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ABSTRACT 
There has been an increased interest in adaptive video quality control and dynamically adjusting the 
output video bit rate based on the status of the network. However, network-level performance parameters 
cannot accurately reflect the video quality perceived by the end users. Our goal is to investigate an 
adaptive perceptual video quality control mechanism based on an application-level perceptual video 
quality scheme. In this paper we investigate perceptual objective quality assessment technologies and use 
them to exploit the relationships between perceptual video quality, output bit rate, and quantization scales 
of video encoders. We also implemented a real time Video over IP (VIP) network application that uses a 
feedback channel to relay measurements, taken at the end user, to the source side, to enable the 
calculation of the perceptual video quality degradation caused by IP packet loss. Using this experimental 
setup, we were able to investigate appropriate rules for adaptive perceptual video quality control based on 
an application-level perceptual video quality scheme.  
 
1.  Introduction 
 
The current Internet can only provide best-effort services that do not guarantee network resources (e.g. 
bandwidth) and performance (e.g. quality). Real-time video applications, such as video teleconferencing 
and long distance learning, are becoming popular in IP based networks. Real-time video applications have 
specific characteristics that are different from traditional streaming video applications. Traditional 
streaming video applications allow users to download the compressed video and then play it back. The 
compressed video can be transmitted via a reliable channel such as a TCP/IP channel because the local 
play back takes place only after the whole compressed video is downloaded and saved on a local disk. 
However, TCP/IP channels are not suitable for real time video applications because they cannot guarantee 
end-to-end delay due to the error control, flow control and congestion avoidance mechanisms, and the 
delays are very variable. Real Time Protocol (RTP) is a protocol specifically designed for real time 
applications and it operates over a UDP channel. The video source agent delivers the video data 
continuously to the network regardless of the network state. Congested network conditions will result in 
lost video packets and which will produce poor quality video. Therefore, near to real time video quality 
control is a necessity for real time streaming video applications if quality of the contracted service is to be 
maintained for a majority (90%) of the time. Packet losses can result in a picture quality that can be a lot 
more irritating then a slightly degraded quality encoded video stream. Rapidly fluctuating quality is also 
to be avoided, the eye adapts to a specific quality after a few seconds and it becomes very annoying if the 
viewer has to adjust to a varying quality over short time scales. 
 
One possible approach to the problem of network congestion and resulting packet loss is to use feedback 
mechanisms to adapt the output bit rate of the source encoders (in other words, adapt the video quality) 
based on obtained (implicit or explicit) information of the network state. Several bit rate control 
mechanisms based on feedback have been presented in the last few years [1][3][4][5][6][7][8]. Since Real 
Time Control Protocol (RTCP) provides network-level QoS monitoring and congestion control (packet 
loss, round trip delay, and jitter), many applications use RTCP to provide control mechanisms for 
transmission of video over IP networks. However, the network-level QoS parameters provided by RTCP 
protocol are not video content-based. For example, assume that two video packets are lost during the 
transmission. One contains important information related to the video synchronization code, whereas the 
other only contains bits for rebuilding certain video blocks. Obviously, the impact of the first packet on 
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the reconstructed video quality is much worse than that of the second packet. But RTCP cannot 
distinguish the difference since it does not indicate the content of the packets. That is to say, the network-
level QoS parameters provided by RTCP don’t reflect explicitly the perceptual video quality. 
 
