TCP Westwood with Agile Probing: Handling Dynamic Large Leaky Pipes

Problem Definition

- Leaky Pipes: packet loss due to error
 - Unjustified *cwnd* cut and premature Slow Start exit
- Large Pipes: Large capacity and long delay
 Control scheme may not scale
- Dynamic Pipes: Dynamic load/changing link bandwidth (Due to change of technologies, e.g., 802.11, Bluetooth, 1XRTT)
 - Linear increase limits efficiency

Key Solution Components

Sender-side only enhancement:

- TCP Westwood
- Persistent Non-Congestion Detection:

- Detect extra unused bandwidth

– Invoke Agile Probing

• Agile Probing: Probe efficiently but not too fast

TCP Westwood (TCPW)

- Network viewed as blackbox;Estimation done on sender
- After dup-acks:
 - *cwnd* and *ssthresh* \leftarrow ERE * RTTmin
- After a timeout:

 $-ssthresh \leftarrow ERE * RTTmin, cwnd \leftarrow 1$

Eligible Rate Estimate (ERE)

ERE Adaptation:

Eligible Rate Estimate (ERE)

- ERE sample:Calculated by bytes delivered in interval T_k
 - Congestion level decided by expected rate and achieved rate
 - Light Congestion: short Tk,(packet-pair like)
 - Heavy Congestion: long Tk, (packet-train like)
- Using discrete low pass filter to get smoothed ERE

Persistent Non-Congestion Detection(PNCD)

- Objective: Detect unused bandwidth/invoke Agile Probing
- Observe Achieved Rate (AR) and Expected Rate (ER)
- If AR follows ER for a considerably long time
 PNC, indicating extra unused bandwidth >Agile Probing invoked

Persistent Non-Congestion Detection(PNCD)

Agile Probing

- Objective: Guided by ERE, converge *faster* to *more appropriate* ssthresh
 - adaptively and repeatedly resets *ssthresh* to ERE*RTTmin
 - Exponentially increase cwnd if ssthresh >cwnd
 - Linearly increase cwnd if ERE < ssthresh
 - Exit Agile Probing when packet loss is detected

Agile Probing

Throughput vs. bottleneck capacity during first 20 seconds (RTT=100ms)

Throughput vs. delay: 100 flows (each last 30sec) randomly spread out during 20 minutes (bottleneck capacity = 45Mbps)

Friendliness and convergence