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ABSTRACT

In selecting line drawing algorithms as the basis of our project, we were interested in the
details and difficulties of representing such a simple element in the digital world.
Representing a line on screen seems trivial, but it is still a major area of study within the
field of Computer Graphics. The complications involved with representing this
fundamental element in VHDL and using the available FPGAs, were nearly
overwhelming, and a great number of workarounds were conceived and implemented to
compensate for the Xilinx software’s deficiencies.

During the course of this quarter, we learned many things with regards to designing and
implementing a system. Specifically, given an original high-level description of a
system, we became familiar with the process of breaking it into lower-level modules,
each of which performed a given function. However, once the overall system had been
divided into smaller systems, the implementation had to deal with constraints such as the
size of the FPGA, the subset of VHDL supported by the available software, etc. Thus, at
each step, we had to refine the original idea, and in some cases, re-implement the system
until it matched those limitations, while still providing the desired functionality. The
tradeoff for basic functionality included the elimination of some features of the system.

Our first algorithm is the Digital Differential Analyzer which requires floating-point
intermediate values. Our second is the Midpoint Line Algorithm, a special case of
Bresenham’s Line Algorithm, which is famous for its speed and accuracy.
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1. Introduction

An ideal line is one that is smooth and infinite, however this is not possible to represent
on monitors due to the finite number of pixels used within them. In order to translate
what comes easily with a pen and paper, a line drawing algorithm must consider where
the line would naturally fall and determine how best to represent each portion of the line
by determining which pixel to turn “on.”

One intuitive way of doing this is using the equation of a line: y, —y, = m(x, —x, ) +b.
We can step along one axis while using the slope, m, to calculate the coordinate of the
other. The Digital Differential Analyzer method applies this by stepping along the axis
of greatest change (end point — start point) and incrementing the other by m. The general
algorithm (psuedocode) follows:

DDA Algorithm [1]
procedure DDA( x1, yl, x2, y2: integer);
var
dx, dy, steps: integer;
x_inc, y inc, X, y: real;
begin
dx 1= x2 - x1; dy = y2 - yil;
if abs(dx) > abs(dy) then
steps := abs(dx); {steps is larger of dx, dy}
else
steps := abs(dy);
X_iInc := dx/steps; y_Inc := dy/steps;
x:=x1; y:=yl;
set_pixel(round(x), round(y));
for i := 1 to steps do

begin
X = X + x_Inc;
y 1=y + Yy inc;
set_pixel(round(x), round(y));
end;
end; {DDA}

The key elements in implementing this algorithm are division, floating-point
representation and rounding. DDA requires a floating point addition and round at each
step. In hardware these are rather difficult and expensive tasks to implement.

Jack Bresenham’s line algorithm eliminates the need for floating point by acknowledging
that there are only two candidate pixels to choose from at each point to best represent the
line. His algorithm considers the centers of these two pixels and uses a decision variable
based on the difference between start and end points, to determine whether or not to go
horizontal/vertical or diagonal. A variation of Bresenham’s Line Algorithm is the
Midpoint Line Algorithm. It calculates the middle point between the two possible next
pixels and uses it as a basis for deciding which direction to go.

*NOTE: Although we originally had 3 separate modules with each being assigned to
each member, we ended up eliminating a module and collaboratively worked on all parts
of the system together.
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Midpoint Algorithm [2]

X = X2-X1; dy = y2-yl;

2*dy-dx;

nc_E = 2*dy; inc_NE = 2*(dy-dx);
= yl;

or (x=x1; x <= x2; x++){
setpixel(X,y);
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2. System Level Description

An overall view to our system is that it takes an input for which algorithm to execute, and
outputs a fan-out of lines to the screen.

Our system is composed of several module groups divided into a front-end, a middle
(computational) region, and a back-end. The front-end is mainly concerned with taking
in the user inputs. The line computations occur within the middle region of the system.
The back-end takes the results from the middle region and displays them to the screen.

A walkthrough of how the system functions begins with the user specifying which
module to execute and eventually display to the screen. This input is taken and passed
onto the middle region, where the specified line algorithm is used to calculate the points
which make up the line, given two endpoints, each of which is stored into a buffer. The
middle region operates autonomously, with hard-coded endpoints, to compute a fan-out
of lines to display on the screen. As the individual points of the lines are computed, they
are stored to an internal buffer contained in this region. When the last of these
calculations are completed, the buffer is read out to the back-end of the system and
subsequently displayed to the screen.

Clock
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Figure 1. System View

2.1 Subsystem Level Descriptions

The front-end contains the user-input and selector modules. The middle region holds the
DDA and midpoint algorithm modules, a buffer module, and a helper module which aids
the line computations. The back-end of the system consists of the VGA-output module
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Figure 1: Input Module

The input module, as shown above, receives 3 external inputs. These are the start,
reset and select bits. Specifically, the reset bit resets the entire system by emitting a
high signal to all of the modules except for the VGA module, which resets on a low
signal. The fan-out displayed by the system is decided by the user with the select bit.
When the system is enabled, the value on the select line is piped to the feeder module.
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Figure 2: Feeder Module

The feeder module, as shown above, takes 5 inputs. This module runs on the system’s
clock and receives the reset signal from the input module. It also receives the select
signal and determines which of the 2 algorithm modules to enable and sends the enable
signals to each module. Two of the inputs take in done signals from the modules. This is
to indicate that the specified module is finished calculating a given line and should be fed
the next set of endpoints. In response to a done signal, the feeder module outputs the
xy_ack signal to indicate it has received the signal. Next, the feeder module transmits
the next set of endpoints for the next line to be drawn. These done and ack signals keep
the two modules synchronized throughout the entire line computation process. When the
fan-out is complete, the feeder then sends a read signal to the picture buffer module,
indicating that no more data will be written and it can now be read.
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Figure 3: DDA Algorithm Module

The DDA Algorithm module receives a total of 7 signals. This includes clock, reset,
and enable, along with x2 and y2 from the feeder module. While the module is enabled,
it computes a set of points, which are subsequently stored to the picture buffer. This is
repeated until the endpoints are reached, in which it then transmits a done signal to the
feeder module so the next set of end points may be sent. Execution is then halted until an
ACK signal is received.

In terms of the implementation of the DDA algorithm, it is very expensive and the
available software and hardware is unable to handle division or floating point values. To
get around this, we implemented a state machine to provide integer division; however,
the algorithm also requires floating point values to determine which pixel on the screen it
is closer to so it may adjust the rate at which the line is incrementing in the X or y
direction. As a result of this deficiency, the coordinates generated by the algorithm
module for each pixel are such that the line traverses diagonally until the limiting x or y
position is hit, at which point it travels vertically or horizontally.
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Figure 4: Midpoint Algorithm Module

The midpoint algorithm module’s operation is similar to DDA algorithm module
described above. Since the midpoint algorithm is designed around integer arithmetic, the
workarounds needed for DDA are not needed. Thus, the midpoint algorithm is more
accurately implemented than DDA.
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Figure 5: Mux Module

The mux module’s behavior follows that of a typical multiplexer. Specifically, the
midpoint and DDA modules send pixel coordinates and write-enable signals as inputs,
with the select bit choosing which set of signals that ultimately pass through to the
picture buffer.
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Figure 6: Picture buffer Module

As with other modules, the picture buffer takes in clock and reset, as well as a read and
write enable signal. At the beginning of execution, when reset is set high, the buffer is
initially cleared out with all elements set to ‘1’ to denote a completely white screen.
When the write enable line is high, the x and y coordinates are used as indexes into the 2-
dimensional array of 1-bit registers, where a “0’ is stored to denote a point on a line. A
ready signal is then transmitted to the algorithm modules as acknowledgement that the
write has been completed, and another set of points may be sent. Reading of the buffer to
the VGA module, which occurs when the fan-out of lines is complete, is done serially.
Each clock cycle, one bit is sent to the VGA module in sequential order, so that the lines
may be displayed on the screen.