Over the past few years, video quality evaluation and measurement schemes have been developed 
[2][9][10][11][12]. Some objective quality assessment techniques have been devised to provide 
perceptual video quality measures. The goal of our work is to investigate the proposed video quality 
measurement schemes and their use in providing video quality degradation performance measures caused 
by the network state to the source encoder. Based on this feedback information, the application can 
control the source video encoders, i.e., control is based on the perceptual video quality instead of on only 
network-level QoS parameters. Our study involved two steps. The first step was to understand the 
relationship between video quality, compressed video bit rate, and encoder parameters (e.g. quantization 
scales Q) by using perceptual objective video quality assessment schemes. Once we understand the 
relationship we can exploit this information for our proposed adaptive perceptual video quality control 
scheme. For this step, we conducted off-line experiments, i.e., we stored the original video and the 
reconstructed video, and then computed the video quality degradation by comparing the original and 
reconstructed videos. We also computed the output bit rate of the compressed video as the rate affects the 
network status (high bit rate could cause network congestion) and we also looked at the variance in the 
quality of the compressed stream.  The second step is to exploit the applicability of using objective video 
quality assessment schemes to provide the feedback information for our proposed adaptive perceptual 
video quality control scheme. We have implemented an end-to-end real-time application involving a TCP 
based feedback channel that transmits the perceptual video quality parameters from receiver to sender. 
We have done some live real time experiments, i.e., the application, based on the feedback information of 
perceptual quality degradation, can dynamically adjust the output bit rate of the video encoder that is 
delivered to the network. We compared the perceptual quality degradation caused by the network in the 
following three cases. (1) Simple VBR without feedback control: We fixed quantization scale as 4 and 
disabled the feedback control. (2) VBR with feedback control: We set the quantization variation range 
between 4 and 8 and adaptively changed its value according to feedback control. (3) Constrained VBR 
with feedback control: In addition to VBR with feedback control, we also delimited a maximum output 
bit rate of the encoder. A study at Stanford University [19] looked at some similar problems. Their goal 
was to maintain the quality of encoded video at a constant level and their feedback loop is internal to the 
local encoder buffer. Our feedback loop is extended to the video receiver that is remotely located across 
an IP network, thus our feedback information reflects the effect of network congestion. Our goal is to 
minimize the perceptual video quality degradation caused by losses due to network congestion. 
 
This paper is structured as follows: in Section 2, we introduce the ANSI objective video quality 
measuring standards T1.801.03-1996 [16] and our implementation thereof. In Section 3, we present 
results related to the relationship between video qualities, compressed video bit rate, and quantization 
scales for MPEG-2 encoders1. In Section 4, we present the integration of an ANSI objective quality 
measurement scheme into a real-time streaming video application, which is being used to test the adaptive 
video quality control scheme based on perceptual video quality. In Section 5, we discuss the need for 
improving the ANSI objective quality measurement scheme to accurately assess the quality degradation 
caused by packet loss, the current tools are designed primarily to test coder quality. In Section 6 we 
present our conclusions and future work.  
 

                                                                 
1 We used the software based encoder of Ligos Inc. 
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2. Video quality assessment schemes and the  ANSI standards T1.801.03-1996 
 
Video quality assessment technologies can be classified into two categories: subjective video quality 
assessment schemes and objective ones. Subjective video quality assessment is the most reliable video 
quality measurement method. A group of viewers is selected and gathered in a room, the environment of 
which is specified by the ITU-T Recommendation P.910 [13]. The source video and the processed video 
are presented in pairs to the viewers who are expected to grade the video quality. Subjective video quality 
measurement has several disadvantages. It requires a special viewing room and equipment; it needs a 
large group of people to view the video; it requires a large amount of post processing on the video data. In 
conclusion, subjective video quality measurement cannot provide real-time in-service quality monitoring 
for real-time video applications.  
 
Objective video quality measurements, although not as accurate, can be conducted in the background 
without intruding on the end user. Objective video quality estimation software processes the video signals 
and produces the quality evaluation results. One traditional objective video quality measurement, Peak 
Signal to Noise Ratio (PSNR), has been widely used in many applications to assess video quality. The 
advantage of PSNR is that it is very easy to compute. However, PSNR does not match well to the 
characteristics of human visual system [9].  
 
