
TCP on
Wireless Ad Hoc Networks

CS 218 Oct 22, 2003

• TCP overview
• Ad hoc TCP : mobility, route failures and timeout
• TCP and MAC interaction study
• TCP fairness achieved with Active Neighbor

estimate
• The problem of fairness and the NRED solution
• TCP over wired/wireless links

TCP ad hoc: Relevant literature

Holland and Vaidya: Impact of Routing and Link Layers
on TCP Perofrmance in mobile ad hoc nets, Mobicom 99

T. D. Dyer and R. V. Boppana, "A Comparison of TCP
Performance over Three Routing Protocols for Mobile Ad
Hoc Networks," In Proceedings of Mobihoc 2001, 2001.

K. Tang and M. Gerla, "Fair Sharing of MAC under TCP in
Wireless Ad Hoc Networks," In Proceedings of IEEE

MMT'99, Venice, Italy, Oct. 1999.
•Kaixin Xu, et al TCP Behavior across Multihop Wireless
Networks and the Wired Internet -ACM WoWMoM 2002
(co-located with MobiCom 2002), Atlanta, Ga, Sep. 2002

TCP Congestion Control

• end-end control (no network
assistance)

• sender limits transmission:
LastByteSent-LastByteAcked

≤ CongWin

Roughly,

• CongWin is dynamic, function
of perceived network
congestion

How does sender
perceive congestion?

• loss event = timeout
or 3 duplicate acks

• TCP sender reduces
rate (CongWin) after
loss event

two mechanisms:
– AIMD
– slow start

rate = CongWin
RTT Bytes/sec

TCP AIMD

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion
window

multiplicative decrease: cut
CongWin in half after loss
event

additive increase: increase
CongWin by 1 MSS every
RTT in the absence of loss
events: probing

Long-lived TCP connection

TCP Slow Start

• When connection begins,
CongWin = 1 MSS

– Example: MSS = 500 bytes & RTT
= 200 msec

– initial rate = 20 kbps

• available bandwidth may be
>> MSS/RTT

– desirable to quickly ramp up to
respectable rate

• When connection begins,
increase rate exponentially
fast until first loss event

TCP Slow Start (more)

• When connection begins,
increase rate exponentially
until first loss event:

– double CongWin every RTT
– done by incrementing CongWin

for every ACK received

• Summary: initial rate is
slow but ramps up
exponentially fast

Host A

one segment

RT
T

Host B

time

two segments

four segments

Refinement

• After 3 dup ACKs:
– CongWin is cut in half
– window then grows linearly

• But after timeout event:
– CongWin instead set to 1 MSS;
– window then grows exponentially
– to a threshold, then grows linearly

•3 dup ACKs indicates
network capable of
delivering some segments
• timeout before 3 dup
ACKs is “more alarming”

Philosophy:

Refinement (more)

Q: When should the
exponential increase
switch to linear?

A: When CongWin gets
to 1/2 of its value
before timeout.

Implementation:
• Variable Threshold
• At loss event, Threshold is

set to 1/2 of CongWin just
before loss event

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Transmission round

co
n

g
es

ti
o

n
 w

in
d

o
w

 s
iz

e
(s

eg
m

en
ts

)

Series1 Series2

threshold

TCP
Tahoe

TCP
Reno

Summary: TCP Congestion Control

• When CongWin is below Threshold, sender in slow-start
phase, window grows exponentially.

• When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

• When a triple duplicate ACK occurs, Threshold set to
CongWin/2 and CongWin set to Threshold.

• When timeout occurs, Threshold set to CongWin/2 and
CongWin is set to 1 MSS.

