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Abstract

The increasing popularity of streaming video is a cause for concern for the stability of the Internet because most

streaming video content is currently delivered via UDP, without any end-to-end congestion control. Since the Internet

relies on end systems implementing transmit rate regulation, there has recently been significant interest in congestion

control mechanisms that are both fair to TCP and effective in delivering real-time streams.

In this paper we design and implement a protocol that attempts to maximize the quality of real-time MPEG-4

video streams while simultaneously providing basic end-to-end congestion control. While several adaptive protocols

have been proposed in the literature [21, 29], the unique feature of our protocol, the Video Transport Protocol (VTP),

is the use of receiver side bandwidth estimation. Such estimation is transmitted to the sender and enables it to adapt

to network conditions by altering its sending rate and the bitrate of the transmitted video stream. We deploy our

protocol in a real network testbed and extensively study its behavior under varying link speeds and background traffic

profiles using the FreeBSD Dummynet link emulator [24]. Our results show that VTP delivers consistent quality

video in moderately congested networks and fairly shares bandwidth with TCP in all but a few extreme cases. We

also describe some of the challenges in implementing an adaptive video streaming protocol.

1 Introduction

As the Internet continues to grow and mature, transmission of multimedia content is expected to increase and

compose a large portion of the overall data traffic. Film and television distribution, digitized lectures, and distributed

interactive gaming applications have only begun to be realized in today’s Internet, but are rapidly gaining popularity.

Audio and video streaming capabilities will play an ever-increasing role in the multimedia-rich Internet of the near

future. Real-time streaming has wide applicability beyond the public Internet as well. In military and commercial

wireless domains, virtual private networks, and corporate intra-nets, audio and video are becoming a commonplace

supplements to text and still image graphics.
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Currently, commercial programs such as RealPlayer [20] and Windows Media Player [17] provide the predominant

amount of the streamed media in the Internet. The quality of the content delivered by these programs varies, but

they are generally associated with low resolution, small frame size video. One reason these contemporary streaming

platforms exhibit limited quality streaming is their inability to dynamically adapt to traffic conditions in the network

during a streaming session. Although the aforementioned applications claim to be adaptive, there is no conclusive

evidence as to what degree of adaptivity they employ as they are proprietary, closed software [21]. Their video

streams are usually delivered via UDP with no transport layer congestion control. A large-scale increase in the amount

of streaming audio/video traffic in the Internet over a framework devoid of end-to-end congestion control will not

scale, and could potentially lead to congestion collapse.

UDP is the transport protocol of choice for video streaming platforms mainly because the fully reliable and strict in-

order delivery semantics TCP do not suit the real-time nature of video transmission. Video streams are loss tolerant and

delay sensitive. Retransmissions by TCP to ensure reliability introduce latency in the delivery of data to the application,

which in turn leads to degradation of video image quality. Additionally, the steady state behavior of TCP involves the

repeated halving and growth of its congestion window, following the well known Additive Increase/Multiplicative

Decrease (AIMD) algorithm. Hence, the throughput observed by a TCP receiver oscillates under normal conditions.

This presents another difficulty since video is usually streamed at a constant rate (VTP streams are actually piecewise-

constant). In order to provide the best quality video with minimal buffering, a video stream receiver requires relatively

stable and predictable throughput.

Our protocol, the Video Transport Protocol (VTP), is designed with the primary goal of adapting an outgoing video

stream to the characteristics of the network path between sender and receiver. If it determines there is congestion,

the VTP sender will reduce its sending rate and the video encoding rate to a level the network can accommodate.

This enables VTP to deliver a larger portion of the overall video stream and to achieve inter-protocol fairness with

competing TCP traffic. A secondary goal of VTP is the minimal use of network and end system resources. We make

several trade-offs to limit processing overhead and buffering requirements in the receiver. In general, VTP follows a

conservative design philosophy by sparingly using bandwidth and memory during the streaming session.

An important aspect of VTP is that it is completely end-to-end. VTP does not rely on QoS functionality in routers,

random early drop (RED), other active queue management (AQM), or explicit congestion notification (ECN). It could

potentially benefit from such network level facilities, but in this paper we focus only on the case of real-time streaming

in a strictly best effort network. Possible interactions between VTP and QoS routers, AQM, or ECN is an area of

future work.

VTP is implemented entirely in user space and designed around open video compression standards and codecs for

which the source code is freely available. The functionality is split between two distinct components, each embodied

in a separate software library with its own API. The components can be used together or separately, and are designed

to be extensible. VTP sends packets using UDP, adding congestion control at the application layer.

This paper discusses related work in the next section and presents the VTP design in Section 3. Section 4 covers
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the VTP implementation, experiments and results. The conclusion and a brief discussion of future work follow.