Perceptual objective video quality assessment technologies try to achieve a high correlation with 
subjective video quality assessment without losing the advantages of that objective quality assessment has 
to offer. Stefan Winkler presented his Vision Model in [9]. This model simulates the human visual system 
and achieves a high correlation with subjective video quality assessment, but it is not capable of in-
service measurements and requires offline processing. The ANSI objective video quality standards 
T1.801.03-1996 [16] as well as the metrics developed by Institute for Telecommunication Sciences (ITS) 
[12] capture the relationship between the measurable video quality parameters and perceptual quality 
distortion (blurring, tiling, noise, etc.). We chose to adopt the ITS model for our implementation of an 
objective quality assessment tool for the following important reasons: (1) This model accurately emulates 
subjective quality assessment (high correlation). (2) This model works well for a wide range of bit rates, 
from very low bit rate applications to very high bit rate applications. (3) This model is computationally 
efficient, compared to the other models. (4) The quality parameters consume very small bandwidth, 
thereby making the model well suited for in-service quality evaluation in end-to-end real-time 
applications.  
 
We briefly describe our implementation of the perceptual objective video quality assessment tool here. 
Our perceptual objective video quality measurement tool is based on the ANSI objective video quality 
standards T1.081.03-1996 and the Video Quality Metrics (VQM) proposed by ITS. First, we extract the 
quality features that represent the perceptual quality from sequences of the original video and the 
reconstructed video. Second, we compare the quality features from the original and the reconstructed 
video sequences to produce perceptual video quality measures. Finally, we compute the final perceptual 
quality scores (denoted as “Join”) by combining the video quality parameters with appropriate weights. 
“Join” values represent the video quality degradation (reconstructed video qualit y vs. original video 
quality). We have crosschecked our implementation and test results with the VQM tool developed by ITS. 
The crosscheck ensures that our perceptual objective assessment tool accurately emulates subjective video 
quality assessment.  
 
3.  Relationship between video quality, compressed video bit rates, and quantization scales   
    
The first step of our work is to understand the relationship between video quality, compressed video bit 
rate, and quantization scales by using the perceptual objective video quality assessment tool. Although it 
is well known that the quantization scale has a great impact on the output compressed video bit rate and 
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video quality, the quantitative relationship between video qualities, output bit rate and quantization scales 
has not been studied in detail. Therefore, we use the perceptual objective video quality measurement tool, 
to obtain quantitative relationships that will help us design the appropriate mechanism for adjusting the 
video quality and output bit rate given feedback information regarding video quality.  
 
3.1 Experimental Results  
The experiments begin with a simple Variable Bit Rate (VBR) encoding mode. That is, we fix the 
quantization scales for all the frames of the video sequence. With the same quantization scales, the 
“complicated” frames (for example, frames with high motion) produce more VLC (Variable Length 
Coding) bits than the “simple” ones (for example, frames with low motion). Therefore, the output bit rate 
of the encoder is variable whereas the video quality is fairly constant. (See the values given in Table 1 
below). We fix the quantization scale (Q) to be 4, 8, and 12 for a particular video sequence. We calculate 
the output bit rates and perceptual video quality (represented by “Join”). The sample video we present in 
this paper is 40sec long video clip captured from a movie 2. The results are shown in Figure 1. The number 
on the horizontal axis represents time with 200ms per tick. The plot VBR_Bitrate shows the output bit 
rates, and plot VBR_Join shows the perceptual quality3. The results confirm that when the quantization 
scale is constant, compressing with a smaller quantization scale produces a very high output bit rate and 
better video quality. From these charts, we also find that the video quality does not vary much for any 
fixed quantization scale (4,8, or 12), but the output bit rates vary dramatically (see Table 1). For example, 
for Q=4, the output bit rate fluctuates 7.212Mbps (from 7.228Mbps to 14.440Mbps) with an average bit 
rate of 10.053 Mbps.  
 
