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Abstract
This paper presents a feedback control algorithm

for ATM congestion control in which source rates are
adjusted according to VC queue lengths at interme-
diate nodes along the path. The goal is to "�ll in"
the residual bandwidth, without exceeding a speci�ed
queue threshold. In order to obtain this, we propose
a simple and classical proportional controller, plus a
Smith Predictor to overcome instabilities due to large
propagation delays, as well as to avoid cell loss. We
propose an e�ective EPRCA implementation in which
each source computes its input rate based on the max-
imum VC queue length along the path. Theoretical
and experimental results show that high throughput
is achieved even with queue sizes independent of the
round trip delay.

1 Introduction
In an ATM network, in order to avoid congestion

it is necessary to regulate the input tra�c rate of
the network such that all entering cells can be com-
pletely delivered using the existing network resources
(i.e. queues, processing power and link trasmission ca-
pacity). A classical control approach to deal with this
problem consists in monitoring the level of the unused
resources and in feeding back the measured levels to a
controller which adjusts the input tra�c rates so that
congestion is avoided.

The input rate control approach is known in litera-
ture as rate-based [6] in contrapposition to the credit
approach [2] which, instead of the rate, aims at regu-
lating the number of incoming cells. Many rate based
algorithms can be found in literature. However none
of these is completely satisfactory either for its com-
plexity or for lack of stability properties, as is well
reported in the excellent paper by Benmohamed and
Meerkov [1]. In fact, due to transmission and prop-
agation delay, most algorithms exhibit persistent os-
cillations. Furthermore, they have not been analyzed
from the stability point of view, and so cannot guar-
antee the boundedness of the queues. Considering,
for example, the well known additive increase/ multi-
plicative decrease PRCA [4], it is not possible to state
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its stability nor to guarantee cell loss avoidance. To
our best knowledge, the Benmohamed and Meerkov's
paper [1] is the �rst attempt to develop an analytic
method for the design of congestion controllers which
ensure good dynamic performance along with fairness
in bandwidth allocation. However, the control law
proposed in that paper requires a complex adjustment
of control parameters in order to maintain stability
and damp oscillations. Moreover, these parameters
must be dynamically tuned to the speci�c input tra�c
and network condition. Finally, it is di�cult to prove
global stability, due to the complexity of the control
strategy.

This paper presents a simple and e�ective rate
based congestion control algorithm capable of \�lling
in" quickly the unused bandwidth with ABR tra�c.
The main appeal of the proposed congestion control
algorithm consists in the use of a simple, �rst order
dynamic model (for the queue levels) in cascade with
a delay. This yields the following properties: a) the
queue occupancy never exceeds maximum queue ca-
pacity (i. e. no cell loss); b) the queue occupancy
dynamic is always stable for any positive proportional
gain K, thus relaxing the need to dynamically adjust
this parameter in order to stabilize queues or damp
oscillations; c)the queue capacity strictly required to
avoid cell loss is not related to the round trip delay
(RTD), rather it is related to the input rate value in
stationary condition.

After a description of the proposed control algo-
rithm and its interpretation in terms of credit based
end to end 
ow control, we present an EPRCA im-
plementation for ATM congestion control. Finally we
make a comparison with the PRCA scheme and report
several simulations results.

2 The Model
In this section we de�ne the notation, and also

present the models for the network, queue, and control
law used throughout the paper.

2.1 Network Model
We mainly follow the notation reported in [1]. The

network consists of N = f1; ::ng nodes and L =
f1; :::lg links. Each link i is characterized by: trans-
mission capacity ci = 1=ti (cells/sec); propagation



delay tdi; processing capacity 1=tpri (cell/sec) where
tpri is the time the switch i needs to take a packet
from the input and place it on the output queue. We
assume that the processing capacity of each node is
larger than the total transmission capacity of its in-
coming links so that congestion is caused by transmis-
sion capacity only. The network tra�c is contributed
by source/destination pairs (S;D), where S;D 2 N .
To each (S;D) connection is associated a Virtual Cir-
cuit (VC) mapped on the path p(S;D). Each source
is characterized by its maximum transmission speed,
cs = 1=ts.