2 Related Work

Recent research approaches to address the lack of a suitable end-to-end service model for multimedia streaming

generally fall into two categories: 1) modifications or enhancements to AIMD congestion control to better accommo-

date streaming applications, or 2) model-based flow control based primarily on the results of [19]. We give several

examples of each technique before presenting the motivation and design of VTP.

The Rate Adaptation Protocol (RAP) [21] is a rate based AIMD protocol intended for transmitting real-time video.

The RAP sender uses feedback regarding congestion conditions from the sender to make decisions about its sending

rate and the transmitted video quality. The RAP algorithm does not result in fairness with TCP in many cases, but

router support in the form of RED can improve RAP’s inter-protocol behavior to some extent.

A major difference between VTP and RAP is the degree to which they comply to AIMD. While RAP is a full

AIMD protocol, VTP performs additive increase but it does not decrease its sending rate multiplicatively. Rather, it

adjusts its sending rate to the rate perceived by the receiver. RAP and VTP also differ in the type of video encoding

they stream. RAP is based on layered video encoding where the sender can decide how many layers can be sent

at any given time. On the other hand, VTP assumes a discrete encoding scheme, where the sender chooses one of

several pre-encoded streams and exclusively sends from that stream until it decides to change the video quality. Video

compression is described in further detail in the next section.

In the spirit of RAP, N. Feamster proposes SR-RTP [8, 9], a backward compatible extension to the Real Time

Protocol (RTP). SR-RTP uses a quality adaptation mechanism similar to RAP, but “binomial” congestion control

reduces the congestion window size proportional to the square root of its value rather than halving it in response to

loss. This is shown to assuage oscillations in the sending rate and produce smoother throughput. Binomial algorithms

also display a reasonable amount of TCP fairness [4].

The main benefits of SR-RTP come from two unique features: selective retransmission of certain video packets,

and decoder post-processing to conceal errors due to packet loss. However, the effectiveness of selective retransmission

depends strongly on the round trip time (RTT) between sender and receiver. Further, in [9], the receiver post-processing

is performed offline for ease of analysis. It is not clear such recovery techniques are viable in real time or with limited

processing resources.

The Stream Control Transmission Protocol (SCTP) [25] is a recently proposed protocol with many novel features

designed to accommodate real-time streaming. SCTP supports multi-streaming, where a sender is able to multiplex

several outgoing streams into one connection. This can potentially be very advantageous for compressed video formats

since packets belonging to different parts of the video stream can be treated differently with respect to retransmission

and order of delivery. The congestion control mechanism in SCTP is identical to TCP, where the congestion window

is reduced by half in the event of packet loss. Like TCP, SCTP employs slow start to initially seek out available
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bandwidth and congestion avoidance to adapt to changing path conditions. This results in perfect fairness with TCP,

but leads to high variability in throughput at the receiver. An investigation of the applicability of SCTP to MPEG-4

streaming is the subject of [3].

The work of J. Padhye, et. al. [19] has led to TCP-Friendly Rate Control (TFRC) [12]. TFRC is not itself a

protocol, but an algorithm for maintaining the sending rate at the level of a TCP flow under the same conditions. The

TFRC sender adjusts its rate according to an equation that specifies throughput in terms of packet size, loss event

rate, RTT, and the retransmission timer value. TFRC is meant to serve as a congestion control framework for any

applications that do not require the full reliability of TCP and would benefit from low variation in sending rate.

Application domains appropriate for TFRC include multimedia streaming, interactive distributed games, Internet

telephony, and video conferencing. Several authors have applied the TFRC model to video streaming. In [26], a new

error-resilient video compression method is developed which relies on simplified derivation of the TCP throughput

equation. The relationship between the compression level and the congestion control model is examined. The Multi-

media Streaming TCP-Friendly Protocol (MSTFP) is part of a comprehensive resource allocation strategy proposed in

[29] which uses a TFRC model to adapt streaming MPEG-4 video.

Ostensibly, any rate adjustment scheme derived from TCP would suffer the same limitations of TCP itself.1 TCP’s

behaviors of poor link utilization in high-loss environments and unfairness against flows with large RTTs have been

documented repeatedly (see, for example, [2]). These problems resurface in TCP-inspired streaming protocols. Al-

though VTP decreases its sending rate in response to packet loss, the decrease decision, as will be shown later, does

not assume that all packet loss is a result of overflowed router buffers. At the same time, the amount of decrease is

sufficient to restrict the sending rate to within its fair share of the network bandwidth. In this paper we argue that it is

possible to build a stable and scalable network protocol that is not subject to the limitations of TCP. VTP borrows the

idea of additive increase from AIMD, but it uses an estimation based decrease instead of a multiplicative decrease.