We then repeat the experiments using Constant Bit Rate (CBR) encoding for the same video sequence. To 
compare the results fairly, we fixed the output bit rates of the CBR encoder to the corresponding average 
bit rates of the VBR encoding mode. For example, the average bit rate of the video sequence is 
10.053Mbps in VBR mode with Q = 4. Thus, we encode the video sequence in CBR mode and fix the 
output bit rate to 10.053Mbps. Similarly, we encode the video sequence in CBR mode and fix the output 
bit rate to 3.813Mbps which is the average bit rate of the video sequence in VBR mode with Q=8, and 
similarly for Q=12 we encode it at a rate of 2.302Mbps. We show the results of the CBR encoding mode 
in Figure 2. Plot CBR_Bitrate shows the output bit rates and plot CBR_Join shows the perceptual quality 
(Q4, Q8, and Q12 indicates which VBR video the CBR video corresponds to). Again from the results, we 
justify that a higher output bit rate means better video quality. We also find, that in CBR mode, the output 
bit rates are almost constant but the video quality varies quite a bit more (see Table 1). For instance, for 
Q12, the worst quality is 0.535747 with an average quality of 0.458771. 
 
Both the VBR and CBR encoding modes have their disadvantages. The network community does not like 
VBR video sources [14] because a highly varying bit rate is not easy to deal with. CBR video is easily 
managed by networks, but the perceptual video quality fluctuates quite a bit more. We therefore 
investigate a compromise between pure VBR and CBR, namely, constrained VBR encoding mode. In 
constrained VBR mode, we limit the maximum of the output bit rate. For instance, we set the maximum 
bit rate to 11.598Mbps for VBR video sequence with Q=4 (the average bit rate plus one std_dev, see table 
1). From the results shown in Figure 3, constrained VBR mode is able to produce a less varying output bit 
rate with a video quality that is close to that of the pure VBR mode.  
 
In Table 1 we calculate the average and standard deviation of the perceptual quality for the different 
encoding modes. The average perceptual video quality is fairly similar for VBR and constrained VBR and 

                                                                 
2 The video sequence consists of a group of people talking and gesturing with the camera switching from 
one speaker to another for the last 6 secs.  
3 The range of “Join” is (0,1) - “1” represents the worst quality and “0” represents excellent quality 
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slightly worse for CBR. The perceptual quality fluctuation of CBR is the largest and the perceptual 
quality fluctuation of VBR is the smallest as expected. Smallest perceptual quality fluctuation and low 
varying output bit rate is a goal for streaming video over packet networks. Given this, the constrained 
VBR encoding mode is the best choice since its bit rate is fairly well behaved and the fluctuations in 
perceptual quality are fairly low. 
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                    Figure 1. Output bit rate and perceptual quality for VBR 
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              Figure 2. Output bit rate and perceptual quality for CBR 
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             Figure 3. Output bit rate and perceptual quality for constrained VBR 
   
 Join  PSNR  Bit Rate  
 Average Std_dev Average Std_dev Average Std_dev 
VBR_Q4 0.202004 0.002655 35.91496 0.44465 10053 1545 
VBR_Q8 0.317597 0.004489 32.96177 0.52643   3813 1127 
VBR_Q12 0.409873 0.004677 31.42474 0.67014   2302   889 
CBR_Q4 0.204929 0.003747 35.72485 0.98738 10054   483 
CBR_Q8 0.329049 0.024604 32.80154 1.15316   3815   408 
CBR_Q12 0.458771 0.058536 31.36981 1.56755   2307   374 
Constrained_VBR_Q4 0.206998 0.003203 35.78648 0.83835 10066   947 
Constrained_VBR_Q8 0.320873 0.010033 32.87081 0.87554   3829   736 
Constrained_VBR_Q12 0.412427 0.016802 31.38822 0.92129   2326   647 