Each link maintains a separate queue for each Vir-
tual Circuit VC passing through it. We indicate with
xi;j(t) the occupancy at time t of the queue associated
with link i and V Cj, and with Xo

i;j the corresponding

queue threshold level. The control law computes the
source input rate u(t) (cell/sec). The bandwidth de-
lay product tdj=tj represents the number of cells \in

ight" on the transmission link.

2.2 Model of the queue behavior
In this subsection we present a model of the dy-

namic behavior of each queue in response to input and
output rate changes. We assume a deterministic 
uid
model approximation of cell 
ow. Each link maintains
a separate queue for each Virtual Circuit (VC) pass-
ing through it. The reason for this choice is to ensure,
through a round robin service discipline, the fair shar-
ing of the link by each V C. Considering the queue
associated with the virtual circuit V Cj at link i , the
level of occupancy xi;j(t) at time t, starting at t = 0
with xi;j(0) = 0, is the integral over the time (0; t) of
the di�erence between the rate of packets entering the
queue (say ui;j(t)) and the rate of packets leaving the
queue (say di;j(t)):

xi;j(t) =

Z t

0

[ui;j(t
0

� Td)� di;j(t
0

)]dt
0

(1)

where Td is the transmission delay from the input
source to the i; j queue.

2.3 The Rate Control Model
In this subsection, we present the control algorithm

to regulate source rates. We propose a closed-loop
control based on feeding back the network queue oc-
cupancy. In order to control the queue level x(t) 1

for a speci�c VC, we initially use a simple propor-
tional controller. Letting Xo be a set point for the
queue level, we compute the di�erence between it and
the current queue level x(t). This di�erence, the er-
ror e(t), is ampli�ed by a positive constant gain K, so
thatKe(t) is the input rate imposed to the V C source.
The proposed control implements the reasonable idea
of enforcing an input rate proportional to the room
available in the queue. This mechanism tends to \�ll
the queue", thus keeping link utilization high.

The calculated input rate Ke(t) at time t will have
e�ect on rate adjustments only after the round trip
delay along the path, i.e. the time that the computed

1From now on we drop the i; j subscripts, for sake of
simplicity

rate needs to reach the source, change the rate value,
and �nally returns back to the queue as an in
ow rate
Ke(t). Fig.1 depicts the block diagram of this system,
where RTD is the round trip delay. Note that, in
wide area networks, the round trip delay is mostly
determined by the propagation delay, so we assume
that this quantity is �xed and known in advance.

d(t)

+

-

dtRTDK
Xo

+

-

u(t) x(t)

Figure 1: Queue dynamic model with a proportional
controller

Due to the large delay, the dynamic behaviour of
the queue level might exhibit oscillations, and even
become unstable. In order to reduce oscillations it
is necessary to reduce the ampli�cation gain K, but
this carries the drawback of a very long transient, i.e.
the input rate is not able to �ll in rapidly the queue,
making the outgoing link underutilized [5].

To stabilize this system, still preserving the ability
of quickly \�lling in" the available queue space, we
propose a classical Smith Predictor [3]. Following the
Smith's principle, we substitute the constant gain K
in Fig. 1 with a controller K� (see Fig. 3) such that
the resultant system dynamic is that of a �rst order
system in cascade with a pure delay (Fig.2).

dt RTDK
Xo

+

-

u(t) x(t-RTD)

Figure 2: Equivalent model of the queue dynamic in
response to the threshold level

K

RTD

dt

dt

d(t)

+

-

dtRTD
Xo

+

u(t) x(t)

+
--

Smith predictorK*

+

Figure 3: Queue dynamic model using a proportional
controller plus a Smith Predictor

Thus, equating the transfer functions of the systems
in Figure 3 and in Figure 2 one can verify that the
Smith Predictor controller K� is given by:

K� =
K

1 +K(1�e
�RTDs

s
)

The Smith Predictor shown in Fig. 3 (K�) gives
the following input rate control equation:



u(t) = K[Xo � x(t)�

Z t

0

u(t
0

)dt
0

+

Z t

0

u(t
0

�RTD)dt
0

]

= K[Xo � x(t)�

Z t

t�RTD

u(t
0

)dt
0

] (2)

Note that this equation implements a simple pro-
portional control action with the di�erence that the
actual queue level is increased by the number of cells
transmitted during the last round trip delay. Thus the
physical interpretation is that the controller reacts as
if all the \in 
ight" cells were in the bottleneck queue.