Using the system clock, the picture buffer should be able to continuously feed data to the
VGA module. However, this was found to not be the case. Synchronizing the VGA
module to accept external signals was not possible and thus a dynamically-determined
display was not feasible given time constraints.
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Figure 7: Modified VGA Module

The VGA module is based on one originally implemented at the University of
Queensland, Australia [3]. It was modified such that it would receive a data bit from the
picture buffer module, and after testing the bit value, would either map a black or white
signal to the screen. During a single clock cycle, the picture buffer module feeds the vga
module with an element of its buffer, at which point the vga module evaluates it and
maps the corresponding color to the screen at its present location. Similar to the other
modules of the system, the vga module receives the clock and reset signals. However,
in this case, its reset signal, rstn, is “active-low”. In terms of inter-module
synchronization, the system clock is used for this purpose.

3. RTL Description

The majority of the modules thus presented are fairly basic in nature. For example, the
input module is essentially a selector. The output mux is exactly as described; a
multiplexer. The picture buffer is a simple array of 1-bit registers, with a read mode,
write mode, and a reset mode which writes a 1’ to all registers. Thus, the focus of this
discussion will lie with the larger modules in our system. Namely, the Feeder, the DDA,
and the Mid-point algorithm modules.

Structurally, there is not much to the Feeder. There are selectors and multiplexers, a
comparator, and a register. The inputs and outputs of these primitive modules are
mentioned below.

The Feeder controls the majority of the system by passing signals to particular modules
as appropriate. The enable lines to enable the algorithm modules basically form an
internal selector based on the input of the blind_date line. The x and y coordinate groups
to send to the algorithm modules are fed by two five-element ROM files which are used
as the inputs to a mux. The input to this multiplexer is a register which is incremented
every time the algorithm module sends back a done signal to indicate it is done
processing a line. Thus, the write-enable bit on this register is tied to the done signal
inputs ORed together. A comparator checks the value of the register against the internal
value of 5, and enables the rd_en line when the register contains a value of 5 or above.
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From an RTL perspective, the DDA module is much more interesting than the Feeder.
There are eight states in the control subsystem of the DDA module, and seven registers
for internal storage. All of the registers are behind multiplexers, as they can all take in
inputs from multiple sources to be used later. There are comparators set up between the
register called "temp™" and inputs x2 and y2. Registers "x" and "y" are also compared
against x2 and y2, and register "i" is compared with register "steps".

The first state, slwait, is a system startup synchronization state, and nothing meaningful
occurs here except for a transition to s1.

In state s1, the mux selecting temp is set to O, storing a zero value in temp. The result of
the comparator between x2 and y2 determines the value stored in register steps; if y2 <
x2, then steps takes on the value in x2. Otherwise, steps will hold the value in y2.
Register i's mux is also set to 0, and the write enable on these three registers is set to high.

State s2 is one of the pseudo-division steps required in the DDA algorithm. Register
temp has write enable set to high, mux selected to 1, and stores the value of "temp -
steps”. Register i also has write enable set high and its mux set to 1, and the value is
incremented by 1. The result of a compare between register temp and x2 determines the
write enable on register X_inc and the next state of the machine. If temp is less than x2,
registers temp and i have their muxes selected to O as they store zero values in
preparation for the next state.

State s3 operates in much the same way as s2, except the comparison to determine the
next state and value of y_inc is determined by a comparison between temp and y2. If the
comparison "temp < y2" is not true, then the write enable on y_inc is not set. Otherwise,
it is set, as is the write enable on temp and i.

The next state, s4, is a preparation state for calculating all the points in the line. Registers
X, Y, and i are all write-enabled, and their muxes are set to 0 to store zero values within
them.

State s5 contains the meat of the algorithm. There is a comparison between register i and
steps, and the result of "i < steps” is ANDed with the results of comparisons between
register x and x2, register y and y2. If these conditions pass, the write enable on registers
x and/or y are set to 1, and they take on the value of "x + x_inc" or "y +y_inc"
respectively. Register i also has its write enable set and is incremented by 1.

The final two states, s6 and done, do not really concern the data subsystem of the module.
They are for synchronization in writing data to the picture buffer and requesting a new set
of points from the Feeder module.

The Midpoint module is similar to the DDA module in its use of states. While there are
fewer states overall, there are corresponding synchronization states for startup, with the
Feeder module, and with the picture buffer module. Thus, out of a possible seven states -
- slwait, s1, s2, s3a, s3b, s4, and stop -- the focus will be laid upon states s1, s2, and s3b.
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Structurally, each of the nine registers used within the Midpoint module are behind
multiplexers to select their inputs to store. There are comparators between inputs x2 and
y2, registers "a" and "temp2", and tests to see if register "d" is negative or positive.
Incrementors exist for registers "a™ and "b", and there is a subtractor which takes in
inputs from registers "db" and "da".

State s1 has registers "x", "y", "da", "a", "db", "b", and "d" all with their write-enable bits
set high. A value of zero is stored in registers "x" and "y", with their respective muxes
also set to zero. A comparison between inputs x2 and y2 determine the inputs to the
muxes for "da", "a", "db", and "b". If x2 is greater than or equal to y2, then "da" receives
x2's value, "a" gets the value of "x", "db" gets the value of y2, and "b" gets the value of
"y". Otherwise, the x's and y's are reversed, with "da" receiving y2, etc. Lastly, after all
of the registers are assigned, register "d" obtains the value of "da" subtracted from "db".

State s2 acts as the condition check for a while loop. Again, the comparison of "x2 >=
y2" is checked again. This determines if register "x", "y", and "temp2" get the values of
"a", "b", and x2 respectively, or vice versa for the x and y statements. Thus, the result of
the comparator sets the muxes for registers "x", "y", and "temp2", and the write-enable
bits for those registers are also set.

State s3b begins with a check to see if register "d" is negative. The result of this compare
feeds into the mux for register temp and determines whether the value of register "db™ or
the subtraction of "da" from "db" is stored to that register. If the second branch is taken,
register "b" is incremented. Register "a" is also incremented, and register "d" takes in the
result of "d" and "temp". The muxes for these registers are set appropriately, and write-
enable is set for all the registers involved in a store operation.

4. VHDL Simulations

In the case of most modules, state machines were implemented in VHDL to control the
outputs. The conditions for the state transitions were normally based on inputs and/or the
clock cycle.