3 The Video Transport Protocol

A typical video streaming server sends video data by dividing each frame into fixed size packets and adding a

header containing, for example, a sequence number, the time the packet was sent, and the relative play out time

of the associated video frame. Upon receiving the necessary packets to reassemble a frame, the receiver buffers

the compressed frame for decoding. The decompressed video data output from the decoder is then sent to the output

device. If the decoder is given an incomplete frame due to packet loss during the transmission, it may decide to discard

the frame. The mechanism used in the discarding decision is highly decoder-specific, but the resulting playback jitter

is a universal effect. In MPEG-4 video, which we use in this paper, there are dependencies between independent or

“key” frames and predicted frames. Discarding a key frame can severely effect the overall frame rate as errors will

propagate to all frames predicted from the key frame.

1The TCP throughput equation in TFRC is derived for TCP New Reno in particular.
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The primary design goal of VTP is to adapt the outgoing video stream so that, in times of network congestion,

less video data is sent into the network and consequently fewer packets are lost and fewer frames are discarded. VTP

rests on the underlying assumption that the smooth and timely play out of consecutive frames is central to a human

observer’s perception of video quality. Although a decrease in the video bitrate noticeably produces images of coarser

resolution, it is not nearly as detrimental to the perceived video quality as inconsistent, start-stop play out. VTP

capitalizes on this idea by adjusting both the video bitrate and its sending rate during the streaming session. In order

to tailor the video bitrate, VTP requires the same video sequence to be pre-encoded at several different compression

levels. By switching between levels during the stream, VTP makes a fundamental trade-off by increasing the video

compression in an effort to preserve a consistent frame rate at the client.

In addition to maintaining video quality, the other important factor for setting adaptivity as the main goal in the

design is inter-protocol fairness. Unregulated network flows pose a risk to the stability and performance of the Internet

in their tendency to overpower TCP connections that carry the large majority of traffic. While TCP halves its window

in response to congestion, unconstrained flows are under no restrictions with respect to the amount of data they can

have in the network at any time. VTP’s adaptivity attempts to alleviate this problem by interacting fairly with any

competing TCP flows.

The principal features of this design, each described in the following subsections, can be summarized as follows:

1. Communication between sender and receiver is a “closed loop,” i.e. the receiver sends acknowledgments to the

sender at regular intervals.

2. The bandwidth of the forward path is estimated and used by the sender to determine the sending rate.

3. VTP is rate based. There is no congestion window or slow start phase.

3.1 Sender and Receiver Interaction

VTP follows a client/sever design where the client initiates a session by requesting a video stream from the server.

Once several initialization steps are completed, the sender and receiver communicate in a closed loop, with the sender

using the acknowledgments to determine the bandwidth and RTT estimates.

Figure 1 shows the VTP video header and acknowledgment or “control packet” formats. The symmetric design

facilitates both bandwidth and RTT computation. The TYPE field is used by the sender to explicitly request a control

packet from the receiver. For every � video packets sent, the sender will mark the TYPE field with an ack request,

to which the receiver will respond with a control packet. The value of � is a server option that is configurable at run

time by the user. The two timestamp fields for sender and receiver respectively are used for RTT measurement and

bandwidth computation. VTP estimates the bandwidth available to it on the path and then calibrates its sending rate to

the estimate, as detailed in the following paragraphs.

When the receiver receives a data packet with the TYPE field indicating it should send a control packet, it performs

two simple operations. First, it copies the header of the video packet and writes its timestamp into the appropriate
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Figure 1: VTP packet formats for a) video packets and b) control packets.

fields. Second, it writes the number of bytes received since the last control packet was sent into the SIZE field. The

modified video packet header is then sent back to the sender as a control packet.

Upon receipt of the control packet, the sender extracts the value in the SIZE field and the receiver timestamp. The

sender is able to compute the time delta between control packets at the receiver by keeping the value of one previous

receiver timestamp in memory and subtracting it from the timestamp in the most recently received packet. The value

of the SIZE field divided by this time delta is the rate currently being achieved by this stream. This rate is also the

“admissible” rate since it is the rate at which data is getting through the path bottleneck. In essence, the measured

rate is equal to the bandwidth available to the connection. Thus, it is input as a bandwidth sample into the bandwidth

estimation algorithm described in the next section.

The sender uses its own timestamps to handle the RTT computation. When the sender sends a video packet with the

TYPE field marked for acknowledgment, it remembers the sequence number. If the sequence number on the returning

control packet matches the stored value (recall the receiver simply copies the header into the control packet, changing

only its own timestamp and the SIZE field), the sender subtracts the sender timestamp in the control packet from the

current time to get the RTT sample.

If either a data packet that was marked for acknowledgment or a control packet is lost, the sender notices a

discrepancy in the sequence numbers of the arriving control packets. That is, the sequence numbers to not match those

that the sender has recorded when sending out video packets with ack requests. In this case, the sender disregards the

information in the control packets. Valid bandwidth or RTT samples are always taken from two consecutively arriving

control packets.
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3.2 Bandwidth Estimation and Rate Adjustment

Bandwidth estimation is an active area of research in its own right [1, 5, 6, 14]. In this paper we provide only a

brief summary following [6]. Recall from the previous section that the achieved rate sample ��� can be obtained by

dividing the amount of data in the last � packets by the inter-arrival time between the current and ����� previous

packets. As a concrete example, suppose ���
	 and four packets arrive at the receiver at times �
��������������� , each with� ����������� � � bytes of data respectively. The sum � � ��� � � � is sent to the sender in the SIZE field of the control packet.