To describe the dynamic of the system it is helpful
to look at the equivalent system shown in Fig. 2. In
this �gure we can observe two parts:

a)The �rst one, containing the integrator, the con-
stant gain K, and the delay free feedback loop is a
�rst order system, and thus is stable for every positive
value of the parameter K. This parameter a�ects the
transient behavior only. Namely 1=K is the time con-
stant T of the system (meaning that after 4 T intervals
the system reaches stationary condition). Moreover
the dynamic response to a step function does not ex-
hibit oscillations in reaching the stationary state. This
implies that the queue occupancy never overshoots the
set point level Xo, and hence the set point can be set
equal to the queue capacity without ever incurring cell
loss;

b) The second part consists of a pure delay block
that causes a shift in time of the queue level x(t).

Concluding, the resulting behaviour of the queue
occupancy, starting at t = 0 with an empty queue,
is given by the �rst order system response to a step
function delayed by the round trip RTD, that is:
x(t) = Xo[1�exp(�(t�RDT )=T )] (see Fig.4). Finally
note that since the calculated input rate cannot be
greater than the maximum source transmission speed
1=ts, KXo = 1=ts. Thus the system time constant is
T = Xots.

The system shown in Fig.3 has a behavior equiva-
lent to the system depicted in Fig.2, in response to the
input Xo. Now we consider the behavior of the queue
level xd(t) in response to the output rate d(t), where
d(t) can be modelled as a step function a � 1(t), and a
is the fraction of bandwidth, normalized to one, given
to each connection.

Using Laplace transform method, after some calcu-
lations, we �nd:

xd(t) = �a[t � 1(t) � (t� RTD) � 1(t�RTD)] �
a

K
[1� e�K(t�RTD)] � 1(t� RTD) +

x(0) � 1(t) � x(0)[1� e�K(t�RTD)] � 1(t�RTD)

where x(0) � 0 is the queue level at t = 0. The overall
response to d(t) and Xo , therefore, is given by:

xtot(t) = xd(t) + x(t) (3)

In stationary condition (t!1), the queue level is:

xtot(1) = Xo � aRTD �
a

K
(4)

Figure 4 shows the transient behavior x(t) in re-
sponse to Xo , the transient behavior in response to
d(t) = 1(t)�0:5�1(t�offset) (where 1(t) is the step
function), and the overall transient xtot(t). The ini-
tial o�set is the time when the bandwidth d(t) drops
below the input rate of the corresponding VC queue.
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Figure 4: Queue level transient dynamic

3 Discrete time rate based control
So far we have dealt with continuous time mod-

els only. However, in ATM, feedback information is
relayed in cells, and thus not available in continuous
time, but rather in sampled form. Fortunately, the
discrete time implemention of the Smith Predictor is
simpler than the continuous one [7].

We start with the system model shown in Fig. 5.
Here we place the controllers at edge source nodes for
implementation simplicity.

dtK
Xo

+

-

T
fw

Tfb

d(t)

+

-

u(t) x(t)

x(t-T )
fb

Figure 5: Queue dynamic model from the source point
of view

From Fig. 5, we note that the input rate u(t) takes
the time Tfw (feedforward delay) to reach the queue
(an integrator). Likewise, the queue level x(t) takes
the time Tfb (feedback delay) to reach the source. Fol-
lowing the Smith's principle, we look for the controller
K� so that the transfer function of the system of Fig.
5 is equivalent to that of the system of Fig. 6. This
system was chosen so that by equating the transfer
functions of Figs. 5 and 6 in the Laplace domain, it
is possible to obtain a Smith Predictor, with a delay
equal to RTD = Tfb + Tfw .

dtK
Xo

+

-

Tfw
u(t) fwx(t-T )

Figure 6: Equivalent model of the system using a
Smith Predictor

From Nyquist sampling theorem and from control
theory it is known that, in order to have a "contin-
uous like" performance of the system under digitized
control, the ratio of the time constant of the system
over the sampling time must fall within the interval



