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Peer-peer networking
Focus at the application level



Peer-peer networking
Peer-peer applications
• Napster, Gnutella, Freenet: file sharing
• ad hoc networks
• multicast overlays (e.g., video distribution)



Peer-peer networking
• Q: What are the new technical challenges?
• Q: What new services/applications enabled?
• Q: Is it just “networking at the application-level”?

• Everything old is new again?



Napster
r program for sharing files over the Internet
r a “disruptive” application/technology?
r history:

m 5/99: Shawn Fanning (freshman, Northeasten U.) founds 
Napster Online music service

m 12/99: first lawsuit
m 3/00: 25%  UWisc traffic Napster
m 2000: est. 60M users
m 2/01: US Circuit Court of 

Appeals: Napster knew users 
violating copyright laws

m 7/01: # simultaneous online users:
Napster 160K, Gnutella: 40K, Morpheus: 300K



Napster: how does it work

Application-level, client-server protocol over point-
to-point TCP 

Four steps:
r Connect to Napster server
r Upload your list of files (push) to server.
r Give server keywords to search the full list with.
r Select “best” of correct answers. (pings)
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Napster messages
General Packet Format

[chunksize]    [chunkinfo]    [data...]

CHUNKSIZE:
Intel-endian 16-bit integer
size of [data...] in bytes

CHUNKINFO: (hex)
Intel-endian 16-bit integer.

00 - login rejected
02 - login requested
03 - login accepted
0D - challenge? (nuprin1715)
2D - added to hotlist
2E - browse error (user isn't online!)
2F - user offline

5B - whois query
5C - whois result
5D - whois: user is offline!
69 - list all channels
6A - channel info
90 - join channel
91 - leave channel
… ..



Napster: requesting a file
SENT to server (after logging in to server)

2A 00 CB 00 username
"C:\MP3\REM - Everybody Hurts.mp3"

RECEIVED
5D 00 CC 00 username

2965119704 (IP-address backward-form = A.B.C.D)
6699 (port)
"C:\MP3\REM - Everybody Hurts.mp3" (song)
(32-byte checksum)
(line speed)

[connect to A.B.C.D:6699]
RECEIVED from client

31 00 00 00 00 00
SENT to client

GET
RECEIVED from client

00 00 00 00 00 00

SENT to client
Myusername
"C:\MP3\REM - Everybody Hurts.mp3"
0 (port to connect to)

RECEIVED from client
(size in bytes)

SENT to server
00 00 DD 00  (give go-ahead thru server)

RECEIVED from client
[DATA]

From: http://david.weekly.org/code/napster.php3



Napster: architecture notes

r centralized server: 
m single logical point of failure
m can load balance among servers using DNS rotation
m potential for congestion
m Napster “in control” (freedom is an illusion)

r no security: 
m passwords in plain text
m no authentication 
m no anonymity



Gnutella

r peer-to-peer networking: applications connect to 
peer applications 

r focus: decentralized method of searching for files
r each application instance serves to:

m store selected files
m route queries (file searches) from and to its neighboring 

peers
m respond to queries (serve file) if file stored locally

r Gnutella history:
m 3/14/00: release by AOL, almost immediately withdrawn
m too late: several thousands of users on Gnutella as of now
m many iterations to fix poor initial design (poor design 

turned many people off)



Gnutella: how it works
Searching by flooding:
r If you don’t have the file you want, query 7 of 

your partners.
r If they don’t have it, they contact 7 of their 

partners, for a maximum hop count of 10.
r Requests are flooded, but there is no tree 

structure.
r No looping but packets may be received twice.
r Reverse path forwarding(?)

Note: Play gnutella animation at: 
http://www.limewire.com/index.jsp/p2p



Flooding in Gnutella: loop prevention

Seen already list: “A”



Gnutella message format

r Message ID: 16 bytes  (yes bytes)
r FunctionID: 1 byte indicating 

m 00 ping: used to probe gnutella network for hosts
m 01 pong: used to reply to ping, return # files shared
m 80 query: search string, and desired minimum bandwidth
m 81: query hit: indicating matches to 80:query, my IP 

address/port, available bandwidth
r RemainingTTL: decremented at each peer to 

prevent TTL-scoped flooding
r HopsTaken: number of peer visited so far by this 

message
r DataLength: length of data field



Gnutella: initial problems and fixes

r Freeloading: WWW sites offering search/retrieval 
from Gnutella network without providing file sharing 
or query routing.
m Block file-serving to browser-based non-file-sharing users 

r Prematurely terminated downloads: 
m long download times over modems
m modem users run gnutella peer only briefly (Napster 

problem also!) or any users becomes overloaded
m fix: peer can reply “I have it, but I am busy. Try again 

later” 
m late 2000: only 10% of downloads succeed
m 2001: more than 25% downloads successful (is this success 

or failure?)

www.limewire.com/index.jsp/net_improvements



Gnutella: initial problems and fixes (more)

r 2000: avg size of reachable network only 400-800 
hosts. Why so smalll?
m modem users: not enough bandwidth to provide search 

routing capabilities: routing black holes
r Fix: create peer hierarchy based on capabilities

m previously: all peers identical, most modem blackholes
m connection preferencing:

• favors routing to well-connected peers
• favors reply to clients that themselves serve large number of 

files: prevent freeloading

www.limewire.com/index.jsp/net_improvements



Anonymous?

r Not anymore than it’s scalable.
r The person you are getting the file from knows 

who you are. That’s not anonymous.

r Other protocols exist where the owner of the 
files doesn’t know the requester.

r Peer-to-peer anonymity exists.



Gnutella Discussion:

r Architectural lessons learned?
m ..
m ..
m ..
m ..

r Do Gnutella’s goals seem familiar? Does it work 
better than say squid or summary cache?

r anonymity and security?
r Other?
r Good source for technical info/open questions:

m http://www.limewire.com/index.jsp/tech_papers