The sender, knowing ��� from the last control packet and ��� from the current control packet, computes

� � �
�� ��� � � �� � � ��� ��� (1)

Exponentially averaging the samples using the formula � � �"! �  �"# �%$ � �&� ! �(' � � $)� �*# �+ , (2)

yields the bandwidth estimate
 � that is used by the sender to adjust the sending rate. The parameter

!
is a weighting

factor that determines how much the two most recent samples should be weighed against the history of the bandwidth

estimate. In experimental trials, it was determined that VTP performs best when
!

is a constant close to 1. Packet loss

is reflected by a reduction in the achieved rate and thus in the bandwidth estimate. Since the bandwidth estimation

formula takes into account losses due to both congestion and random errors, using an exponential average prevents a

single packet drop due to a link error from causing a steep reduction in the estimate.

Through the estimate of the connection bandwidth, the VTP sender gains considerable knowledge about the con-

ditions of the path. The sender uses the estimate as input into an algorithm that determines how fast to send the data

packets and which pre-encoded video to send. We describe the algorithm in terms of a finite state machine (FSM),

shown in Figure 2. Assuming three video encoding levels, the states Q0, Q1, and Q2 each correspond to one distinct

video level from which VTP can stream. We use three levels throughout this example for simplicity, but -�.0/ levels

are possible in general. Each of the IR states, IR0, IR1, and IR2, represent increase rate states, and DR represents

the decrease rate state. In Figure 2, the states and transitions involved in a quality level increase are highlighted with

dashed lines.

Starting in state Q0, a transition to IR0 is initiated by the reception of a bandwidth estimate that is equal to or

greater than the current sending rate. Being in state Q0 only implies the VTP server is sending the lowest quality

level, it says nothing about the sending rate. In state IR0, the server checks several conditions. First, it checks if the

RTT timer has expired. If it has not, the server returns to Q0 without taking any action and awaits the next bandwidth

estimate. If one RTT has passed, it remains in IR0 and investigates further. It next determines whether the sending

rate is large enough to support the rate of the next highest level (level 1 in this case). If not, the server increases the

sending rate by one packet size and returns to state Q0. If, on the other hand, the sending rate can accommodate the

next quality level, the server checks the value of a variable we call “the heuristic.”
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Figure 2: VTP finite state machine with states and transitions involved in a video quality level increase represented with dashed lines.

The heuristic is meant to protect against over ambitiously increasing the video quality in response to instantaneous

available bandwidth on the link that is short-lived and will not be able to sustain the higher bitrate stream. If the

heuristic is satisfied, the server increases the sending rate by one packet size and transitions to state Q1. If the heuristic

is not met, the server increases the rate by one packet and returns to state Q0. In normal operation, the server will cycle

between states Q0 and IR0 while continually examining the RTT timer, the bandwidth estimate, and the heuristic, and

adjusting the sending rate. When conditions permit, the transition to Q1 occurs. The process repeats itself for each of

the quality levels.

In the current implementation the heuristic is an amount of time, measured in units of RTT, to wait before switching

to the next higher level of video quality. Ideally, the heuristic would also take into account the receiver buffer conditions

to ensure a video quality increase would not cause buffer overflow. Since the receiver is regularly relaying timestamp

information to the sender, it would be expedient to notify the sender of the amount of buffer space available in the

control packet. The sender would then be able to make the determination to raise the video quality with the assurance

that both the network and the receiver can handle the data rate increase. [22] examines the factors that need to be taken

into account in quality changing decisions in detail.

In a rate and quality decrease, the transition to DR is initiated when the server receives a bandwidth estimate

less than its current sending rate. In DR, the server checks the reference rate of each constituent quality to find the

highest one that can fit within the bandwidth estimate. The server sets its sending rate to the bandwidth estimate and

transitions to the state corresponding to the video quality that can be supported. Unlike the state transitions to increase

quality levels, the decrease happens immediately, with no cycles or waits on the RTT timer. This conservative behavior

contributes greatly to the fairness properties of VTP discussed in Section 4.4.

As the FSM suggests, the selection of the encoding bitrates is important. VTP observes the rule that a particular

video encoding level must be transmitted at a rate greater than or equal to its bitrate and will not send slower than the
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rate of the lowest quality encoding. This could potentially saturate the network and exacerbate congestion if the lowest

video bitrate is frequently higher than the available bandwidth. Additionally, if the step size between each reference

rate is large, more data buffering is required at the receiver. This follows from the fact that large step sizes lead to the

condition where VTP is sending at a rate that is considerably higher than the video bitrate for long periods of time.