(2,4)[7]. Indicating by 4 the sampling time and re-
calling that T = Xots, it follows:

Xots

4
= [2; 4] (5)

To write the discrete time version of the control
equation (2) we must consider two cases:

i) RTD � 4: The ratio RTD=4 = m+ � where m
is an integer and � 2 [0; 1). Rewriting the contin-
uous time equation 2 in its discrete version, we
obtain the input rate at time tk = k4:2

u(k4) = K[Xo � x(k4� Tfb) �

u(k4� (m + 1)4)�4�
mX
i=1

u((k � i)4)4] (6)

ii) RTD < 4:

u(k4) = K[Xo � x(k4� Tfb) �

u((k � 1)4)RTD] (7)

t kk-1k-2k-mk-(m+1)
ttt

k-(m-1)
tt

u(k )u((k-2) )

RTD

e

t

Figure 7: Discrete Time Notation

The notation used in the previous equations is il-
lustrated in Figure 7 and will be followed throughout
the paper. It results: tk = tk�1 +4.

3.1 Control equation and end to end
credit interpretation

For sake of simplicity, we consider the case in which
the ratio RTD=4 is an integer (� = 0)3. The summa-
tion on the right side of the equation 6 can be rewritten
as the sum of two parts:

I = u(t� Tfw �4)4+

u(t� Tfw � 24)4+ � � �+ u(t�RTD)4;

II = u(t�4)4+ u(t� 24)4� � �+

u(t� Tfw)4

The �rst one represents the number of cells that
have already arrived at the bottleneck queue but are
not yet know at the source due to the feedback propa-
gation delay Tfb. The second one represents the num-
ber of cells that are travelling from the source to the
queue. Therefore the input rate computation at time
t can be rewritten as: u(t) = K[Xo�x(t�Tfb)�(I)�
(II)]. We can interpret x(t� Tfb) + (I) + (II) as \ef-
fective queue level at time t". So the calculation of the
input rate u(t) is made as if all \in 
ight" cells were

2Note that k should not be confused with the gain K
3The extension of this subsection to the case � 6= 0 is trivial

already at the queue. In this way the dynamic is delay
free, which results in stability and lack of oscillations.

Finally we would like to interpret the di�erence
between the queue capacity and the "e�ective queue
level" as a number Q of cells that can be transmitted
by the source without causing over
ow to the bottle-
neck queue.

4 From periodic to aperiodic feedback
To implement the proposed discrete time control

algorithm we need to supply the controllers located at
the sources with periodic feedback information (every
4 units of time, with4 satisfying equation (5)). This
can be obtained if the upstream node of a congested
link sends the feedback information, at every sampling
time, to all the sources in the upstream direction,
as in the Backward Congestion Noti�cation (BCN)
scheme. This is what is assumed in [1]. We call this
type of scheme \Periodic Feedback Control". In sys-
tems where Forward Congestion Noti�cation (FCN)
scheme is used, like in the PRCA scheme, the source
is responsible for transmitting a management cell RM
every NRM data cells. The control cell itself has to
compete for bottleneck link bandwidth, since it has
to reach the destination node before being relayed
back to the source through either the same or an al-
ternative reverse path. Clearly, under this scheme,
it is not possible to guarantee the periodic feedback
information used in the discrete-time control equa-
tion. Due to the sharing of the congested link, the
rate of the feedback cells that can be received by the
sources is Bav=[Nvc � (1 + NRM )], where Nvc is the
number of Virtual Circuits sharing the same bottle-
neck link and Bav is the available bandwidth. Thus
the interarrival time of the feedback cells increases as
Nvc� (1+NRM ). Because it is necessary to guaran-
tee the sampling time equation (5) in order to achieve
a good performance of the feedback control, we have
to increase the time constant of the system (i.e. the
queue size per VC) as Nvc increases. Thus, it is neces-
sary to use VC queue sizes proportional to the number
of Virtual Circuits sharing the same bottleneck link.
This requirement does not derive from the control al-
gorithm itself but rather from the FCN mechanism
used for delivering feedback information. To cope with
the somewhat irregular delivery of RM cells, we need
a control algorithm which must operate well even if
no RM cells are received for a while. If the source re-
ceives the feedback information, the control algorithm
will adjust the rate accordingly. Otherwise it will com-
pute the rate by estimating the missing feedback in-
formation in a conservative way. In other words, this
algorithm must perform some kind of \virtual feed-
back". We call this type of control \Aperiodic Feed-
back Control".