The provided Xilinx ModelSim simulator was used as a foundation for testing the
functionality of the system as well as individual modules. By using the simulation
software, signals were able to be manually set and the behavior of signals could be
viewed, as they propagated through the system and consequently enabled and started the
other modules. Specifically, choosing one of the two algorithms to execute, the
calculated x and y-coordinates could be seen and the corresponding pixel color that
would be output, could be viewed as well.

One issue encountered was that while the functionality of the system could be verified
using the simulator, implementing it on the provided FPGA was a hurdle. After working
around the spacing issues by redesigning modules, timing was a major issue with regards
to the VGA interface. Among the modules that were designed specifically for our
system, synchronization was not an issue while effective communication with the VGA
module required essentially re-designing it which was not the purpose of the project.
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The system was completely simulated using ModelSim, however, while the system file
was implemented and the programming file was created, the actual behavior of the
system on the board is not known, as synchronization difficulties between the designed
system and the VGA module seemed to prevent any signals from being output to the
monitor. (see Appendix A)

5. Conclusions

The designed system effectively implemented two different algorithms for calculating the
intermediate points in a line given the two endpoints. In designing this system, it was
illustrated how the drawing of a simple line is more complex than initially thought.
While the calculated points were not able to be visually shown on a monitor display,
simulation illustrated the issues that arise upon calculating a line and reinforced the fact
that different algorithms for calculating points in a line, produce different results that
significantly impact the appearance of a line.

10
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library IEEE;
use IEEE.std logic_1164._all;
package linepack is

constant zero - std logic_vector :

constant width : integer := 3;
constant screen_dim : integer :=

end linepack;

15;

'0000™;



: library IEEE;
2: use IEEE.std_logic_arith.all;

: use IEEE.std_logic_1164_all;
4: use IEEE.std_logic_unsigned.all;
5: use work.LINEPACK.all;

: entity lines is

8: port (clk : in std _logic;

9: start - in std logic;

10: in_reset - in std_logic;

11: pick_me : in std_logic;

12: X: in std_logic_vector(width downto 0); -- the end point

13: y: in std_logic_vector(width downto 0);

14:

15: pixel: out STD_LOGIC_VECTOR (7 downto 0); -- RAMDAC pixel lines

16: blankn: out STD_LOGIC; -
RAMDAC blank signal

17: RDn: out STD_LOGIC;

-- RAMDAC RDn connection

18: WRn: out STD_LOGIC; -=
RAMDAC WRn connection

19: RAMDACD: inout STD_LOGIC_VECTOR (7 downto 0); -- RAMDAC data lines

20: RS: inout STD_LOGIC_VECTOR (2 downto 0):; -- RAMDAC RS lines

21: hsync: out STD_LOGIC; -
horizontal sync for monitor

22: vsync: out STD LOGIC; -
vertical sync for monitor

23: triste: out STD_LOGIC; -
signal to tristate ethernet PHY

24: rramce: out STD LOGIC; -
right ram chip enable

25: pixelclk: out STD _LOGIC; -
RAMDAC pixel clock

26: bit out : out std_logic -- output from buffer, feed to vgaout later?

27:

28: )

29: end lines;

30:

31: architecture structural of lines is

32: component input_module is

33: port (

34: start - in std_logic;

35: reset - in std_logic;

36: pick_me : in std_logic;

37: out_reset - out std _logic:

38: out_notreset - out std_logic:

39: out_selectdate : out std_logic

40: E

41: end component;

42:

43: component feeder is

44: port (

45: clk - in std_logic;

46: reset - in std_logic:

47: blind_date : in std_logic;

48: slow_done: in std_logic;

49: fast_done: in std_logic;

50: ack - out std_logic:

51: rd_en : out std_logic;

52: X, Yy - out std_logic_vector(width downto 0O);

53: slow - out std_logic:;

54: fast - out std_logic

55: );

56: end component;

57:

58: component point_sampler is

59: port (

60: clk - in std_logic;



61: reset - in std_logic:
62: enable - in std_logic;
63: X2 - in std_logic_vector(width
64: y2 - in std_logic_vector(width
65: xy_ack : in std_logic;
66: buf_ready : in std_logic:;
67: buf_write : out std logic;
68: done : out std_logic;
69: x_addr :
70: y_addr :
71: );
72: end component;
73:
74: component mid_point is
75: port (
76: clk - in std_logic;
77: reset - in std_logic:
78: enable - in std_logic:;
79: X2 - in std_logic_vector(width
80: y2 - in std_logic_vector(width
81: xy_ack : in std_logic;
82: buf_ready : in std_logic:;
83: buf_write : out std logic;
84: done : out std_logic;
85: x_addr :
86: y_addr :
87: );
88: end component;
89:
90: component out_mux is
91: port (
92: mux_select : in std_logic;
93: slow_Xx pos : in
94: slow_y_pos : in
95: slow_wr_en : in std_logic;
96: fast _x_pos : in
97: fast_y pos : in
98: fast_wr_en :- in std_logic:;
99: winner_x_pos :
100: winner_y_pos :
101: buf_wr_en : out std_logic
102: );
103: end component;
104:
105: component picture_buffer is
106: port (
107: clk - in std_logic;
108: reset - in std _logic;
109: rd_en - in std_logic;
110: wr_en - in std_logic;
111:
112:
113: X_cursor :
114: y_CUursor :
115: ready : out std_logic;
write
116: data_out : out std_logic
117: );
118: end component;
119:
120: component vga is
121: port (
122: clk: in STD_LOGIC;
-- clock
123: rstn: in STD_LOGIC;
-- asynchronous active low reset
124: bit data : in std_logic;
125: pixel: out STD_LOGIC VECTOR (7

std_logic_vector(width downto
std_logic_vector(width downto

std_logic_vector(width downto
std_logic_vector(width downto

downto 0);
downto 0);

out std_logic_vector(width downto 0);
out std_logic_vector(width downto 0)

downto 0);
downto 0);

out std_logic_vector(width downto 0);
out std_logic_vector(width downto 0)

0);
0);

0);
0);

out std_logic_vector(width downto 0);
out std_logic_vector(width downto 0);

-— enable read
-- enable write

-- X, Yy position to be input by the algorithm modules
in std logic vector(width downto 0);
in std_logic_vector(width downto 0);

-- signal to other modules; ready to

-- data from picture buffer
downto 0); -- RAMDAC pixel lines



126:
127:
128:

129:
130:

131:
132:
133:
134:
135:

136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:

155:

156:
157:

158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:

170:
171:
172:

173:
174:
175:

176:
177:
178:

blankn: out STD_LOGIC;

-- RAMDAC blank signal

RDn: out STD_LOGIC;

-— RAMDAC RDn connection

WRn: out STD_LOGIC;

-- RAMDAC WRn connection

lines

RAMDACD: inout STD_LOGIC_VECTOR (7 downto 0);
RS: inout STD_LOGIC_VECTOR (2 downto 0);

hsync: out STD_LOGIC:;