3.3 Rate Based Congestion Control

The stability of the Internet depends on the window based AIMD algorithm of TCP. Any protocol that does not

observe the AIMD scheme requires justification to be considered viable, especially for large-scale deployment. VTP

has no congestion window, does not perform slow start, and does not halve its sending rate on every packet loss. How-

ever, VTP uses resources in a minimal way and relinquishes them on the first indication of congestion. Justification

for the plausibility of VTP is based mainly on the practical observation that the threat to Internet stability is not posed

by flows using congestion control schemes that are non-compliant to AIMD, but rather by flows under no end-system

control at all – flows that are completely impervious to network conditions.

It has not been proven that Internet stability requires AIMD, but some form of end-to-end congestion control is

necessary in order to prevent congestion collapse [12]. Even though VTP is not founded on AIMD, it is still able to

fairly share links with TCP competitors as evidenced by the experimental results of Section 4.4. Inter-protocol fairness

of VTP notwithstanding, any end-to-end mechanism that limits the flow of the real-time traffic in an environment

where it competes with TCP is advantageous from the perspective of fairness. Furthermore, unlike TCP, VTP is aimed

at preserving minimum variance in delivery rate at the receiver. Streaming applications that eschew TCP due to its

oscillatory steady state nature can benefit from the smooth delivery rate of VTP while during times of congestion their

data load on the network will be judiciously constrained.

By default, VTP performs a type of congestion avoidance: it increases its rate by a small amount on every esti-

mated RTT. Normally the rate increase is one packet size per RTT, but it can be tuned to compensate for large RTTs.

The gradual rate increase seeks out available bandwidth and enables VTP to “ramp up” the video quality if network

conditions remain accommodating. This behavior parallels the additive increase phase of AIMD so that rate increases

in VTP and TCP are comparable.

4 Implementation and Experiments

We implemented VTP on the Linux platform and performed extensive evaluations using the Dummynet link em-

ulator [24]. We developed a technique to smooth the bandwidth required by the outgoing video stream and compute

the client buffer requirement for specific pre-encoded video segments. The goals of our experiments were to assess

inter-protocol fairness between VTP and TCP, and to evaluate the quality of the transmitted video played by the client.

In this section we cover the software implementation of VTP and the results of our experimental evaluation.
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4.1 Software Architecture

The VTP implementation effort has strived to build a fully functioning video streaming platform. VTP software

accepts standard Audio/Video Interleaved (AVI) files as input. For each video segment, VTP requires multiple AVI

files, each of a different level of MPEG-4 compression. Two main functional units comprise the VTP architecture.

A transport layer component called NetPeer provides an interface that returns an estimate of the bandwidth share of

the connection. A middleware component called FileSystemPeer manages the source video data and determines the

sending rate based on the estimate provided by NetPeer.

For each set of AVI files, a binary file is created that contains the discrete encoded video along with synchronization

markers to guide the server in selecting the right frame when a level change needs to be made. Audio and video

portions of the AVI files are de-multiplexed in the process of creating the binary file and only the video data is stored

and transmitted. Streaming audio and video in combination with VTP is a subject of future research. Upon receiving

the client’s request to start a stream, the FileSystemPeer opens the binary file and begins to send data at the lowest

quality encoding. As the session progresses, the FileSystemPeer changes the video level in response to the NetPeer

feedback.

The client and server communicate over two separate sockets: one UDP socket for data and one UDP socket for

control information. Timestamps are gathered using the Berkeley Packet Filter utility (BPF)2 running in a separate

thread to minimize the influence of the data processing on the RTT value. The BPF allows the user mode player

and server processes to collect timestamps at the network interface level that exclude operating system and protocol

overhead time. The minimum measured RTT during the connection is used as the RTT value in the rate adjustment

algorithm. Figure 3 presents a functional diagram of the VTP software architecture. Each of the two server components

of VTP is independent and could potentially be used with other software modules. Similarly, the client NetPeer is

intended to function as a generic plug-in to any software player that supports modular input. In this implementation

we used the xine video player [28] for Unix systems.

A VTP software server may be implemented easily by linking the FileSystemPeer and NetPeer modules and

providing a main routine to form an executable. The client side NetPeer includes buffering capability to accommodate

network level buffering of video data.

The FileSystemPeer API provides two major functions:

is_eof = getPacket(qual, buffer, size);

rate = setRate(rtt_val, bw_est, &qual);

The getPacket function fills the buffer field with a header and size bytes of video data from video quality

qual, where qual corresponds to one of the pre-encoded compression levels in the binary file. A flag is returned

indicating whether this is the last packet in the file. The setRate function realizes the algorithm in Section 3.2.

