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• TCP overview
• Ad hoc TCP : mobility, route failures and timeout
• TCP and MAC interaction study
• TCP fairness achieved with Active Neighbor 

estimate
• The problem of fairness and the NRED solution
• TCP over wired/wireless links
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TCP Congestion Control

• end-end control (no network 
assistance)

• sender limits transmission:
LastByteSent-LastByteAcked

≤ CongWin

Roughly,

• CongWin is dynamic, function 
of perceived network 
congestion

How does  sender 
perceive congestion?

• loss event = timeout 
or 3 duplicate acks

• TCP sender reduces 
rate (CongWin) after 
loss event

two mechanisms:
– AIMD
– slow start

rate = CongWin
RTT Bytes/sec



TCP AIMD
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multiplicative decrease: cut 
CongWin in half after loss 
event

additive increase: increase  
CongWin by 1 MSS every 
RTT in the absence of loss 
events: probing

Long-lived TCP connection



TCP Slow Start

• When connection begins, 
CongWin = 1 MSS

– Example: MSS = 500 bytes & RTT 
= 200 msec

– initial rate = 20 kbps

• available bandwidth may be 
>> MSS/RTT

– desirable to quickly ramp up to 
respectable rate

• When connection begins, 
increase rate exponentially 
fast until first loss event



TCP Slow Start (more)

• When connection begins, 
increase rate exponentially 
until first loss event:

– double CongWin every RTT
– done by incrementing CongWin

for every ACK received

• Summary: initial rate is 
slow but ramps up 
exponentially fast
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Refinement

• After 3 dup ACKs:
– CongWin is cut in half
– window then grows linearly

• But after timeout event:
– CongWin instead set to 1 MSS; 
– window then grows exponentially
– to a threshold, then grows linearly

•3 dup ACKs indicates 
network capable of 
delivering some segments
• timeout before 3 dup 
ACKs is “more alarming”

Philosophy:



Refinement (more)

Q: When should the 
exponential increase 
switch to linear? 

A: When CongWin gets 
to 1/2 of its value 
before timeout.

Implementation:
• Variable Threshold 
• At loss event, Threshold is 

set to 1/2 of CongWin just 
before loss event
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Summary: TCP Congestion Control

• When CongWin is below Threshold, sender in slow-start 
phase, window grows exponentially.

• When CongWin is above Threshold, sender is in 
congestion-avoidance phase, window grows linearly.

• When a triple duplicate ACK occurs, Threshold set to 
CongWin/2 and CongWin set to Threshold.

• When timeout occurs, Threshold set to CongWin/2 and 
CongWin is set to 1 MSS.



Impact of Mobility on TCP  

• Mobility causes route changes



Impact of Multi-Hop Wireless Paths
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Throughput Degradations with
Increasing Number of Hops

• Packet transmission can occur on at most one hop among 
three consecutive hops 

• Increasing the number of hops from 1 to 2, 3 results in 
increased delay, and decreased throughput

• Increasing number of hops beyond 3 allows simultaneous 
transmissions on more than one link, however, degradation 
continues due to contention between TCP Data and Acks 
traveling in opposite directions

• When number of hops is large enough, the throughput 
stabilizes due to effective pipelining 



Mobility: Throughput generally degrades with 
increasing speed …
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mobility causes
link breakage,
resulting in route
failure

TCP data and acks
en route discarded

Why Does Throughput Degrade?

TCP sender times out.
Starts sending packets again

Route is
repaired

No throughput

No throughput
despite route repair



mobility causes
link breakage,
resulting in route
failure

TCP data and acks
en route discarded

Why Does Repair Latency  hurt?

TCP sender
times out.
Backs off timer.

Route is
repaired

TCP sender
times out.
Resumes
sending

No throughput
No throughput

despite route repair



How to Improve Throughput
(Bring Closer to Ideal)

• Network feedback

• Inform TCP of route failure by explicit message

• Let TCP know when route is repaired
– Probing (eg, persistent  pkt retransmissions)
– Explicit link repair notification

• Alleviates repeated TCP timeouts and backoff



Performance with Explicit Notification
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Impact of Caching

• Route caching has been suggested as a 
mechanism to reduce route discovery overhead 
[Broch98]

• Each node may cache one or more routes to a 
given destination

• When a route from S to D is detected as broken, 
node S may:
– Use another cached route from local cache, or
– Obtain a new route using cached route at another node



To Cache or Not to Cache
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Why Performance Degrades With Caching

• When a route is broken, route discovery returns a cached 
route from local cache or from a nearby node

• After a time-out, TCP sender transmits a packet on the new 
route.
However, what if the cached route has also broken after it 
was cached?

• Another route discovery, and TCP time-out interval
• Process repeats until a good route is found

timeout due
to route failure

timeout, cached
route is broken

timeout, second cached
route also broken



Issues
To Cache or Not to Cache

• Caching can result in faster route “repair”

• Faster does not necessarily mean correct!

• If incorrect repairs occur often enough, caching 
performs poorly

• Need mechanisms for determining when cached 
routes are stale



Caching and TCP performance

• Caching can reduce overhead of route discovery 
even if cache accuracy is not very high

• But if cache accuracy is not high enough, gains 
in routing overhead may be offset by loss of TCP 
performance due to multiple time-outs



TCP Performance

Two factors result in degraded throughput in 
presence of mobility:

• Loss of throughput that occurs while waiting for 
TCP sender to timeout (as seen earlier)
– This factor can be mitigated by using explicit notifications and better 

route caching mechanisms

• Poor choice of congestion window and RTO 
values after a new route has been found
– How to choose cwnd and RTO after a route change?



Issues
Window Size After Route Repair

• Same as before route break: may be too 
optimistic

• Same as startup: may be too conservative

• Better be conservative than overly optimistic
– Reset window to small value after route repair
– Let TCP ramp up to suitable window size
– Anyway, window impact low on paths with small delay-bdw product



Issues
RTO After Route Repair

• Same as before route break
– If new route long, this RTO may be too small, leading to premature timeouts 

and unnecessary retransmissions

• Same as TCP start-up (6 second)
– May be too large
– May result in slow response to next packet loss

• Another plausible approach: new RTO = function of old 
RTO, old route length, and new route length

– Example: new RTO = old RTO * new route length / old route length
– Not evaluated yet
– Pitfall: RTT is not just a function of route length