-- horizontal sync for monitor

-- vertical

vsync: out STD_LOGIC;

sync for monitor

triste: out STD_LOGIC;

-- signal to tristate ethernet PHY

rramce: out STD LOGIC;

-- right ram chip enable

pixelclk: out STD_LOGIC

-- RAMDAC pixel clock

);

end component;

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
buffer
signal
buffer
signal
signal
(from mux)
signal
signal
signal

begin

selectdate : std_logic;
enable_slow : std _logic;
enable_fast : std _logic;
slow_x : std_logic_vector(width downto 0);
slow_y : std_logic_vector(width downto 0);
fast_x : std_logic_vector(width downto 0);
fast y - std_logic_vector(width downto 0O);

-— RAMDAC data lines
-- RAMDAC RS

x_pos - std_logic_vector(width downto 0); -- xy_input_mod -> algorithm

y_pos : std_logic_vector(width downto 0);
sig_slow_done : std _logic;

sig_fast_done : std logic;

reset : std_logic;

notreset : std _logic;

xy_ack : std_logic;

buf_ready_sig : std logic;

write_slow : std logic:;

write_fast : std _logic;

buf_read_sig : std_logic:;
buf_write_sig : std _logic;

x_addr : std_logic_vector(width downto 0);
y_addr : std_logic_vector(width downto 0):;
buf_out : std logic;

bit out <= buf out;

ul: input_module

u2: feeder

buf_read_sig, x _pos, y pos, enable_slow, enable_ fast);

u3: point_sampler

ud4: mid_point

uS5: out_mux

write _fast, x _addr, y _addr, buf write_sig);

buffer ready to write
"slow" assert write on

"fast' assert write on

buffer write signal

X address for buffer
y address for buffer
buffer data out line

port map(start, in_reset, pick me, reset, notreset, selectdate);

port map(clk, reset, selectdate, sig_slow_done, sig_fast_done, xy_ack,

port map(clk, reset, enable_slow, x_pos, y pos, xy_ack, buf_ready_sig,

write_slow, sig_slow_done, slow_x, slow_y); -- change x/y -> x_pos/y_pos

port map(clk, reset, enable_fast, x_pos, y pos, xy_ack, buf_ready_sig,

write_fast, sig_fast _done, fast x, fast y); -- change x/y -> x_pos/y_pos

port map(selectdate, slow_x, slow_y, write_slow, fast x, fast_y



179:
180:
181:

182:

183:
184:
185:

186:
187:
188:

u6: picture_buffer
port map(clk, reset, buf_read_sig, buf_write_sig, x_addr, y addr,
buf_ready sig, buf out);
—= port map(clk, reset, buf_read_sig, buf_write_sig, x_addr, y addr,
buf_ready sig, bit_out);

u7: vga

port map(clk, notreset, buf out, pixel, blankn, RDn, WRn, RAMDACD, RS,
hsync, vsync, triste, rramce, pixelclk);

end structural;
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1: library IEEE;

: use IEEE.std_logic_arith.all;

: use IEEE.std_logic_1164_all;
4: use IEEE.std_logic_unsigned.all;
5: use work.LINEPACK.all;

> entity input_module is

8: port (

9: start - in std logic;

10: reset - in std_logic:

11: pick_me : in std_logic;

12: out_reset : out std _logic;

13: out_notreset : out std logic;
14: out_selectdate : out std_logic
15: s

16: end input_module;

17:

18: architecture behavioral of input_module is
19: begin

20: process (reset, start, pick_me)
21: begin

22: if (reset = "1°) then

23: out_reset <= reset;

24: out_notreset <= "07;

25: elsif (start = "1" and reset = "0") then
26: out_reset <= "0°;

27: out_notreset <= "1°;

28: out_selectdate <= pick me;
29: end if;

30: end process;

31:

32: end behavioral;
33:
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: library IEEE;
2: use IEEE.std_logic_arith.all;

: use IEEE.std_logic_1164_all;
4: use IEEE.std_logic_unsigned.all;
5: use work.LINEPACK.all;

> entity feeder is

8: port (

9: clk - in std_logic;

10: reset - in std_logic:

11: blind_date : in std_logic:

12: slow_done: in std_logic;

13: fast_done: in std_logic;

14: ack - out std_logic:;

15: rd_en : out std_logic;

16: X, Yy - out std_logic_vector(width downto 0);
17: slow - out std_logic;

18: fast - out std_logic

19: );

20: end feeder;

21:

22: architecture behavioral of feeder is

23: begin

24:

25: process(clk, reset, blind_date)

26: subtype dimension is std_logic_vector(width downto 0);
27: type d_array is array(0O to 4) of dimension;
28: constant x_values : d_array := (1010, *0111'", *1001'", *1100", *0000");
29: constant y values : d_array := (0011, "'1010", "1001', "1000'", "1000'");
30: variable count : std_logic_vector(2 downto 0) :-= "000";
31: variable counted : std logic := "07;

32:

33: begin

34:

35: if reset="1" then

36: -- reset the entire system

37: count := "000";

38: rd en <= "0°;

39: slow <= "0";

40: fast <= "0";

41: elsif (rising_edge(clk) and clk = "1") then
42: if count < 101" then

43: case blind_date is

44: when "0° =>

45: slow <= "17";

46: fast <= "07;

47 : when "1° =>

48: slow <= "0";

49: fast <= "1°;

50: when others =>

51: slow <= "0";

52: fast <= "0°;

53: end case;

54:

55: case count is

56: when 000" =>

57: X <= x_values(0);

58: y <=y values(0);

59: when 001" =>

60: X <= x_values(1);

61: y <=y values(1);

62: when 010" =>

63: X <= x_values(2);

64- y <=y values(2);

65: when 011" =>

66: X <= x_values(3);

67: y <= y values(3);

68: when ""100" =>



69: X <= x_values(4);

70: y <=y values(4);

71: when others =>

72: X <= x_values(0);

73: y <=y values(0);

74: end case;

75:

76: if (((slow_done = "1") or (fast_done = "1")) and (counted = "07))
then

77: count := count + "1°;

78: counted := "1°;

79: ack <= "17;

80: else

81: ack <= "07;

82: counted := "0°;

83: end if;

84: else

85: -- all lines done, enable read for picture buffer

86: rd en <= "17;

87: -- disable algoritms

88: slow <= "0";

89: fast <= "07;

90: end if;

91: end if;

92: end process;

93: end behavioral;
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: library IEEE;
2: use IEEE.std_logic_arith.all;

: use IEEE.std_logic_1164_all;
4: use IEEE.std_logic_unsigned.all;
5: use work.LINEPACK.all;

> entity point_sampler is

8: port (

9: clk - in std_logic;

10: reset - in std_logic:;

11: enable : in std _logic;

12: X2 - in std_logic_vector(width downto 0);

13: y2 - in std_logic_vector(width downto 0);

14: xy_ack - in std_logic;

15: buf_ready : in std logic;

16: buf_write : out std_logic;

17: done : out std_logic;

18: x_addr : out std_logic_vector(width downto O);

19: y_addr : out std_logic_vector(width downto 0)

20: )

21: end point_sampler;

22:

23: architecture behavioral of point_sampler is

24: TYPE stateT is (slwait, sl, s2, s3, s4, s5, s6, stop);

25: SIGNAL state : stateT := slwait;

26: begin

27: process(clk, state, enable)

28: variable steps : std_logic_vector((width + 1) downto 0);
29: variable x_inc : std_logic_vector((width + 1) downto 0);
30: variable y_inc : std_logic_vector((width + 1) downto O):;
31: variable x : std_logic_vector((width + 1) downto 0):;
32: variable y - std_logic_vector((width + 1) downto 0);
33: variable 1 - std_logic_vector((width + 1) downto 0):
34: variable temp - std_logic_vector((width + 1) downto 0);
35: variable temp_high : std _logic;

36:

37: begin

38: if(enable = "1°) then

39: if(rising_edge(clk) and clk = "1%) then

40: case state is

41:

42: -- new "wait" state to solve timing issues
43: -- before, couldn”"t store "fast"™ enough into temp
44: -- which led to some funky undefined temp
45: -- and nothing being outputted as a result
46: -- when mated with xy_input module

47 : when slwait =>

48: temp = "0" & x2;

49: state <= sl;

50:

51: when sl1=>

52: done <= "07;

53: temp = "0 & X2;

54: if y2 < x2 then

55: steps = "0" & x2;

56: else

57: steps = "0° & y2;

58: end if;

59:

60: -- setup for divide

61: i = "0" & zero;

62: if reset = "1° then

63: state <= si;

64: else

65: state <= s2;

66: end if;

67:

68: -— dx stuff



69: when s2 =>

70: temp = temp + (not(steps) + "17);
71: temp_high := temp(width + 1);
72:

73: i =1+ "17;

74:

75: if reset = 1" then

76: state <= sl;

77: elsif (temp < x2) or (temp_high = "1") then
78: Xx_inc = i;

79: temp = "0" & y2;

80: i := "0" & zero;

81: state <= s3;

82: else

83: state <= s2;

84: end if;

85:

86: -- dy stuff

87: when s3 =>

88: temp = temp + (not(steps) + "17);
89: temp_high := temp(width + 1);
90: I =1+ "1";

91:

92: if reset = 1" then

93: state <= sl1;

94: elsif (temp < y2) or (temp_high = "1") then
95: y Inc = 1i;

96: state <= s4;

97: else

98: state <= s3;

99: end if;

100:

101: when s4 =>

102: -- for loop (we wish)

103: X = zero & "0°;

104: y = zero & "07;

105: x_addr <= zero;

106: y_addr <= zero;

107: i := 0" & zero;

108:

109: if reset = 1" then

110: state <= s1;

111: else

112: state <= sb;

113: end if;

114:

115: when s5 =>

116: if reset = 1" then

117: state <= sl1;

118: elsif 1 < steps then

119: if x < (0" & x2) then
120: X = X + x_inc;

121: end if;

122: ify < (0" & y2) then
123: y =y +y inc;

124: end if;

125: i =1+ "17;

126:

127: state <= s6;

128: else

129: done <= "17°;

130: state <= stop;

131: end if;

132:

133: when s6 =>

134: buf write <= "17;

135: x_addr <= x(width downto 0);

136: y_addr <= y(width downto 0);



137:

138: if reset = "1" then
139: state <= sl1;
140: elsif buf _ready = "0° then
141: state <= s6;
142: else

143: state <= sb5;
144: end if;

145:

146: when stop =>

147: done <= "17;

148: if ((reset = "1") or (xy_ack = "1%)) then
149: state <= sl;
150: done <= "07;
151: else

152: state <= stop;
153: done <= "17°;
154: end if;

155: end case;

156: end if;

157: else

158: done <= "07;

159: buf write <= "07;

160: end if;

161:

162: end process;

163: end behavioral;
164:
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11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

library IEEE;

use IEEE.std_logic_arith.all;
use IEEE.std logic 1164 .all;

use IEEE.std_logic_unsigned.all;
use work._LINEPACK.all;

entity mid_point
port (

is

clk - in std_logic;
reset - in std_logic:;
in std_logic;

enable :

X2 - in std_logic_vector(width downto 0);
y2 : in std_logic_vector(width downto 0);

Xy _ack :

X_addr :
y_addr :
)

end mid_point;

in std_logic;
buf_ready :
buf write :
done :- out std_logic:;

out std_logic_vector(width downto 0):;
out std logic_vector(width downto 0)

in std_logic;
out std_logic:

23: architecture behavioral of mid_point is

24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:

TYPE stateT is (slwait,sl,s2,s3a,s3b,s4,stop);

SIGNAL state :

begin

stateT := slwait;

process(clk, state, reset)

variable
variable

variable y :
variable temp :
variable temp2 :
variable temp3

variable
variable
variable
variable

begin
if(enable

d
X

da :
a :
db :
b :

- std_logic_vector((width + 1) downto 0);
- std_logic_vector((width + 1) downto 0);
std_logic_vector((width + 1) downto 0);
std_logic_vector((width + 1) downto 0);
std_logic_vector((width + 1) downto 0);
- std_logic_vector((width + 1) downto 0);

std_logic_vector((width + 1) downto 0);
std_logic_vector((width + 1) downto 0);
std_logic_vector((width + 1) downto O);
std_logic_vector((width + 1) downto 0);

1) then
if(rising_edge(clk) and clk = "1") then

case state 1is
when slwait =>

state <= s1;

when s1 =>
-- setting vaules

X = "0° & zero;
y = "0" & zero;

-- decision variable

-- always assume starting point is
--  to the left and below the end point

-— X1l < x2 => x_iInc = 1
-— yl < y2 => vy inc

if X2 >= y2 then

-- small slope (m <= 1)

-- step along x-coordinate
da := "0" & x2;

a = X;
db := "0" & y2;
b :=vy;

else

-- steep slope (m >1)
-- step along y-coordinate
da := "0" & y2;



69: a =y;

70: db := "0" & x2;

71: b := x;

72: end if;

73:

74: d := db - da;

75:

76: if reset = "1" then

77: state <= sl;

78: else

79: state <= s2;

80: end if;

81:

82: when s2 =>

83: -- condition for while loop

84: if X2 >= y2 then

85: -- refresh x & y

86: X = a;

87: y = b;

88: temp2 = "0°" & x2;

89: else

90: -- refresh x & y

91: y = a;

92: X = b;

93: temp2 = "0" & y2;

94: end if;

95:

96: if reset = "1" then

97: state <= sl;

98: elsif (a /= temp2) then

99: state <= s3a;

100: else

101: state <= s4;

102: end if;

103:

104: when s3a =>

105: -- enable write on buffer, ready x and y values
106: buf write <= "17;

107: x_addr <= x(width downto 0);
108: y_addr <= y(width downto 0);
109:

110: if reset = "1° then

111: state <= sl;

112: -- hold values on X,y until buffer is ready
113: elsif buf ready = "0° then
114: state <= s3a;

115: else

116: state <= s3b;

117: end if;

118:

119: when s3b =>

120: -- update x,y.,d

121: if (d(width + 1) = "1") then
122: -- go horizontal (temp=x)/vertical (temp=y)
123: temp := db;