The values for the parameters rtt val and bw est are provided by NetPeer (see NetPeer API below). The last

2Available from http://www-nrg.ee.lbl.gov/.
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Figure 3: VTP Software Architecture.

parameter, qual, is passed by reference and is set by the setRate function and used as input in the next call to

getPacket. It should be noted that both getPacket and setRate maintain state between calls.

The NetPeer API provides three functions:

bw_est = getBWE();

rtt_val = getRTT();

sendData(rate, buffer);

The sender uses getBWE to get the latest bandwidth estimate from its NetPeer. Internally, NetPeer performs non-

blocking reads on the control socket to obtain the latest acknowledgment from the receiver. From the information

in the ack, it computes the bandwidth estimate which is the return value of the function. The sending rate can then

be computed by calling the setRate function of the FileSystemPeer with the bandwidth estimate as the second

parameter. GetRTT returns the latest value of the RTT estimate. The sendData function determines the amount of

time to wait from the rate parameter and then sends the buffer containing the header and video data.

In addition to these exported functions, several other functions are provided to handle connection initiation, open-

ing the source video files, and other initialization tasks. These functions are straightforward and omitted for brevity.

The � parameter, the value of the heuristic variable (in units of RTT), and the port numbers that VTP uses are all user

configurable.

4.2 Transmission Schedules for Variable Bitrate Video

In a constant bitrate (CBR) video source, the compression level is continuously adjusted to maintain the target

bitrate of the overall video stream. This is beneficial for network transmission, but leads to varying video quality

from frame to frame and can have an unpleasant effect on the viewer’s perception. MPEG-4 preserves consistent

quality by increasing the bitrate at times of high motion or detail, producing a variable bitrate (VBR) encoding. In

some instances the bitrate can change dramatically during the course of a video clip. The amount of rate variability is
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Figure 5: Source bitrates (left) and sending rate profile (right) produced for “Atlantis.”

codec-dependent. In this research we investigated three MPEG-4 video codecs: DivX 4.2 [7], FFmpeg 0.4.6 [11], and

Microsoft MPEG-4 version 2 [17]. After several initial tests, the Microsoft codec was found to be inappropriate for

VTP. This codec uses an algorithm that drops entire frames to achieve the desired compression level, conflicting with

VTP’s assumption of a similar frame pattern across the set of encodings.

Since it would be ineffective to transmit video data at uneven, bursty rates, we “smoothed” the VBR MPEG-4

video to develop a piecewise-constant sending rate profile. Figure 4 shows the results of applying a modified version

of the PCRTT algorithm [16] to a 130 second sample of the movie “TRON” encoded with the DivX codec at three

different levels of compression. The “QP range” in the figure represents the amount of compression applied by the

codec: “QP” stands for “quantization parameters,” where higher QPs imply more compression and the lower quality.

The peak rate is reduced significantly, from more than 4 Mbps to around 1.6 Mbps in the transmission plan. Similarly,
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Figure 6: VTP isolated on a 10 Mbps, 10 millisecond RTT link.

Figure 5 shows the smoothing algorithm applied to a 50 second sample of a trailer for the movie “Atlantis” produced

with the FFmpeg codec for three different ranges of quantization parameters. These two sets of video sources are used

throughout the experimental evaluation of VTP.

4.3 Basic Protocol Behavior

One of the main goals of VTP is to fairly share network resources with other traffic. VTP attempts to achieve

fairness with TCP by reducing its sending rate whenever the bandwidth estimate indicates that the current sending rate

cannot be supported. Depending on the difference between the estimate and the current sending rate, VTP can take

several steps to back off, freeing network resources to ensure other flows obtain an even share of the link.

Figure 6 shows the behavior of VTP sending the “Atlantis” segment isolated on a 10 Mbps link with a 10 mil-

lisecond RTT. This single connection an is unlikely scenario but it clearly illustrates VTP progressing through its rate

change algorithm. The plot on the left displays the sending rate and computed bandwidth estimate, while the plot

on the right displays which pre-encoded video stream VTP is sending at the corresponding time. Each video packet

contains 1 Kbyte of video data, and the � parameter, which determines how often to send control packets, is set to

5. In experimental trials we found these settings strike a balance between minimizing protocol overhead resulting

from acknowledgments and the need to keep packet sizes small to promote even packet flow. The so-called heuristic

variable, which tells VTP how long to wait before moving to the next higher video quality, is set to 2 RTTs.

In the initial phase of the “Atlantis” session, the protocol starts sending the video segment at the rate of the

transmission schedule for the lowest quality video. Since there is plenty of bandwidth available on the free 10 Mbps

link, VTP raises its sending rate and the quality of the video stream. By about � � �
seconds, the highest quality video

is being sent (with QPs in the 2 to 10 range). For the remainder of the flow, VTP sends the highest video quality at the

rate prescribed in the transmission plan, with the exception of times 12 and 30 seconds. At these times VTP reduces
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the video quality one level for a brief time and then returns to sending the high quality video.