4.1 A control algorithm for EPRCA
We now propose a version of the previous discrete

time control algorithm suitable for the FCN feedback
relay scheme. The feedback information is provided
by RM cells which collect the maximum bu�er level
along the path. Note that regardless of the bottleneck
location along the VC path, RTD is always the same.



The system will still be cell loss free even if we are not
able to guarantee the required periodicity of feedback
information.

The basic idea is to update the source rate at least
after each 4 sampling interval, regardless whether
the source gets the feedback information or not. Let
tk; tk+1 be the instants at which the source receives
the last and actual feedback information, respectively.
Two cases need to be considered:

i) tk+1�tk � 4. The source stores the rate u(tk), as
well as its duration 4k, so that u(tk)4k becomes
one of the terms of the summation in the control
equation. Thus the rate updating equation is:

u(tk +4k)=K[Xo � x(tk +4k � Tfb) �
mX
i=0

u(tk�i)4k�i �

u(tk�m�1)(RTD �

mX
i=0

4k�i)]

where
Pm

i=04k�i � RTD <
Pm+1

i=0 4k�i,
4k�i � 4 8i, tk = tk�1 +4k�1.

ii) The interval 4 expires before the source receives
its control packet. In this case, the algorithm
has to estimate the queue level x(tk +4� Ttb).
In order to be conservative, and to prevent cell
loss, we propose the following \worst case" esti-
mate of the missing queue level. We conserva-
tively assume that in the time interval [tk; tk+4]
(with 4 = 4k) the queue has zero output rate.
Thus the \worst case" queue level is the last value
x(tk�Tfb) plus what has been received in the in-
terval [tk; tk+4]. The accrued term corresponds
to the number of cells pumped into the network
during the interval [tk � RTD; tk � RTD + 4].
Therefore, the \worst case" estimate of the queue
level at time tk +4k is:

x(tk +4k � Tfb)=x(tk � Tfb) +

u(tk�m�2))(RTD �

m+1X
i=1

4k�i) +

u(tk�m�1)(4� (RTD �

m+1X
i=1

4k�i))

We call \virtual feedback" this worst case estima-
tion of the queue level . Note that this is equivalent
to storing the last received feedback value, x(t�Tfb),
and adding the new term u(tk)4 to the last sum of
\in 
ight" cells, say sumF , i.e.

sumF=

m+1X
i=1

u(tk�i)4k�i + u(tk�m�2)(RTD �

m+1X
i=1

4k�i)

and the rate is

u(tk +4k)=K[Xo � x(tk � Tfb)� u(tk)4k � sumF ]

In this proposed EPRCA algorithm, the sources at
the edge nodes of the network update their input rates
at least every4 units of time. If they do not get infor-
mation about the occupancy of the congested queue,
they decrease their rates based on a \worst case" es-
timate of the congested queue level. When they get
the next feedback information they will increase their
rates because the actual queue level cannot be larger
than the conservative estimate. In other words, the al-
gorithm behaves as a \positive feedback ", decreasing
the rate when feedback is not available and increasing
it when feedback information resumes. Note that this
is very important aspect to guarantee stability in any
feedback congestion control because, due to conges-
tion, it is not possible to guarantee the rate at which
feedback cells are received.

4.2 Input rate stationary value
Consider the control equation (6). Under station-

ary conditions and no congestion (i. e. empty queue)
such equation reduces to:

us = K(Xo � us �RTD) (8)

where us stands for the stationary rate value. Re-
calling that K = 1=Xots, the stationary value of the
imput rate becomes:

us =
1=ts

(1 + RTD
Xots

)
(9)

Let Bav be the available bandwidth for the ABR
connections. Due to the fair sharing enforced by the
round robin service discipline, we have: Nvcus = Bav.
Substituting in this equation the stationary value us
from equation (9), and solving for Xo, we get:

Xo =
Bav �RTD

(Nvc � Bavts)
(10)

Equation (10) states that, in order to achieve full
link utilization, a minimum queue Xo per VC is re-
quired. Note that Xo is proportional to BavRTD but
decreases with the number of connections Nvc.