124: else

125: -- go diagonal

126: temp = db - da;

127: b :=b + "17;

128: end if;

129:

130: a:=—a+ "1°;

131: d :=d + (temp(width downto 0) & "0%);
132:

133: if reset = "1° then

134: state <= sl;

135: else

136: state <= s2;



137: end if;

138:

139: when s4 =>

140: -- write last endpoint

141: buf_write <= "17;

142: x_addr <= x(width downto 0);
143: y_addr <= y(width downto 0);
144:

145: if reset = "1° then

146: state <= sl;

147: -- hold last values on x, y until buffer is ready
148: elsif buf _ready = "0° then
149: state <= s4;

150: else

151: state <= stop;

152: end if;

153:

154: when stop =>

155: if ((reset = "17) or (xy_ack = "1")) then
156: state <= sl;

157: done <= "0°;

158: else

159: state <= stop;

160: done <= "17";
161: end if;
162: end case;

163: end if; --end clock

164: else

165: done <= "0°;

166: buf write <= "07;

167: end if; --end enable

168: end process;

169: end behavioral;
170:
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: library IEEE;
2: use IEEE.std_logic_arith.all;

: use IEEE.std_logic_1164_all;
4: use IEEE.std_logic_unsigned.all;
5: use work.LINEPACK.all;

> entity out_mux is

8: port (

9: mux_select : in std_logic;

10: slow_x_pos : in std_logic_vector(width downto 0);

11: slow_y_pos : in std logic vector(width downto 0);

12: slow_wr_en : in std_logic;

13: fast_x _pos - in std_logic_vector(width downto 0O);

14: fast_y pos - in std_logic_vector(width downto 0);

15: fast_wr_en : in std _logic;

16: winner_x_pos : out std_logic_vector(width downto 0);

17: winner_y_pos : out std_logic_ vector(width downto 0);

18: buf_wr_en - out std_logic

19: );

20: end out_mux;

21:

22: architecture behavioral of out _mux is

23: begin

24: process (mux_select, slow_x_pos, slow_y_pos, slow_wr_en, fast _x_pos, fast_y_pos,
fast_wr_en)

25: begin

26: case mux_select is

27: when "0° =>

28: winner_x_pos <= slow_X_pos;

29: winner_y pos <= slow_y pos;

30: buf wr_en <= slow_wr_en;

31: when "1° =>

32: winner_x_pos <= fast X pos;

33: winner_y pos <= fast y pos;

34: buf wr_en <= fast wr_en;

35: when others =>

36: winner_x_pos <= "1111";

37: winner_y _pos <= "1111";

38: buf wr_en <= "07;

39: end case;

40:

end process;

41: end behavioral;

42:
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: library I1EEE;
2: use IEEE.std_logic_1164_all;

: use IEEE.std_logic_unsigned.all;
4: use work.LINEPACK.all;

5:

I entity picture_buffer is

: port (
8: clk - in std_logic;
9: reset - in std_logic:
10: rd_en : in std_logic:; -- enable read
11: wr_en : in std_logic; -- enable write
12:
13: -- X, y position to be input by the algorithm modules
14: x_cursor : in std _logic_vector(width downto 0);
15: y_cursor - in std _logic vector(width downto 0);
16: ready : out std_logic; —-- signal to other modules; ready to write
17: data_out : out std_logic
18: );
19: end picture_buffer;
20:
21:
22: architecture behavioral of picture_buffer is
23: type stateT is (slwait, sl, s2, done);
24: signal state : stateT := slwait;
25:
26: type bar is array (0 to screen_dim) of std_logic:
27: type foo is array (0O to screen_dim) of bar;
28: signal mem : foo;
29:
30: begin
31: process (clk, rd_en)
32: variable x_addr : integer := O;
33: variable y_addr : integer = O;
34: begin
35: if (rd_en = "17) then
36: if (rising_edge(clk) and clk = "1") then
37: case state is
38: when slwait =>
39: state <= si;
40:
41: when s1 =>
42: -- set x and y address to O
43: X_addr := 0;
44: y_addr := 0;
45:
46: if reset = "1° then
47: state <= si;
48: else
49: state <= s2;
50: end if;
51:
52: when s2 =>
53: data_out <= mem (y_addr) (x_addr);
54:
55:
56:
57: if reset = "1" then
58: state <= si;
59: -- 1F try to access row outside of screen, finished
60: elsif (screen_dim - 1) < y addr then
61: state <= done;
62: -- 1F y is within screen, X is going off the screen
63: -- move down a row
64: elsif (screen_dim - 1) < x_addr then
65: y addr =y addr + 1;
66: X_addr := 0;
67: state <= s2;

68: -- go right one cell otherwise



69: else

70: X_addr := x addr + 1;

71: state <= s2;

72: end if;

73:

74: when done =>

75: if reset = "1" then

76: state <= sl;

77: else

78: state <= done;

79: end if;

80: end case;

81: end if;

82: end if;

83: end process;

84:

85: -- write buffer process

86: -- requires x, y coordinates from algorithm module
87: process (clk, wr_en)

88: variable delay : std_logic = "0";

89: begin

90: -- if reset not selected

91: -- every clock, write a "0" (black) to memory location
92: -- selected byte to be determined by the algorithm
93: if (reset = "0°) then

94: if (rising_edge(clk) and clk = "1") then
95: if (wr_en = "1%) and (delay = "0") then
96: mem (CONV_INTEGER(y_cursor)) (CONV_INTEGER(X cursor)) <= "0°;
97: delay = "1°;

98: ready <= "07;

99: else

100: delay := "0";

101: ready <= "1°;

102: end if;

103: end if;

104: -- 1Ff reset is high "blank™ out the memory
105: else

106: mem (0) <= X"FFFF";

107: mem (1) <= X"FFFF";

108: mem (2) <= X"FFFF';

109: mem (3) <= X"FFFF":

110: mem (4) <= X"FFFF";

111: mem (5) <= X"FFFF";

112: mem (6) <= X"FFFF';

113: mem (7) <= X"FFFF";

114: mem (8) <= X"FFFF";

115: mem (9) <= X"FFFF";

116: mem (10) <= X"FFFF";

117: mem (11) <= X"FFFF";

118: mem (12) <= X"FFFF";

119: mem (13) <= X"FFFF";

120: mem (14) <= X"FFFF";

121: mem (15) <= X"FFFF";

122: end if;

123: end process;

124:

125: end behavioral;
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-- hicolvga.vhd

-- Author(s): Jorgen Peddersen and Ashley Partis
-- Created: Jan 2001
-- Last Modified: Jan 2001

-- This code acts as a top level for the VGA output project. The RAMDAC should
-- be set up to program high colour dual-edged mode. This displays a pattern
-- of horizontal and vertical bands of colour which can have their colour

-- changed and rotated around the screen. Experimentation is the best way to
-- understand what each switch does.