Table 1. Quality and Bit rate: average and standard deviation comparison 
        
4. Using ANSI objective quality measurements for a feedback control mechanism for real-
time video applications  
 
Figure 4 shows the architecture of an end-to-end real time video application that we have implemented to 
study adaptive quality control. Our application runs under the Linux operating system. On the sender side, 
the encoder consists of a hardware PCI plug-in video board produced by Streammachine. This video 
board captures video from a variety of sources (camera, DVD player, live TV feed, etc.) and compresses 
it using the MPEG-2 standard. The encoded video stream is passed through the PCI bus to the main 
memory of the computer. We then encapsulate the video streams into RTP packets based on the RTP 
payload of MPEG-2 elementary video streams [17]. Then the RTP packets are delivered to the transport 
layer via a UDP socket as shown in Figure 4. At the same time, the compressed video stream is decoded 
by a local decoder and the decompressed stream is processed to extract the video quality features of the 
transmitted stream. The local decoder is based on a software MPEG-2 decoder developed by LiViD [18]. 
On the receiver side, the decoder is based on the same software as the local decoder on the sender side. It 
unwraps the RTP/UDP video packets and plays back the video. The decompressed video is processed to 
extract the video quality features of the received stream. These quality features are sent back to the sender 
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side through a feedback channel as shown in Figure 4. The use of TCP for the feedback channel 
guarantees the reliable transmission of the perceptual quality features. However it remains to be seen 
whether the latency of TCP could hamper the performance of the control mechanism and in that case a 
UDP channel will be tested with forward error correction (FEC) applied to the data for reliability. On the 
sender side, we now have the local quality features and the remote quality features that can be used to 
calculate the quality degradation. Using the results of the quality measurements, we can adjust the output 
bit rate of the encoder by changing the quantization scales. For example, if the video quality is severely 
impaired due to network congestion, we lower the output bit rate, by increasing the quantization scale, 
this in turn will relieve the network congestion. This should result in a better quality video as the 
degradation is controlled as opposed to it being subjected to the losses imposed by the network.    

        Figure 4. An end-to-end real time video application with a feedback control channel 
 
4.1 Some implementation issues 

1. We focus on the video quality degradation caused by the network not by the encoding algorithms. 
The local decoder as well as the local quality features extractor captures the video quality before 
transmission over the network and not before encoding. One of the advantages of our feedback 
control mechanism is that it is based on perceptual video quality degradation caused by the 
network. The impact on the perceptual video quality caused by packet loss is much more irritating 
to the human visual system than that caused by the encoding algorithm. Figure 5 shows two 
pictures, the first of which is degraded by packet loss (without error concealment processing) and 
the second is degraded by the encoding algorithm. In Picture-1, the packet lost contains the data 
of one slice [15]. In Picture-2, the encoding noise is produced by setting the quantization scale to 
31 (the maximum allowed by our software encoder). Without error concealment, it is obvious that 
Picture-1 is not going to be well received by a viewer. Therefore, if packet losses occur that result 
in such picture degradation, increasing the quantization scale to reduce the bit rate and thereby 
network congestion and packet losses, is a much more effective method to enhance the viewing 
quality.  
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                          Picture-1                         Picture-2 
      Figure 5. Quality degradation caused by 1) packet loss and 2) compression algorithm  
 

2. We extended the objective quality measurement tool to a distributed version because we extract 
the quality features separately in the sender side and the receiver side. A problem that arises when 
doing this is the synchronization (alignment spatial and temporal) of the sender and receiver 
sides. For the spatial alignment, the sender and receiver sides should use the same regions of the 
pictures to extract the quality features. Spatial alignment can be easily achieved by agreeing on 
the same sub-region of the pictures. For temporal alignment, the quality features to be compared 
from the sender and receiver side should have the same temporal history. Particularly, if the 
temporal history is indicated by a sequence number, we should compare the quality features of 
those frames with the same sequence number on both the sender side and the receiver side. That 
is, the first frame on the sender side is compared to the first frame on the receiver side, the second 
frame on the sender side is compared to the second frame on the receiver side, and so on. 
Temporal alignment is more difficult to achieve because a lost packet may contain the “picture 
header code” [15] that tells the receiver that a new frame is starting. Our solution to detect the 
“picture header code” loss to assume that each video frame is composed of 16 slices. When 
encapsulating the compressed video streams to RTP packets, we follow the rules: “the picture 
header code” together with the first slice (slice1) is encapsulated in one RTP packet. The next 15 
slices are encapsulated separately into the next 15 RTP packets in consecutive order. Since there 
is a sequence number for each RTP packet in RTP header we can tell is an RTP packet is lost and 
by use of a counter we can detect exactly which slices the lost packets correspond to.  

