# TCP and MAC interplay in Wireless Ad Hoc Networks

•K. Tang and M. Gerla, "<u>Fair Sharing of MAC under TCP in</u> <u>Wireless Ad Hoc Networks</u>," In Proceedings of IEEE MMT'99, Venice, Italy, Oct. 1999.

# Outline

- Overview of CSMA, FAMA and IEEE 802.11.
- MAC performance with TCP.
  - Variable Hop Length Experiments.
  - Hidden Terminal Experiments.
  - Ring Experiments.
  - Grid Experiments.
    - Static.
    - Mobility.

# Simulation Using GloMoSim

- Detailed model of the protocol stack.
- Allows investigation of TCP and MAC layer interactions.
- Capability to simulate large number of nodes.
- GloMoSim web page.
  - http://pcl.cs.ucla.edu/projects/domains/glomosim.html

## **MAC Layer Protocols**

### CSMA

- Requires carrier sensing before transmission.
- If the channel is free, the packet is transmitted immediately.
- Otherwise, it is rescheduled after a random timeout.

## • FAMA

- Builds on CSMA.
- Uses the RTS (Request To Send) and CTS (Clear To Send) exchange to prepare the floor for data transmission.

## • 802.11

- Uses carrier sensing and RTS/CTS, similar to FAMA.
- Utilizes link-level ACKs.
- Collision Avoidance scheme.

#### Variable Hop Length Experiments Configuration

- Each node is 10 meters apart from its neighbors.
- Each node has a radio power range of 10 meters.
- 2Mbps channel bandwidth.
- FTP traffic.
- TCP window size varies from 1 to 16 packet size.
- Variable number of hops (single connection).
  - i.e., FTP connection 0-1, 0-2, 0-3, 0-4, 0-5 (one at a time).

#### Variable Hop Length Experiments Results



### Variable Hop Length Experiments Results (Cont'd)





### Variable Hop Length Experiments Results (Cont'd)



- CSMA and FAMA degrades with window size > 1 pkt.
  - Collisions between TCP data and ACKs.

#### • 802.11 performs the same no matter the window size.

Link-level ACKs combat collisions.

#### **Hidden Terminal Experiments Configuration**



- FTP traffic
- Connections from node 0 to node 1 and from node 2 to node 1.
- Node 0 and node 2 cannot hear each other.

# **Hidden Terminal Experiments Results**



- CSMA suffers from hidden terminal.
- FAMA and 802.11 performs well due to RTS/CTS exchange.

#### **Grid Experiment Configuration**



- Each node is 10 meters apart from its horizontal and vertical neighbors.
- Each node has a radio power range of 30 meters.
- FTP connections are established between node 18 to node 26, node 36 to node 44, node 54 to node 62, node 2 to node 74, node 4 to node 76 and node 6 to node 78.

### **Grid Experiment Configuration (Cont'd)**

- 2Mbps channel bandwidth.
- Nodes move at a rate of 10 meters per second in a random direction with a probability of 0.5.
- When mobility is not considered, static routing is used.
- When mobility is introduced, Bellman-Ford routing is utilized with routing table updates occurring once every second.

#### **Grid Experiments Results (No Mobility)**



- Without mobility
  - CSMA performs poorly due to interference by neighboring streams and by intersecting streams.
  - FAMA fair due to RTS/CTS and less aggressive yield time.
  - 802.11 exhibits capture.

#### **Grid Experiments Results (With Mobility)**



- CSMA and FAMA collapse with mobility due to lack of fast loss recovery facilities.
- 802.11 still operational.
  - Link level ACKs help recover from loss caused by transient nodes.
  - Capture exists.

# Conclusion

- RTS/CTS exchange improves fairness.
- Link-level ACKs important to combat packet loss in wireless ad-hoc environment.
- Impact of MAC layer timers needs further study.
- More work required to understand and compensate for mobility