CS 268: Lecture 19
(Application Level Multicast)

lon Stoica
March 22, 2001

(* Thanks to Yang-hua et al for making their slides available)

Key Concerns with IP Multicast

= Scalability with number of groups
- Routers need to maintain per-group state
» Aggregation of multicast addresses is complicated
= Supporting higher level functionality is difficult
- IP Multicast: best-effort multi-point delivery service
- Reliability and congestion control for IP Multicast complicated
* Need to deal with heterogeneous receiver - negotiation hard
= Deployment is difficult and slow
- ISP’s reluctant to turn on IP Multicast

istoica@cs.berkeley.edu 2




Approach

= Provide IP multicast functionality above the IP layer >
application level multicast

= Challenge: do this efficiently

istoica@cs.berkeley.edu

Two Examples

= Narada [Yang-hua et al, 2000]
- Multi-source multicast
- Involves only end hosts
- Small group sizes <= hundreds of nodes
- Typical application: chat
= Overcast [Jannotti et al, 2000]
Single source tree

Assume an infrastructure; end hosts are not part of
multicast tree

Large groups ~ millions of nodes
Typical application: content distribution

istoica@cs.berkeley.edu




Narada: End System Multicast

Q Gatech Stanford

CMU

Overlay Tree
Gatech

Berk2 5

istoica@cs.berkeley.edu

Potential Benefits

= Scalability
- Routers do not maintain per-group state
- End systems do, but they participate in very few groups

= Easier to deploy

= Potentially simplifies support for higher level functionality
- Leverage computation and storage of end systems
- For example, for buffering packets, transcoding, ACK aggregation
- Leverage solutions for unicast congestion control and reliability

istoica@cs.berkeley.edu 6




End System Multicast: Narada

= A distributed protocol for constructing efficient overlay
trees among end systems

= Caveat: assume applications with small and sparse
groups
- Around tens to hundreds of members

istoica@cs.berkeley.edu 7

Performance Concerns

Delay from CMU to Stanl

Gatech Berkl increases

Berkl

Duplicate Packets: Q Gatech Stanford
Bandwidth Wastage

istoica@cs.berkeley.edu o8




Overlay Tree

= The delay between the source and receivers is small
= ldeally,

- The number of redundant packets on any physical link is low
= Heuristic:

- Every member in the tree has a small degree

- Degree chosen to reflect bandwidth of connection to Internet

CMU CMU
Sten24— Stan2 Stan2 S
w /
X S#au{ Stanl Stanf
Berlil Gatech Berk Gatech Berkl Gatech
Berk Berk2 Berk2
High latency High degree (unicast) “Efficient” overlay

istoica@cs.berkeley.edu

Why is self-organization hard?

= Dynamic changes in group membership
- Members may join and leave dynamically
- Members may die
= Limited knowledge of network conditions
- Members do not know delay to each other when they join
- Members probe each other to learn network related information
- Overlay must self-improve as more information available
= Dynamic changes in network conditions
- Delay between members may vary over time due to congestion

istoica@cs.berkeley.edu

10




Solution

= Two step design
- Build a mesh that includes all participating end-hosts
- Build source routed distribution trees

istoica@cs.berkeley.edu 11

Mesh

= Advantages:

- Offers a richer topology = robustness; don’t need to
worry to much about failures

- Don't need to worry about cycles
= Desired properties

- Members have low degrees

- Shortest path delay between any pair of members along
mesh is small

Stan2 cMu
\Stan
Berk2 ——pggrkT Gatech

istoica@cs.berkeley.edu 12




Overlay Trees

= Source routed minimum spanning tree on mesh

= Desired properties
- Members have low degree
- Small delays from source to receivers

CcMU Stan2 Stanl
StanZ\S fan 7& /
/ Y/

—_— 3
BerkZ2 =——pgerkT Gatech Berk2¥— Berkl atech

istoica@cs.berkeley.edu 13

Narada Components/Techniques

= Mesh Management:
- Ensures mesh remains connected in face of membership changes
= Mesh Optimization:

- Distributed heuristics for ensuring shortest path delay between
members along the mesh is small

= Spanning tree construction:
- Routing algorithms for constructing data-delivery trees
- Distance vector routing, and reverse path forwarding

istoica@cs.berkeley.edu 14




Optimizing Mesh Quality

CMU

Stan2 Stanl A poor overlay topology:
Long path from Gatech2 to CMU

&K1 Gatechl

T

= Members periodically probe other members at random

= New link added if
Utility_Gain of adding link > Add_Threshold

= Members periodically monitor existing links
= Existing link dropped if
Cost of dropping link < Drop Threshold

istoica@cs.berkeley.edu 15

The terms defined

= Utility gain of adding a link based on

- The number of members to which routing delay improves

- How significant the improvement in delay to each member is
= Cost of dropping a link based on

- The number of members to which routing delay increases, for either
neighbor

= Add/Drop Thresholds are functions of:

- Member’'s estimation of group size
- Current and maximum degree of member in the mesh

istoica@cs.berkeley.edu 16




Desirable properties of heuristics

= Stability: A dropped link will not be immediately re-added

= Partition avoidance: A partition of the mesh is unlikely to be
caused as a result of any single link being dropped

CMU
Stan2

Stanl
..., Probe \
B&k1

% et \-’ Probe

 Gatech2

CMU

Delay improves to Stanl, CMU
but marginally.
Do not add link!