 
3. Another important point in our application is that we broke the rate -control loop in the MPEG-2 

encoder. In general, MPEG-2 encoders use a local buffer to control the output bit rate. We replace 
this local feedback loop with another feedback loop that is indicated via link 1, link 2, and link 3 
in Figure 4. The new loop back reflects the impact of the network status on the perceptual video 
quality. Therefore, the quantization scales of the encoder can be adjusted based on the network 
status and perceptual video quality degradation. If packets are lost and thereby the perceptual 
video quality is damaged, we change the quantization scales to larger values to lower the output 
bit rate (the Streammachine video board that we have allows us to change the quantization scales 
dynamically in real-time). The feedback control is based on the following algorithm: we use a 
sliding window to evaluate the quality degradation. The window size is W that means that we 
calculate the quality degradation W times (in terms of frame numbers, one window contains W× 6 
frames because we do one quality comparison for every 6 frames). iq  denotes the first 

comparison point in the sliding window and Wiq +  denotes the last comparison point in the sliding 
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window. sq  denotes the threshold for the quality degradation, i.e., the quality  is not seriously 

degraded if iq  is smaller than sq  and the quality is seriously degraded if iq  is greater than sq . 

qlow_ denotes the number of occurrences of “poor” quality in the sliding window. Q is the 

value of the quantization scale we expect to set for the encoder.  minQ  and maxQ delimit the 
variation range of the quantization scales. Below we formally describe the algorithm: 
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4.2 Experimental results  
We have conducted some experiments in our local test bed, in which several local routers and switches 
connect the video sender and receiver. We also have tested on the Internet remotely from the University 
of California, Irvine to the University of Pennsylvania in Philadelphia. One interesting thing we 
discovered was that traversing the Internet, the packet loss ratio was extremely low (sometimes no packet 
loss at all for a long period of time). We were therefore forced to  use a traffic generator to load the paths 
between the sender and the receiver to force some latency and jitter in the packet arrival stream. For now, 
we manually produce packet loss on the receiver side to observe the perceptual quality degradation at 
different packet loss ratios. To generate randomly different packet loss percentages, we used a CBR video 
streaming source to load the path between the sender and the receiver and applied a traffic generator with 
particular parameters to the same path forcing losses. We calculated the loss rate and stored that 
information together with the traffic generator parameters for further use. For instance, we configure a set 
of parameters of the traffic generator to produce a particular traffic stream and then deliver a CBR video 
stream form a sender to a receiver. We keep track of the dropped packets and calculate the packet loss 
ratio. In our experiments, we chose three different sets of traffic generator parameters that respectively 
resulted in packet loss ratios of 1.62%, 0.52%, and 0.23%. We then applied this to our video feedback 
scenario. Table 2 shows the experimental results by comparing simple VBR without feedback control, 
VBR with feedback control, and constrained VBR with feedback control. In constrained VBR, we set the 
maximum bit rate equal to the average bit rate plus the standard deviation of the bit rate of the VBR with 
feedback control stream. For instance, we set the maximum bit rate for the constrained VBR to 2260 = 
1498 + 762 Kbps for a packet loss ratio=1.62%. In our experiments, we used W = 5, sq = 0.2, minQ = 4, 

maxQ = 8. The reason we chose the sliding window size to be 5 (30 frames) is because 30 frames contain 
at least one complete GOP (group of pictures) and the error propagation remains within the GOP. In 
Figure 6, we also present the quantization scale distribution for VBR with feedback control and 
constrained VBR with feedback control. From Table 2, we can see that VBR with feedback control shows 
better results than for the simple VBR without feedback control case while it produces a lover bitrate. 
Along with the packet loss ratio increasing, more advantages are obtained from feedback control. We can 
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also observe that constrained VBR with feedback improves the received video quality over VBR with 
feedback.       
 