The reason behind these quality “valleys” can be understood by referring to the “Atlantis” transmission plan,

the right diagram of Figure 5. According to the plan, the rate requirement for the highest video quality suddenly

increases by roughly 100 Kbps at about � � ��	 and again at � � / 	 seconds. In the interest of fairness, VTP does not

instantaneously increase its rate by such large amounts. Instead, it switches to sending video that is one quality level

lower, and continues to probe for available bandwidth by increasing the sending rate by 1 packet per RTT. After 1

second, the sending rate reaches the rate required for the highest video level and the heuristic is satisfied. This allows

VTP to switch back to the highest quality video. A threshold is applied to the sending rate so that if the difference

between the sending rate and the reference rate is small, the VTP server can increase its rate without performing

bandwidth exploration. This happens, for example, at � � + � seconds in Figure 6. This way, VTP conservatively

favors fairness when the prescribed rate increase is large, but it does not rapidly change video streams on every minor

rate adjustment in the send plan. The threshold is configurable by the user at run time. In this experiment, the threshold

was set to 1 Kbps.

4.4 Fairness with TCP

The remaining experiments were designed to quantitatively measure how much bandwidth TCP and VTP attain

when competing directly with each other. We streamed both the “TRON” and “Atlantis” video sources in various sce-

narios differing mainly in link capacity and number of competing TCP connections. The experiments were performed

using a relatively simple network topology in which two independent LANs were connected through a PC running

FreeBSD acting as a gateway. The Dummynet utility and the Iperf program3 were used to vary the link capacity and

generate background TCP traffic respectively. In this environment all packets arrive in order, so any gap in sequence

numbers can immediately be interpreted by the receiver as packet loss.

Figure 7 presents the normalized throughput of VTP sending the “Atlantis” segment on a 3 Mbps, 10 ms RTT

link with various numbers of TCP flows. Each column of data points represents a separate experiment where a single

VTP flow and several TCP flows share the link. The � axis is labeled with total number of flows (e.g. the column

labeled “16” is the result of one VTP and 15 TCP flows). The normalized throughput is computed by simply dividing

the average bandwidth received by each flow by the fair share bandwidth value for each case. Perfect inter-protocol

fairness would be exhibited by both VTP and TCP scoring a normalized throughput of 1. The vertical bars show the

standard deviation of the TCP bandwidth values for cases where there is more than 1 TCP connection.

In the case of 2 connections, TCP obtains much more bandwidth simply because VTP has no need to transmit

faster than about 450 Kbps, the average rate of the sending plan for the highest video quality (see Figure 5). As the

number of connections increases, VTP and TCP compete for the limited resources of the link. VTP shares the link

relatively fairly except for the case of 32 connections. In this case, the fair share value is / ������� / + ��� /(� �	�
Kbps,

which is roughly three quarters of the rate of the lowest video quality according to Figure 5. Since VTP does not

3http://dast.nlanr.net/Projects/Iperf/
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Figure 7: Single VTP flow competing with TCP on a 3 Mbps link.
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Figure 8: “TRON” video stream transmitted using VTP sharing a

5 Mbps link with TCP connections.

send slower than the rate of the transmission plan for the lowest video quality (about 125 Kbps according to Figure

5) it uses slightly more than the fair share value of the bandwidth. It is important to note that this unfairness is not an

inherent limitation of VTP, but a circumstance of the relationship between the link capacity and the video encoding.

The case where VTP shares the link with 7 TCP connections results in near perfect fairness.

In Figure 8, VTP sends the “TRON” video segment on a 5 Mbps, 10 ms RTT link against background TCP traffic.

The “TRON” send plan requires significantly higher bitrates than “Atlantis,” thus we set the link speed correspondingly

higher. The “TRON” transmission plan also contains larger instantaneous jumps in send rate – as much as 1 Mbps for

the highest video quality (see Figure 4). Both of these differences are a result of the dissimilar bitrate profiles produced

by the DivX and FFmpeg codecs, as evident in Figures 4 and 5.

Figure 8 shows that VTP uses less than or equal to its fair share of bandwidth in all cases except that of 16

connections, where again the link limitation is reached. The figure verifies the “Atlantis” experiments: VTP behaves

fairly, in some cases generously leaving bandwidth unused, if its bandwidth share allocation is at least enough to

stream the lowest quality of video.

In summary, we have demonstrated that VTP uses network resources fairly when facing competition from the

AIMD based congestion control of TCP. In lightly loaded networks, VTP uses only the bandwidth required to transmit

at the rate of the highest quality video stream, the remaining bandwidth can be claimed by other connections. In

environments of moderate congestion, VTP fairly shares the link as long as its fair share is at least the rate of the

lowest quality video. Additionally, VTP’s fairness properties are not codec specific, and that it is able to maintain

stable sending rates when streaming source video with significantly different transmission plans.
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Figure 9: Frame rate of received “Atlantis” stream using VTP and Non-Adaptive Streaming.
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Figure 10: Frame rate of received “TRON” stream with VTP and Non-Adaptive Streaming.