Impact of Mobility on TCP

• Mobility causes route changes

Impact of Multi-Hop Wireless Paths

0
200
400
600
800

1000
1200
1400
1600

1 2 3 4 5 6 7 8 9 10

Number of hops

TCP
Throughtput
(Kbps)

TCP Throughput using 2 Mbps 802.11 MAC

Throughput Degradations with
Increasing Number of Hops

• Packet transmission can occur on at most one hop among
three consecutive hops

• Increasing the number of hops from 1 to 2, 3 results in
increased delay, and decreased throughput

• Increasing number of hops beyond 3 allows simultaneous
transmissions on more than one link, however, degradation
continues due to contention between TCP Data and Acks
traveling in opposite directions

• When number of hops is large enough, the throughput
stabilizes due to effective pipelining

Mobility: Throughput generally degrades with
increasing speed …

Speed (m/s)

Average
Throughput
Over
50 runs

Ideal

Actual

mobility causes
link breakage,
resulting in route
failure

TCP data and acks
en route discarded

Why Does Throughput Degrade?

TCP sender times out.
Starts sending packets again

Route is
repaired

No throughput

No throughput
despite route repair

mobility causes
link breakage,
resulting in route
failure

TCP data and acks
en route discarded

Why Does Repair Latency hurt?

TCP sender
times out.
Backs off timer.

Route is
repaired

TCP sender
times out.
Resumes
sending

No throughput
No throughput

despite route repair

How to Improve Throughput
(Bring Closer to Ideal)

• Network feedback

• Inform TCP of route failure by explicit message

• Let TCP know when route is repaired
– Probing (eg, persistent pkt retransmissions)
– Explicit link repair notification

• Alleviates repeated TCP timeouts and backoff

Performance with Explicit Notification

0

0.2

0.4

0.6

0.8

1

2 10 20 30

mean speed (m/s)

th
ro

u
g

h
p

u
t

as
 a

 f
ra

ct
io

n
 o

f
id

ea
l Base TCP

With explicit
notification

Impact of Caching

• Route caching has been suggested as a
mechanism to reduce route discovery overhead
[Broch98]

• Each node may cache one or more routes to a
given destination

• When a route from S to D is detected as broken,
node S may:
– Use another cached route from local cache, or
– Obtain a new route using cached route at another node

To Cache or Not to Cache

Average speed (m/s)A
ct

ua
l t

hr
ou

gh
pu

t (
as

 fr
ac

tio
n

of
 e

xp
ec

te
d

th
ro

ug
hp

ut
)

Why Performance Degrades With Caching

• When a route is broken, route discovery returns a cached
route from local cache or from a nearby node

• After a time-out, TCP sender transmits a packet on the new
route.
However, what if the cached route has also broken after it
was cached?

• Another route discovery, and TCP time-out interval
• Process repeats until a good route is found

timeout due
to route failure

timeout, cached
route is broken

timeout, second cached
route also broken

Issues
To Cache or Not to Cache

• Caching can result in faster route “repair”

• Faster does not necessarily mean correct!

• If incorrect repairs occur often enough, caching
performs poorly

• Need mechanisms for determining when cached
routes are stale

Caching and TCP performance

• Caching can reduce overhead of route discovery
even if cache accuracy is not very high

• But if cache accuracy is not high enough, gains
in routing overhead may be offset by loss of TCP
performance due to multiple time-outs

TCP Performance

Two factors result in degraded throughput in
presence of mobility:

• Loss of throughput that occurs while waiting for
TCP sender to timeout (as seen earlier)
– This factor can be mitigated by using explicit notifications and better

route caching mechanisms

• Poor choice of congestion window and RTO
values after a new route has been found
– How to choose cwnd and RTO after a route change?

Issues
Window Size After Route Repair

• Same as before route break: may be too
optimistic

• Same as startup: may be too conservative

• Better be conservative than overly optimistic
– Reset window to small value after route repair
– Let TCP ramp up to suitable window size
– Anyway, window impact low on paths with small delay-bdw product

Issues
RTO After Route Repair

• Same as before route break
– If new route long, this RTO may be too small, leading to premature timeouts

and unnecessary retransmissions

• Same as TCP start-up (6 second)
– May be too large
– May result in slow response to next packet loss

• Another plausible approach: new RTO = function of old
RTO, old route length, and new route length

– Example: new RTO = old RTO * new route length / old route length
– Not evaluated yet
– Pitfall: RTT is not just a function of route length