library IEEE;

use IEEE.std logic 1164 ._all;

use IEEE.std_logic_unsigned.all;

entity vga is
port (
clk: in STD_LOGIC;
-- clock
rstn: in STD_LOGIC;
-- asynchronous active low reset

bit_data : in std_logic; -- data from picture buffer

-- DIP switches 1-8
- red: in STD_LOGIC VECTOR(1 downto O); -— switches to
control the red component of the test pattern
- green: in STD LOGIC VECTOR(1 downto 0); -- switches to
control the green component of the test pattern
- blue: in STD_LOGIC VECTOR(1 downto 0); -— switches to
control the blue component of the test pattern
- vertRotate: in STD _LOGIC; -— if
high, the pattern will rotate vertically
- horiRotate: in STD_LOGIC; - if
high, the pattern will rotate horizontally

-- PB 1-2
—- vertDirection: in STD_LOGIC; -- direction
of vertical rotation
- horiDirection: in STD_LOGIC; -- direction
of horizontal rotation

pixel: out STD_LOGIC_VECTOR (7 downto 0); -- RAMDAC pixel lines
blankn: out STD LOGIC; -
RAMDAC blank signal
RDn: out STD_LOGIC;
-- RAMDAC RDn connection
WRn: out STD_LOGIC;
-- RAMDAC WRn connection
RAMDACD: inout STD_LOGIC_VECTOR (7 downto 0); -- RAMDAC data lines
RS: inout STD_LOGIC_VECTOR (2 downto 0); -- RAMDAC RS
lines
hsync: out STD _LOGIC; -
horizontal sync for monitor
vsync: out STD_LOGIC; =
vertical sync for monitor
triste: out STD_LOGIC; -
signal to tristate ethernet PHY
rramce: out STD_LOGIC; -
right ram chip enable
pixelclk: out STD_LOGIC -
RAMDAC pixel clock
)

end vga;

architecture vga arch of vga is
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57:
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59:
60:
61:
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63:
64:
65:
66:

67:

74:
75:

76:
77:

78:
79:
80:

81:

-- control VGA signals
component vgacore
generic (
H_SIZE : integer;
-- horizontal size of input image, MAX 800
V_SIZE : integer
-- vertical size of input image, MAX 600
)
port

(

reset: in std_logic:;
asynchronous active low reset

clock: in std_logic:
clock

hsyncb: buffer std_logic;
horizontal (line) sync

vsyncb: out std_logic:
vertical (frame) sync

latch: out STD_LOGIC;
latches new rgb value

enable: out STD LOGIC;
enable/ground RGB output lines

hloc: out std_logic_vector(9 downto 0);
to be decoded for video RAM

vloc: out std_logic_vector(9 downto 0)
be decoded for video RAM

end component;

-- Program the RAMDAC
component prgramdacver2
port (

clk: in STD_LOGIC;
Clock

rstn: in STD LOGIC;
Asynchronous active low reset

start: in STD LOGIC;

-— horizontal address

-— vertical address to

-- Start signal

done: out STD_LOGIC; -- Asserted
when programming is finished

WRn: out STD_LOGIC; -=
Write line to RAMDAC (active low)

RDn: out STD LOGIC; —=
Read line to RAMDAC (active low)

RS: inout STD _LOGIC VECTOR (2 downto 0); -- Register select lines to
the RAMDAC

data: inout STD LOGIC_VECTOR (7 downto 0) -- Bidirectional data line to
RAMDAC

)

end component;

-- State signals
type STATETYPE is (stReset, stWastel, stWaste2, stWaste3,
signal presState: STATETYPE;

-- signals so that hsync and vsync can be read
signal hsynclnt : STD LOGIC;
signal vsynclnt - STD LOGIC;

-- signals to cue different processes
signal startProg : STD LOGIC;

signal startVGA : STD _LOGIC;

signal resetVGA : STD LOGIC;

signal done : STD LOGIC;

-- signals to generate test pattern
signal hloc : std _logic_vector(9 downto 0);
location of each pixel

stWait, stForever);

-— horizontal



101: signal vloc : std_logic_vector(9 downto 0);
location of each pixel
102: -- signal vertoffset : std logic vector(8 downto 0);
rotation
103: -- signal horioffset : std_logic_vector(8 downto 0);
horizontal rotation
104: signal vertvVal : std logic_vector(8 downto 0);
pixel location
105: signal horival : std_logic_vector(8 downto 0);
pixel location
106: signal pixelData : STD_LOGIC_VECTOR(15 downto 0):
each pixel
107:
108: begin
109: -- VGA controller
110: cycler : vgacore
111: generic map (
112: H_SIZE => 16,
113: V_SIZE => 16
114: )
115: port map(
116: reset => resetVGA,
117: clock => clk,
118: hsyncb => hsynclint,
119: vsyncb => vsyncint,
120: latch => open,
121: enable => blankn,
122: hloc => hloc,
123: vloc => vloc
124: );
125:
126: -- RAMDAC programmer
127: RAMDACprog : prgramdacver2 port map (
128: clk => clk,
129: rstn => rstn,
130: start => startProg,
131: done => done,
132: WRn => WRn,
133: RDn => RDn,
134: RS => RS,
135: data => RAMDACD
136: );
137:
138: -- This is a simple mealy state machine that
139: -- when the RAMDAC is finished programming
140: process(clk, rstn)
141: begin
142: if rstn = 0" then
143: presState <= stReset;
144: elsif clk“event AND clk = "1" then
145: case presState is
146: when stReset =>
147: presState <=
148: when stWastel =>
149: presState <=
150: when stWaste2 =>
151: presState <=
152: when stWaste3 =>
153: presState <=
154: when stWait =>
155: if done = "0~
156:
157: else
158:
159: end if;
160: when stForever =>
161: presState <=
162: end case;

cues the VGA

stWastel;
stWaste2;
stWaste3;
stWait;

then

stForever;

-- vertical
offset for vertical
offset for
adds offset to
adds offset to

colour to write for

controller

presState <= stWait;

presState <= stForever;



163: end if;

164: end process;

165:

166: process(presState)

167: begin

168: case presState is

169: when stReset =>

170: startProg <= "1°;

171: startVGA <= "0°;

172: when stWastel =>

173: startProg <= "1°;

174: startVGA <= "0°;

175: when stWaste2 =>

176: startProg <= "1°;

177: startVGA <= "07;

178: when stWaste3 =>

179: startProg <= "1°;

180: startVGA <= "07;

181: when stWait =>

182: startProg <= "0°;

183: startVGA <= "0°;

184: when stForever =>

185: startProg <= "0°;

186: startVGA <= "1°;

187: end case;

188: end process;

189:

190: -- calculate offsets for data that is rotating.

