM) case study
 - Reliable Adaptive Lightweight Multicast (RALM) protocol
- Conclusion

Reliable Multicast in Ad Hoc Networks

- Challenges in MANETs
 - Node mobility
 - Hidden terminals make MANET sensitive to network load and congestion
- Our goal: design a multicast transport protocol that achieves both reliability and congestion control

Case Study of the Scalable Reliable Multicast (SRM) Protocol

- Representative of "wired" reliable multicast protocols
 - Negative acknowledgements (NACKs)
 - Multicasting of NACKs
 - Nack'ed packets are retransmitted
 - NACK suppression
 - Local recovery

Scalable Reliable Multicast (SRM)

Representative of "wired" reliable multicast protocols

- Receivers use repair request messages to request retransmission of lost data
- Repair requests are generated until the lost data is recovered
- Any multicast group member that has the requested data may answer by sending a repair message.
- NACKs and data retransmissions are multicast to the entire group
- Suppresses repair request and repair messages

Snippet of SRM Performance

- 50 nodes in 1500m x 1500m area
- 5 sources and 10 receivers
- Traffic rate varies from 2 packets per second to 10 packets per second
- SRM degrades as traffic rate increases
 - Retransmissions increase packet loss (since sources maintain sending rate) which further triggers more retransmissions (as evident by control overhead graph) which leads to even more packet loss
 - Packet loss caused by increased load in the first place. Retransmission

Lessons Learned

- Confirmed that ad hoc networks are extremely sensitive to network load
- Reliability cannot be achieved by retransmission requests alone
 - SRM under-performed plain UDP
- Strong indication that some form of congestion control in conjunction with retransmissions is also needed to accompany reliability

Lessons Learned (cont'd)

- Losses may not be correlated: downstream nodes may still receive packets even if upstream nodes do not, especially considering mobility
- Packet loss may be due to wireless medium error rather than simply congestion

Reliable Adaptive Lightweight Multicast (RALM) Highlights

- Rate-based transmission
- Transmit at "native rate" of application as long as no congestion/loss is detected
- When congestion/loss (via NACKs) is detected, fall back to send-and-wait
- In send-wait mode control congestion and perform loss recovery
- Reliability achieved with congestion control AND retransmissions

RALM Finite State Diagram

RALM Example

- Node E and node F detect loss
 - Node E detects loss of packet with segno 5
 - Node F detects loss of packets with seqno 5 and 6
 - All receivers receive seqno 7
 - Both E and F unicast NACK to node 1
- Node E and node F are now recorded in Receiver List for roundrobin send-and-wait loss recovery

RALM Example (cont'd)

- Node S selects node E as the feedback receiver to reliably transmit seqno 8
 - Only node E may respond
- Node S then selects node F to reliably transmit seqno 9
 - Only node F may respond
- Since there are no more receivers in Receiver List, revert to multicasting at the application sending rate

Feedback Receiver

- Only a single (feedback) receiver acknowledges data
 - Feedback receiver list: list of nodes that have sent NACKs
 - The source specifies the feedback receiver in the multicast data
 - Feedback receiver is rotated in round robin order
 - Unicast ACK or NACK to the source
 - If feedback receiver fails to respond to source after specified number of times, receiver is skipped until the next round

Loss Recovery

- When the feedback receiver detects loss packets, it unicasts a NACK to the source for retransmission
 - Lost packets are requested one at a time until it has all the up-todate packets
 - It slows down the source transmission when congestion is detected
- The source multicasts both new and retransmitted packets
 - Other nodes who may have lost those packets will receive the retransmission
- The feedback receiver unicasts ACK to the source once it receives all the packets
 - The source chooses a new feedback receiver from the Receiver List
 - Repeats this process until the list is empty

Simulation Environment

- QualNet for network simulation
- Compare UDP, SRM and RALM on top of ODMRP/AODV/IEEE802.11DCF in various scenarios
 - UDP: no congestion control or error control
 - SRM: error control without congestion control
- 50 nodes in 1500m by 1500m area
- Channel capacity: 2 Mb/s
- Propagation range: 375 meters
- Two-ray ground reflection model
 - Free space path loss for near sight
 - Plane earth path loss for far sight
- Random waypoint mobility model
- Constant bit rate "application-driven" traffic

Simulation Environment (Cont'd)

- Metrics
 - Packet delivery ratio: Effectiveness and reliability
 - Control overhead
 - The total number of data and control packets sent by routing and transport layer protocols: the number of data packets received by the receivers
 - Efficiency
 - End-to-end latency: Timeliness

Traffic Rate Experiment

- No mobility
- 5 sources and 10 receivers
- Vary inter-departure rate from 500ms (2 packets per second) to 100ms (10 packets per second)
- RALM: 100% reliability, low control overhead and delay

Mobility Experiments

- 5 sources and 10 receivers
- 2 packets per second
- Random
 waypoint from 0
 m/s to 50 m/s
 with pause time
 of 0 s
- UDP outperforms SRM
- 100% data delivery with RALM

RALM vs. Multiple Unicast TCP Experiments

- Same as traffic rate experiment
- Compare RALM to multiple unicast TCP streams
- On average, 25% more packets delivered than TCP
- RALM performance differential grows with increase in receiver set

Conclusion

- Traditional wired network approach to reliable multicast does not work well in ad hoc networks
 - Mobility
 - Hidden-terminal problems
 - Contention-based MAC protocols
- Must take into account also congestion control, not simply error control (i.e., SRM)
- RALM utilizes congestion control in conjunction with reliable delivery to achieve reliability

Ongoing Work

- Discriminate loss from mobility and congestion
- Simulate on top of MAODV
- Compare performance against other ad hoc reliable transport multicast protocols (e.g., anonymous gossip)
- Look at congestion control and reliability at various layers