
RCS: A Rate Control Scheme for Real-Time
Traffic in Networks with High B X Delay and

High error rates

J. Tang et al , Infocom 2001

•Another streaming control protocol
•Application level
•Assumes fine grain layered encoding
•Targets the channels with loss due to

errors
•TCP friendliness is secondary (but also

important) concern

Large B X Delay situation

•Delay are growing higher in the Internet
•Avg hop distance is 16

Problems with wireless lossy links

•Conventional TCP cannot distinguish
between errors and buffer O/F

•Some wireless links (eg satellites) have high
packet loss rate (> .01)

•TCP efficiency drops to less than 20%!
•We need to improve TCP as well as TCP

friendly streaming protocols for such lossy
environments

RCS: the goals

•RCS (Rate Control Scheme) is a TCP
friendly rate control scheme for streaming

•It is robust to link errors
•It performs like TCP in error free situations
•It outperforms TCP in high error

environments (without penalizing TCP)

RCS: key ideas

•Source probes the connection with dummy
packets

•Congested router drops dummy pkts first
(lowest priority)

•Surviving dummies are ACKed by
destination

•Source uses dummy feedback to increase
and decrease rate

RCS: “middleware” level implementation

RCS: state transition diagram

Initializion phase

•Source probes the connection for available
resources with dummy pkts

•Dummy pkt rate = S-target rate
•Let us say, n dummy pkts are ACK’d
•Initial rate = n/SRTT
•SRTT is the RTT measured by the source

RCS: steady state behavior

•In steady state behavior (no errors detected)
the sender increases the rate by one packet
per SRTT after each SRTT cycle

•Rate increase is stopped when S-target is
reached

RCS: detected loss state

•Sender cuts rate by half when it detects loss
(the receiver explicitly informs sender of
loss via dup ACKs as in RAP; or NACKs)

•The sender also probes (for a SRTT
interval) the path with dummy pkts (two
dummies for each data pkt) => rate =3/2 S

•After SRTT, sender returns to steady state
and monitors the return of dummy ACKs

RCS: recovery from loss detection

• After ½ of the dummy ACKs are received, the
sender gains confidence; it suspects the loss was
due to errors (instead of congestion)

• For the remaining ½ of the dummy ACKs, it
increases the rate by 1/SRTT for each ACK
received

• In the end, if ALL ACKs are received, the final
rate is equal to the rate before loss detection

Recovery from loss detection (cont)

• If the loss is due to congestion, ½ of the dummy
pkts will be dropped (the path can accept only at
most a rate = S, while sender is pumping at the
rate = S/2 data pkts + S dummy pkt)

• Thus, after the surviving ½ dummy ACKs have
been received by the sender (best case), there are
no more ACKs that allow the increase of S

• Thus, sender is stuck in the S/2 rate (as we wanted
it to be, to mimic TCP in congestion loss)!

Loss due to errors; the rate
Jumps back to 22 quickly

Loss due to congestion;
Very slow recovery

Simulation scenario:
10Mbps sat channel;
RTT = 550ms

RAP

RCS

Pkt loss beneficial?
RED-like effect? Hmm..

Comparison of Bdw O/H and throughput gain
of RCS vs RAP

Fairness among homogeneous RCS connections

5 RCS

5 TCP

10 TCP

Friendliness to TCP

Compare: {5 RCS + 5 TCP} vs all 10 TCP

Conclusion

• Intriguing streaming protocol
• The probing with dummy pkts is clever
• Relies on existence of low priority packets (lower

priority than best effort)
• Truly ETE scheme (middleware, above UDP and

RTP)
• Need more Friendliness experiments to convince

us of peaceful coexistence with TCP