5 A comparison between the PRCA

scheme and the proposed EPRCA
In the ATM Forum PRCA proposal [4], an additive

increase/multiplicative decrease rate control is exer-
cised at the sources. Binary feedback information (
congested/ not congested ) is received at the sources,
and rate increase (additive) is performed in case a \not
congested" feedback is received. Failure to receive the
\not congested" noti�cation causes multiplicative rate
decrease at the source after each time interval4, thus
making the scheme conservative.

Our proposed EPRCA uses the delayed queue occu-
pancy as the feedback information. Like in the PRCA
scheme, if no feedback is received, the source calcu-
lates the rate at �xed intervals 4 related to the time
constant of the queue. The calculation is performed
using a \worst case" estimate of the queue level.

In the following, we study the dynamic behavior of
the rate when the source lacks feedback information.
Let u(0) = 1

Xots
(Xo � x(t� Tfb)�

P
RTD u(ti)4i) be

the rate computed based on the last received feedback



cell. If no feedback information is received since then,
the rate must be updated every 4 unit of time, using
the \worst case" estimate. It follows :

u(1) =
1

Xots
[Xo � x(t� Tfb) � u(0)4�

X
RTD

u(ti)4i]

=
u(0)

Xots
(Xots �4)

u(2) =
u(1)

Xots
(Xots �4)

...

u(k) =
u(k � 1)

Xots
(Xots �4) = u(0)

�
(Xots �4)

Xots

�k

i.e. the rate decreases exponentially. When the
source resumes receiving feedback information, the
rate jumps to (Xo � x(t� Tfb)�

P
RTD u(ti)4i).

Therefore, we note that our EPRCA scheme, devel-
oped from a precise and simple mathematical model,
operates according to a \positive feedback" mecha-
nism, much like the PRCA scheme. The important
di�erence is that the dynamic behavior of our reg-
ulation is related to the network state and parame-
ters. In fact, the rate decreases exponentially with a
base related to the sampling time/time constant ratio.
More importantly, the increasing jumps are related to
the queue level and to the number of cells released
from the source during the last round trip interval.
As a consequence, our EPRCA scheme does not drop
cells, nor does it need a queue size proportional to the
RTD to prevent cell loss. In contrast, the conventional
PRCA scheme does not use precise information on the
queue level and does not take into account the number
of cells released during the last round trip delay. Con-
sequently, it cannot perform the correct rate increase
so as to prevent congestion and cell loss.

6 Simulation Results
In this section, we present results of a discrete event

simulation of our control scheme. We �rst show the
performance of the periodic control algorithm under
the same scenario considered by [1]. Then we compare
the proposed EPRCA scheme with the conventional
PRCA scheme [4].

The network topology, shown in Fig. 8, is the same
presented in [1]. Links have uniform speeds, normal-
ized to 1 cell per unit of time [cell/s]. Links to the right
of the bottleneck have a bandwidth-delay product of
10 cells, while the links to the left of the bottleneck
have zero propagation delay (similar to [1]).

vc1

vc2

vc3

vc4

vc5

S1S2

S3

S4

S5

D1

D2

D3

D4

D5

10

0

0

0

10 10

10

10 10

Figure 8: Network Topology

Five VC connections compete for bandwidth re-
sources of a bottleneck link. VC connection activity
(i.e. start and end time) is described in the table 1.
We assume in�nite backlog at each source. We set a
queue level Xo = 40 for each queue, in order to have a
sampling time of the system of 40=4 = 10, that is, one
�fth of the interarrival time of the feedback cells under
the FCN scheme, with NRM = 10 and Nvc = 5.

Table 1: VC Connections Activity

Connection # 1 2 3 4 5
Start Time 500 2500 1000 4000 5500
End Time 7000 10000 8500 10000 10000

Periodic Feedback

We �rst show the performance of a periodic sam-
pling version of our control scheme, in conditions sim-
ilar to [1].