 

VBR with feedback control  Simple VBR without feedback control Loss 
ratios Quality 

Ave. 
Bit rate 
Ave./stdv. 

Quant. 
 Ave. 

Quality 
Ave. 

Bit rate 
Ave./stdv. 

Quant. 

1.62%  0.040592 1498/762 
Kbps 

4.69646 0.054330 1736/787 
Kbps 

4 

0.52% 0.033159 1526/766 
Kbps 

4.58389 0.039951 1730/783 
Kbps 

4 

0.23% 0.010090 1673/774 
Kbps 

4.14262 0.010449 1723/781 
Kbps 

4 

 
VBR with feedback control Constrained VBR with feedback control Loss 

ratios Quality 
Ave. 

Bit rate 
Ave./stdv. 

Quant. 
Ave. 

Quality 
Ave. 

Bit rate 
Ave./stdv. 

Quant. 
Ave. 

1.62% 0.040592 1498/762 
Kbps 

4.69646 0.038906 1370/585 
Kbps 

4.87654 

0.52% 0.033159 1526/766 
Kbps 

4.58389 0.031993 1397/590 
Kbps 

4.77088 

0.23% 0.010090 1673/774 
Kbps 

4.14262 0.009087 1502/565 
Kbps 

4.37371 

        Table 2.  VBR without feedback vs. VBR with feedback vs. constrained VBR with feedback 
 

    
                           Figure 6. Quantization scale distribution in VBR vs. Constrained VBR 
5. Future Work 
 
The ANSI objective video quality standards T1.801.03-1996 and the metrics published in the SPIE paper 
[12] by ITS have been primarily developed for video quality measurement of encoders. With our 
experiments we have found that we need to improve the ANSI objective video quality standards 
T1.801.03-1996 and the metrics to make them more suitable for computing the perceptual video quality 
degradation caused by packet loss. The reason is that the type of degradation caused by packet loss is very 
transient in nature and covers only part of the picture (for example one slice). While the human visual 
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system is very sensitive to this type of error, the current objective quality parameters, which were not 
designed to measure this type of error, are not. The solution is to find the optimal thresholds [12] for the 
objective quality parameters to detect this type of error. For that we have to conduct extensive subjective 
quality tests using various thresholds to find the optimal values. We will collaborate with researchers at 
ITS to conduct such a study using long video clips 4 with transient quality degradation caused by packet 
loss. The current perceptual objective quality assessment tool will be improved to more accurately 
calculate transient quality degradation caused by packet loss.  
 
For our current real-time video application, we used error detection functions and some simple error 
concealment and recovery functions. It has been shown that error concealment and recovery technologies 
can improve video quality substantially (depending on the complexity of the algorithms used). Therefore, 
one part of our future work will be to investigate more complex error concealment and recovery 
technologies that are suitable for real-time video applications over IP networks that are subjected to 
particular types of data losses (e.g., losses of a complete slice in either an I, P or B frame). We will also 
investigate other types of bit rate reduction techniques such as dropping of frames and compare those 
results to our proposed approach of changing the quantization scale at the soruce. We already have some 
results that show the bit rate of a stream without a certain percentage of “B” frames and its corresponding 
perceptual quality.   
 
6.  Conclusions  
 
In this paper we presented a perceptual objective assessment technique that can be deployed in real time 
video applications to provide in-service quality monitoring. We exploit the relationship between 
perceptual video quality,  output bit rate, and the quantization scales of the encoder. These relationships 
provide us with the thresholds for the adaptive control of video quality. We implemented a real time video 
application that uses perceptual objective measurements to control a source encoder. Our experimental 
results show that feedback control based on perceptual video quality is a viable solution for adaptive 
video streaming and quality control over best-effort IP networks. We find that it is necessary to improve 
current perceptual objective quality assessment technologies to more accurately capture the perceptual 
quality degradation caused by packet loss. The focus of our future work is to further investigate the 
feedback control mechanism, especially using different rules for adaptive perceptual video quality control 
in different network environment such as ADSL, Cable Modem and wireless network.   
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