Comments on the Performance of Measurement Based Admission Control Algorithms

Lee Breslau, S. Jamin, S. Shenker Infocom 2000

Survey of Measmt Based AC Schemes

Many different varieties of MBACs:

- Some based on "solid" math models (eg, theory of large deviations)
- Others "ad hoc" (no theory underpinning)
- Different load estimations: from simple point estimate, to exp averaging, combined mean and variance measmts, etc

How to compare them?

- Use packet loss as measure of service failure
- Loss-load curve: loss rate occurring at given level of service utilization

The Ingredients of MBAC

Two key components:

- Network load measurements (on aggregate rather than per flow)
- Adm control decision based on load measmt

Service Characterization

Service requested by appl:

defined by token bucket params – token rate
r, bucket depth b

Service delivered:

Measured in terms of packet drop rate

MBACs surveyed

Measured Sum:

• Token rate of new flow + aggregate measured rate of existing flows must be less than utilization threshold

"Hoeffding" bounds:

• Peak rate of new flow + aggregate equiv bdw of existing flows must be less than link bdw

Tangent of equiv bdw curve:

• A given "function" of equiv bdw less than link bdw

Measure CAC:

• Peak rate of new flow + "large deviation" equiv bdw estimate less than link bdw

Aggregate Traffic Envelopes, etc

Meas.mts vs Parameter Adm Control

Parameter based Adm Control:

- *Hard* real time services
- decision based on worst case bounds
- typically, low network utilization

Measurement based Adm Control:

- *Soft* real time services (occasional pkt loss or delay violation)
- Decision based on existing traffic measurements
- Higher utilization than parameter based
- The Adm Control scheme of choice in DiffServ

MBACs surveyed (cont)

- Each one of the surveyed CAC schemes has two components:
- (a) Load estimate (including new flow)
- (b) Admission control decision
- Can pair up Load estimate and Adm decision across schemes (mix and match)!

MBACs surveyed (cont)

- Each scheme has a parameter that can be tuned to make it more or less "aggressive", eg. Target loss rate or Target link utilization
- Performance can be measured by loss-vsload curve

Simulation Methodology

Two types of sources:

- ON/OFF sources: random ON and OFF intervals
- Video traces

Sources policed by token bucket

- Token bucket parameters used in "parameter based" Call Admission control
- For ON/OFF token rate = 64kbps; bucket depth=1

Configuration Parameters

- Single bottleneck link: 10 Mbps
- Bottleneck buffer: 160 pkts
- Packet length: 128 bytes
- Heavy offered load (to force CAC and rejections)

ON/OFF traffic experiments

Mix and match: point sample load estimates

Model Robustness

- The experiments show **extraordinary robustness** of performance to different MBCA schemes
- Additional experiments (not shown here) show similar robustness to: very bursty ON/OFF sources; long range dependant processes; video sources etc

Heterogenous traffic

Two simultaneous sources:

- Star Wars: 350Kbps avg, 1200 Kbps peak; r=800Kbps, b=200 Kb
- CRB: 800Kbps; r=800Kbps, b=1.6Kb (single pkt)

Measured Sum scheme- two versions:

- Token rate used for new flow: SW=CBR=800;
- **Peak rate** used for new flow: SW=1200; CBR=800

Peak rate favors CBR; it leads to 3:1 CBR/SW mix; lower loss

Comparing with Ideal CAC

- **Ideal CAC** algorithm: maintain the "**quota**" of flows constant = N, where N is determined by target loss rate
- Ideal CAC has prior knowledge of current # of flows
- Measured Sum alg must "guess" N from load measurements;
- Ideal CAC is open loop; it wins as it leads to lower load fluctuations
- Measured Sum uses closed loop feedback control; it tend to overreact leading to higher oscillations and possible instability

Ideal CAC (ie Quota) vs Measured Sum

Ideal vs MS in Long Range Dependance

- Long Range Dep source: ON/OFF interval Pareto distributed; flow lifetime lognormal
- "Quota" does not work very well here: no notion of *ideal* quota valid all the time
- Measured Sum, on the other hand, can track the flow fluctuations => lower loss rate!

Quota vs Measured Sum

Can we predict MBAC loss?

- Network operators would like to predict loss to set operating point (eg, target utilization in the Measured Sum scheme)
- **Question**: can we **preselect** the "control knobs" and expect results consistent with prediction?
- Answer: not quite! Better to measure resulting loss rate and adjust knobs accordingly
- Results in next slide are based on:
 - MC scheme: measure CAC large dev estimate of existing flows
 + peak of new flow
 - TE (Traffic Envelope): measured max aggregate envelope of existing + peak of new flow

Algorithm	Source	Target	Actual
	Model	Loss Rate	Loss Rate
TE	EXP1	10^{-6}	1.9×10^{-5}
TE	EXP1	10^{-2}	4.8×10^{-2}
TE	Star Wars	10^{-6}	5.5×10^{-4}
TE	Star Wars	10^{-2}	4.4×10^{-3}
TE	EXP2	10^{-6}	3.1×10^{-5}
TE	EXP2	10^{-2}	1.8×10^{-3}
TE	POO1	10^{-6}	1.3×10^{-2}
TE	POO1	10^{-2}	4.1×10^{-2}
MC	EXP1	10^{-6}	1.1×10^{-4}
MC	EXP1	10^{-2}	2.4×10^{-4}
MC	Star Wars	10^{-6}	3.0×10^{-3}
MC	Star Wars	10^{-2}	4.5×10^{-3}
MC	EXP2	10^{-6}	1.7×10^{-4}
MC	EXP2	10^{-2}	2.0×10^{-4}
MC	POO1	10^{-6}	1.2×10^{-2}
MC	POO1	10^{-2}	1.6×10^{-2}

Conclusions

- All MBAC schemes achieve identical loss-load performance (no matter the effort spent in developing sophisticated measurements)
- Flow heterogeneity must be addressed by policy aggregated measured based control is unfair
- MBAC does better than Ideal "Quota" scheme in Long Range Dependency
- Predictive "knobs" do not work well; need to monitor loss directly and use feedback