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• peer-to-peer systems
– Napster, Gnutella, Groove, FreeNet, MojoNation…

• large-scale storage management systems
– Publius, OceanStore, PAST, Farsite, CFS ...

• mirroring on the Web

Internet-scale hash tables
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Content-Addressable Network
(CAN)

• CAN: Internet-scale hash table

• Interface
– insert(key,value)
– value = retrieve(key) 

• Properties
– scalable
– operationally simple
– good performance

• Related systems: Chord/Pastry/Tapestry/Buzz/Plaxton ...



Problem Scope
4 Design a system that provides the interface
3 scalability 
3 robustness
3 performance  
5 security   

6 Application-specific, higher level primitives
5 keyword searching 
5 mutable content 
5 anonymity
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CAN: basic idea
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CAN: solution

• virtual Cartesian coordinate space

• entire space is partitioned amongst all the nodes 
– every node “owns” a zone in the overall space

• abstraction
– can store data at “points” in the space 
– can route from one “point” to another

• point  = node that owns the enclosing zone 
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node I::insert(K,V)

I
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CAN: simple example

(2)  route(K,V) -> (a,b)

(3)  (a,b) stores (K,V) 

(K,V)

node I::insert(K,V)

I(1)  a = hx(K)
b = hy(K)



CAN: simple example

(2)  route “retrieve(K)” to (a,b) (K,V)

(1)  a = hx(K)
b = hy(K)

node J::retrieve(K)

J



Data stored in the CAN is addressed 
by name (i.e. key), not location (i.e. IP 
address)

CAN



CAN: routing table



CAN: routing

(a,b)

(x,y)



A node only maintains state for its 
immediate neighboring nodes

CAN: routing



CAN: node insertion

Bootstrap
node

1) Discover some node “I” already in CAN
new node



CAN: node insertion

I

new node
1) discover some node “I” already in CAN



CAN: node insertion

2) pick random 
point in space

I

(p,q)

new node



CAN: node insertion

(p,q)

3) I routes to (p,q), discovers node J 

I

J

new node



CAN: node insertion

newJ

4) split J’s zone in half…  new owns one half



Inserting a new node affects only a 
single other node and its immediate 
neighbors

CAN: node insertion



CAN: node failures
• Need to repair the space 

– recover database (weak point)
• soft-state updates
• use replication, rebuild database from replicas

– repair routing 
• takeover algorithm



CAN: takeover algorithm

• Simple failures
– know your neighbor’s neighbors
– when a node fails, one of its neighbors takes over 

its zone

• More complex failure modes
– simultaneous failure of multiple adjacent nodes 
– scoped flooding to discover neighbors
– hopefully, a rare event



Only the failed node’s immediate 
neighbors are required for recovery

CAN: node failures



Design recap
• Basic CAN

– completely distributed
– self-organizing
– nodes only maintain state for their immediate 

neighbors

• Additional design features
– multiple, independent spaces (realities)
– background load balancing algorithm
– simple heuristics to improve performance 
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Evaluation
• Scalability

• Low-latency

• Load balancing

• Robustness



CAN: scalability
• For a uniformly partitioned space with n nodes and d

dimensions 
– per node, number of neighbors is 2d
– average routing path is  (dn1/d)/4 hops
– simulations show that the above results hold in practice

• Can scale the network without increasing per-node 
state 

• Chord/Plaxton/Tapestry/Buzz
– log(n) nbrs with log(n) hops



CAN: low-latency
• Problem

– latency stretch = (CAN routing delay)
(IP routing delay)

– application-level routing may lead to high stretch 

• Solution
– increase dimensions, realities (reduce the path 

length)
– Heuristics (reduce the per-CAN-hop latency)

• RTT-weighted routing
• multiple nodes per zone (peer nodes)
• deterministically replicate entries 
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CAN: load balancing
• Two pieces

– Dealing with hot-spots
• popular (key,value) pairs
• nodes cache recently requested entries
• overloaded node replicates popular entries at neighbors

– Uniform coordinate space partitioning
• uniformly spread (key,value) entries
• uniformly spread out routing load



Uniform Partitioning

• Added check 
– at join time, pick a zone
– check neighboring zones
– pick the largest zone and split that one
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CAN: Robustness

• Completely distributed 
– no single point of failure ( not applicable to pieces of 

database when node failure happens)

• Not exploring database recovery (in case 
there are multiple copies of database)

• Resilience of routing
– can route around trouble
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Strengths

• More resilient than flooding 
broadcast networks

• Efficient at locating information
• Fault tolerant routing
• Node & Data High Availability (w/ 

improvement)
• Manageable routing table size & 

network traffic



Weaknesses

• Impossible to perform a fuzzy search
• Susceptible to malicious activity
• Maintain coherence of all the indexed 

data (Network overhead, Efficient 
distribution)

• Still relatively higher routing latency
• Poor performance w/o improvement



Suggestions

• Catalog and Meta indexes  to perform 
search function

• Extension to handle mutable content 
efficiently for web-hosting

• Security mechanism to defense 
against attacks
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Ongoing Work

• Topologically-sensitive CAN construction
– distributed binning



Distributed Binning 
• Goal

– bin nodes such that co-located nodes land in same bin

• Idea
– well known set of landmark machines
– each CAN node, measures its RTT to each landmark
– orders the landmarks in order of increasing RTT

• CAN construction
– place nodes from the same bin close together on the CAN



Distributed Binning
– 4 Landmarks (placed at 5 hops away from each other)
– naïve partitioning 
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Ongoing Work (cont’d)

• Topologically-sensitive CAN construction
– distributed binning

• CAN Security (Petros Maniatis - Stanford)
– spectrum of attacks
– appropriate counter-measures



Ongoing Work (cont’d)

• CAN  Usage

– Application-level Multicast (NGC 2001)

– Grass-Roots Content Distribution 

– Distributed Databases using CANs
(J.Hellerstein, S.Ratnasamy, S.Shenker, I.Stoica, S.Zhuang)



Summary

• CAN
– an Internet-scale hash table
– potential building block in Internet applications

• Scalability
– O(d) per-node state

• Low-latency routing
– simple heuristics help a lot

• Robust
– decentralized, can route around trouble