4.5 Video Quality

In the evaluation of video quality delivered by VTP, we concentrated on two key parameters: the frame rate of the

received video and the average values of the quantization parameters. We place a rather strict constraint on the player

by configuring it to only display frames which are received completely intact, i.e., frames which have any errors due

to packet loss are discarded. This bolsters the importance of the play out frame rate and magnifies the performance of

VTP in terms of its key goal of providing a stable frame rate through quantization scale adjustment.

Figure 9 contrasts the frame rate of the received “Atlantis” stream using VTP and non-adaptive streaming. By

non-adaptive streaming, we mean the highest video rate is sent according to its transmission plan throughout the

duration of the streaming session, regardless of network conditions. No bandwidth estimation or video quality changes

are performed, and the sending rate changes only when dictated by the piecewise-constant transmission schedule
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Figure 11: Average values of quantization parameters of the delivered “Atlantis” stream.

developed for “Atlantis.” The experimental scenario is the same as in the previous section where VTP is competing

with 15 TCP flows on a 3 Mbps capacity link with a 10 millisecond RTT. The non-adaptive streaming flow is likewise

examined under the same conditions. The overall frame rate of the encoded source video is 23.975 frames per second

(fps) in both cases. At several instances, around times 7 and 15 seconds, the non-adaptive frame rate drops below 15

fps, which is widely held to be the threshold of viewable video. With VTP, these severe decreases are avoided and the

frame rate is always in the range 18 to 24 fps.

Figure 10 depicts another representative example of the advantage gained by VTP adaptivity. In this experiment,

the conditions are those of the fourth case in Figure 8: 1 monitored flow (either VTP or non-adaptive streaming)

sharing a 5 Mbps, 10 ms RTT link with 11 competing TCP connections. As the streaming session progresses, VTP

discovers the fair share of available bandwidth and appropriately tunes to sending rate and video bitrate to avoid

overflowing the router buffer. The resulting frame rate of the VTP stream stabilizes with time, while the frame rate

of the non-adaptive stream increasingly oscillates toward the end of the segment, suffering from the effect of router

packet drops.

In Figure 11 we present the average values of the QPs of the “Atlantis” segment throughout the duration of the

session. We show the 3 Mbps case from the experiment in the previous section together with the case of a 2 Mbps

link. The plot verifies that VTP adapts the outgoing video stream to fit the available network bandwidth. When there

is little contention for the link, e.g. 2 and 4 total connections, VTP chooses video primarily from the high quality, high

bitrate stream (recall lower QP values imply less compression and higher quality). As the number of competing TCP

connections increases, the QP values consistently increase, indicating VTP lowering the quality of the outgoing video

in response to congestion. This clearly illustrates the mechanism by which VTP attains adaptivity. VTP is also aware

of the additional bandwidth afforded to it by the increase in link capacity from 2 to 3 Mbps. In the cases of 8, 16, and

32 connections, VTP carefully chooses the highest quality outgoing stream that will fit its fair share of the available

bandwidth. This leads to a QP reduction of between 3 and 5, indicating higher quality video being sent when more
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bandwidth is available at 3 Mbps.

5 Conclusion

In this paper we designed, implemented and tested a new protocol to stream MPEG-4 compressed video in real-

time. A distinct feature of VTP is the use of bandwidth estimation to adapt the sending rate and the video encoding in

response to changes in network conditions. We developed VTP in accordance with open standards for video compres-

sion and file formats, and built a plug-in for a widely used video player to serve as the VTP receiver. We have made

an effort to make VTP easily extensible.

VTP was evaluated in a controlled network environment under a variety of link speeds and background traffic.

Experimental results show that VTP offers considerable gains over non-adaptive streaming in effective frame rate. To

a large extent, VTP behaves fairly toward TCP when both protocols compete in a congested network. We found that

VTP fairness toward TCP is vulnerable if the lowest video bitrate is higher than the average link fair share available

to VTP. A priori knowledge of the general link capacity and typical network utilization can be extremely useful in the

selection and configuration of the video sources for VTP. We believe this information is usually not difficult to obtain

for administrators, and that a small amount of careful manual configuration is a reasonable price for the advantages of

VTP.

6 Future Work

For any streaming system to be fully useful, audio and video must be multiplexed into the data stream and synchro-

nized during play out. A near term goal is to include the capability to adaptively stream audio and video in combination

under the VTP protocol.

We will also further investigate the effect of changing the � parameter, the number of packets used to compute a

single bandwidth sample. We plan to implement an algorithm to dynamically adjust � during streaming to improve

VTP’s efficiency and fairness with TCP. Another advantage would be reducing the amount of manual user configura-

tion required.
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