Delay improves to CMU, Gatechl
and significantly.
Add link!

istoica@cs.berkeley.edu 17

Example

CMU

Bakj\/ caeent

Gatech2

Used by Berk1 to reach only Gatech2 and vice versa: Drop!!

CcMU

istoica@cs.berkeley.edu 18




Simulation Results

= Simulations
- Group of 128 members
- Delay between 90% pairs < four times the unicast delay
- No link caries more than 9 copies
= Experiments
- Group of 13 members
- Delay between 90% pairs < 1.5 times the unicast delay

istoica@cs.berkeley.edu 19

Overcast

= Designed for throughput intensive content
delivery

- Streaming, file distribution
= Single source multicast; like Express
= Solution: build a server based infrastructure
Tree building objective: high throughput

istoica@cs.berkeley.edu 20

10



Tree Building Protocol

= |dea: Add a new node as far away from the route as
possible without compromising the throughput!

Join (new, root) {
current = root;
B = bandwidth(root, new);
do {
B1=0;
forall n in children(current) {
B1 = bandwidth(n, new);
if (B1>=B){
current = n;
break;

}
} while (B1 >= B);
new->parent = root;

}

istoica@cs.berkeley.edu 21

Detalils

= A node periodically reevaluates its position by
measuring bandwidth to its
- Siblings
- Parent
- Grandparent

= The Up/Down protocol: track membership

- Each node maintains info about all nodes in it sub-tree plus
a log of changes

* Memory cheap
- Each node sends periodical alive messages to its parent
- A node propagates info up-stream, when
» Hears first time from a children
« If it doesn’t hear from a children for a present interval
» Receives updates from children

istoica@cs.berkeley.edu 22

11



Detalils

Problem: root - single point of failure
Solution: replicate root to have a backup source

Problem: only root maintain complete info about the tree;
need also protocol to replicate this info

Elegant solution: maintain a tree in which first levels have

degree one

- Advantage: all nodes at these levels maintain full info about the tree

- Disadvantage: may increase delay, but this is not important for
application supported by Overcast

@"ﬁ"@i :

Nodes maintaining full
Status info about tree

tﬁ
(]

=

istoica@cs.berkeley.edu 23

Some Results

= Network load < twice the load of IP multicast (600

node network)

= Convergence: a 600 node network converges in

~ 45 rounds

istoica@cs.berkeley.edu 24

12



Summary

= |IP Multicast (1989) is not yet widely deployed: Why?

- Scalability: per-group forwarding and control state - number
of groups is a killer here

- Difficult to support higher layer functionality - receiver
heterogeneity is the killer here

- Difficult to deploy, and get ISP’s to turn on IP Multicast - no
economic model

= Recently, a lot of work that try to get around these
problems by pushing multicast functionality at the
application level

istoica@cs.berkeley.edu 25

Summary

= End-system multicast (NARADA) : aimed to
small-sized groups

- Application example: chat
= Multi source multicast model
= No need for infrastructure
= Properties
- low performance penalty compared to IP Multicast

- potential to simplify support for higher layer functionality
- allows for application-specific customizations

istoica@cs.berkeley.edu 26

13



Summary

Overcast: aimed to large groups and high
throughput applications

- Examples: video streaming, software download
Single source multicast model
Deployed as an infrastructure
Properties

- Low performance penalty compared to IP multicast

- Robust & customizable (e.g., use local disks for
aggressive caching)

istoica@cs.berkeley.edu

27

Other Projects

= Scattercast (Chawathe et al, UC Berkeley)
- Emphasis on infrastructural support and proxy-based multicast
- Uses a mesh like Narada, but differences in protocol details

= Yoid (Paul Francis, Fastforward/ACIRI)
- Uses a shared tree among participating members

- Distributed heuristics for managing and optimizing tree
constructions

istoica@cs.berkeley.edu

28

14



Conclusion

= Narada and Overcast demonstrate the flexibility
of the application level multicast
- l.e., the ability to optimize the multicast distribution to
the application needs
= ... but fragments the protocol space; inter-
operability hard to achieve

= Questions

- Is every application going to come with its multicast
suite?

- Are we going to end up with very few de facto
standards for different categories of applications?

istoica@cs.berkeley.edu 29

15