According to equation (5) we choose a sampling
time 4 = 10. Figure 9(a) shows the behavior of the
�ve input rates, corresponding to connections S1�S5,
at source nodes. For sake of comparison with PRCA,
we assume an initial cell rate of 0:1 [cells/s], equal to
the PRCA minimumcell rate. After the start/end of a
connection, each rate rapidely settles on the new fair
stationary value 4. Figure 9(b) shows the dynamic
behavior of the �ve queues at the bottleneck link, cor-
responding to V C1� V C5 bottleneck queues. As can
be seen, no queue over
ow occurs. Moreover, each sta-
tionary level is in accordance with equation ( 9 ). The
overall performance is similar to [1]'s periodic control,
without having dynamic tuning of control parameters.
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4When there are three active connections, the �gure shows

small oscillations, due to the fact that the control equation tries
to regulate the queue occupancy to a value between two integers
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Figure 9: Periodic Feedback

Aperiodic Feedback

The aperiodic control scheme, with 4 = 10, re-
quires NRM = 1 (i.e. one control cell every data
cell) in order to guarantee the minimum feedback fre-
quency rate. The value NRM = 1 derives from the
fact that, under the heaviest tra�c condition (�ve
connections), the feedback cell interarrival time is
4 = Nvc(NRM + 1). Since the minimum feedback
rate is maintained, simulation results are identical
to the ones under periodic control, as expected, and
hence are omitted.

We next show performance degradation in case
equation (5) is not respected. By setting NRM = 10,
under the heaviest tra�c condition, the feedback in-
terarrival time is 55 > 10. We see from Fig. 10(a)
that the rate does not reach rapidely the stationary
condition anymore. Moreover, Fig. 10(b) shows that
over
ow occurs in VC4 and VC5 queues. Other simu-
lation results, not reported here, show that the greater
the NRM value, the less controlled the queue levels
are.
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Figure 10: Aperiodic Feedback

Aperiodic + Virtual Feedback (EPRCA)

Next, we study the performance of the proposed
EPRCA under the same conditions and feedback fre-
quency (NRM = 10), as used above. Figure 11(a)
shows the oscillatory behavior of the controlled rates.
This is so because the control operates in the \posi-
tive feedback" mode, i.e. increasing promptly the rate
when a feedback cell is received, and decreasing ex-
ponentially otherwise. However, the oscillations are
constant in amplitude, and centered at the fair value
of the rate, so that the throughput performance is pre-
served. The frequency of oscillations is high because
the virtual feedback period is 4 = 10, while the ac-
tual feedback interarrival time is about 50. In fact,
the control algorithm decreases the rate every 4 = 10,
in a conservative way, increasing it promptly, when a
feedback cell is received (approx. every 50 units of
time). Figure 11(b) shows that the queue levels are
still bounded, guaranteeing no cell loss. Thus, the
major advantage of the Virtual Feedback scheme is to
prevent cell loss, due to congestion, even if it is not
possible to guarantee the frequency of feedback cells.
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Figure 11: Aperiodic + Virtual Feedback

Conventional PRCA
For sake of comparison, the PRCA scheme has been

simulated under the same tra�c conditions as before,
with parameters: NRM=10; AIR=0.053; MDF=8.
The results are shown in Fig. 12. As expected, the
PRCA scheme does not prevent cell loss, because it
cannot account for the bottleneck queue level and the
number of cells \in 
ight".
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Figure 12: PRCA Control Scheme

7 Conclusion
Theoretical arguments and simulation results show

that the proposed control algorithm performs an e�ec-
tive congestion control in high speed networks, guar-
anteeing no cell loss, fairness and small queue per VC.
The bu�er capacity strictly required to guarantee no
cell loss, results to be independent of the round trip
delay. The control scheme performs very well even
under the pratical constraints of the EPRCA imple-
mentation in an ATM network. With the proposed
EPRCA, every source adjusts its rate based on the
delayed queue occupancy value fed back from the con-
gested link and on the number of cells transmitted
during the last round trip time. Therefore, as a di�er-
ence from a \blind" additive increase/multiplicative
decrease policy, our scheme implements a feedback
regulation which is based on a rigorous control model.
Further research is in progress in order to use the pro-
posed control algorithm with a common queue per
link. Preliminary results were presented in [8]. For
a compreensive version of this work, see [9].
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