191: -- a new page is called for as it is clocked by vsync.
192: - process(rstn, vsynclint)

193: - begin

194: —- if rstn = "0° then

195: -- vertoffset <= 000000000 ;

196: - horioffset <= ""000000000";

197: —- elsif vsynclnt“event and vsyncint = "1° then
198: -- -- update vertical counter if required
199: -- if vertRotate = "1" then

200: -- if vertDirection = "0" then

201: —- vertoffset <= vertoffset
202: —- else

203: -- vertoffset <= vertoffset
204: —- end if;

205: —- end if;

206: —- -- update horizontal counter if required
207: —- if horiRotate = "1" then

208: —- if horiDirection = "0" then

209: —- horioffset <= horioffset
210: —- else

211: —- horioffset <= horioffset
212: —- end if;

213: —- end if;

214: —- end if;

215: —- end process;

216:

217: -- Synchronize the horizontal and vertical values with the clock.
218: process(clk,rstn)

219: begin

220: if rstn = 0" then

221: horival <= (others => "0%);

222: vertval <= (others => "07);

223: elsif clk“event and clk = 0" then

224: —- if (CONV_INTEGER(vIoc) mod 2) = O then

225: —- horival <= "000000000";

226: —- vertval <= "000000000";

227: —- else

228: —- horival <= vloc(8 downto 0) + horioffset;
229: —- vertVal <= hloc(8 downto 0) + vertoffset;

230: horiVal <= vloc(8 downto 0);

Value will update

whenever
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289:
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vertVal <= hloc(8 downto 0);
- end i1f;
end if;

end process;

process(clk, bit_data)
begin

if bit _data = 0" then
pixelData <= X'"0000";
else
pixelData <= X"FFFF";
end if;

end process;

- Calculate pixelData. This is the colour programmed into each pixel.
- By choosing different combinations of the three component colours (red, green and

blue)

- different patterns can be formed. For each colour, the following
- patterns can be chosen from:
- Bit 1 Bit O Description

- 0 0 Colour does not contribute to any of

the pixels on the screen

0 1 Colour forms a test pattern of 32

scaled vertical bands

1 0 Colour forms a test pattern of 32

scaled horizontal bands

- 1 1 Every pixel on the screen is given the

full value of the colour

- The three colours can all be used to control the colour components of each pixel
- so it is possible to combine the values and have something like:

- Full blue component, horizontal green bands and vertical red bands, or

- No red component, horizontal blue bands and horizontal green bands

- (this would appear as horizontal cyan bands) etc.

- pixelData(15) <= "07;

- process(clk, resetVGA)

- begin

- if resetVGA = "0° then

- pixelData(14 downto 10) <= (others => "0%);

- elsif clk"event and clk = "1" then

- case red is __

choose contribution of red component

- when 00" =>

- pixelData(14 downto 10) <= "'00000"";

- when 01" =>

- pixelData(14 downto 10) <= horival (8 downto 4);
- when 10" =>

- pixelData(14 downto 10) <= vertval (8 downto 4);
- when others =>

- pixelData(14 downto 10) <= 11111,

- end case;
- case green is —

choose contribution of green component

- when ""00" =>

- pixelData(9 downto 5) <= **00000";

- when 01" =>

- pixelData(9 downto 5) <= horival (8 downto 4);
- when 10" =>

- pixelData(9 downto 5) <= vertval (8 downto 4);
- when others =>

- pixelData(9 downto 5) <= "11111";

- end case;
- case blue is __

choose contribution of blue component

- when 00" =>
- pixelData(4 downto 0) <= '*00000";
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- when 01" =>

- pixelData(4 downto 0) <=

-= when 10" =>

e pixelData(4 downto 0) <=

-- when others =>

- pixelData(4 downto 0) <=

- end case;
—— end if;
-- end process;

-- handle dual-edged clock to give correct data to the RAMDAC

horiVal (8 downto 4);
vertvVal (8 downto 4);

11111

pixel <= pixelData(7 downto 0) when clk = "1" else pixelData(15 downto 8);

-- only start VGA after RAMDAC has been programmed
resetVGA <= rstn AND startVCGA;

-- pass the outputs out
hsync <= hsynclINT;
vsync <= vsynclINT;

-- Provide 50MHz pixel clock
pixelclk <= clk;

—-- turn off the ethernet outputs and the right SRAM bank to avoid contention on the

lines
triste <= "17;
rramce <= "1°;

end vga_arch;
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-- prgramdac.vhd

-- Author(s): Ashley Partis and Jorgen Peddersen
-- Created: Dec 2000
-- Last Modified: Jan 2001

-- This code programmes the RAMDAC on the XSV-300 board with data for either
-- high-colour mode or a simple colour map.-

library IEEE;
use IEEE.std logic_1164._all;
use IEEE.std _logic unsigned.all;

entity prgramdacver? is
port (
clk: in STD_LOGIC;
-- Clock
rstn: in STD LOGIC;
-- Asynchronous active low reset
start: in STD _LOGIC;
-- Start signal
done: out STD_LOGIC;
-- Asserted when programming is finished
WRn: out STD_LOGIC;
-- Write line to RAMDAC (active low)
RDn: out STD LOGIC;
-- Read line to RAMDAC (active low)
RS: inout STD_LOGIC_VECTOR (2 downto 0):; -- Register
select lines to the RAMDAC
data: inout STD LOGIC_VECTOR (7 downto 0) -
Bidirectional data line to RAMDAC
);:

end prgramdacver?2;

architecture prgramdacver2_arch of prgramdacver? is
-- signal declarations
-- FSM states for the main mealy FSM
type STATETYPE is (stldle, stWrite, stWrCycle, stNextWrite
-, StSetupRGB, stWriteRGB, stNextWriteRGB —-- uncomment
these states for colour map

):
signal presState: STATETYPE;
signal nextState: STATETYPE;

-- hardcoded values for initialising the RAMDAC to the values we desire
-- location 10 down to 8 is the RS values

type TWODIMARRAYDAC is array (O to 5) of STD_LOGIC _VECTOR (7 downto 0O);
type TWODIMARRAYRS is array (O to 5) of STD_LOGIC_VECTOR (2 downto 0);

constant InitDAC: TWODIMARRAYDAC:=
-- hard code initial control register programming values
( -- DAC(76543210)

10000001, —-- Command reg A gets $81 for high
colour dual edged mode
-— ''10100001", -- Command reg A gets $Al1 for high
colour single edged mode
-— 00000001, -- Command reg A gets $01 for colour
map
**00000000", -- Pallette address reg gets $00
"11111111"", -- Read mask reg gets $FF
'*00000010", -- Pallette address reg gets $02
'*00000010™, -- Command reg B gets $02
**00000000*" -- Pallette address reg gets $00
);:



57: constant InitRS: TWODIMARRAYRS:=

58: ( -- RS(210)

59: '"110", -- RS gets Command reg A

60: '*000", -- RS gets Pallette address reg

61: 010", -- RS gets Read mask reg

62: **000™, -- RS gets Pallette address reg

63: ''010", -- RS gets Command reg B

64: "*000" -- RS gets Pallette address reg

65: ):

66:

67: —- InitCnt is an integer to index the constant two dimensional arrays initDAC and
initRS,

68: -- and a signal to increment initCnt

69: signal InitCnt: INTEGER range O to 5;
70: signal increment: STD_LOGIC;

72: -- signals to create a 12_.5MHz clock from the 50MHz input clock to the entity
73: signal divclk: STD LOGIC;
74: signal gray_cnt: STD LOGIC VECTOR (1 downto 0);

75:

76:

77- -- create signals so the data and RS lines can be used as tristate buffers
78: -- this is important as they share lines with the ethernet PHY

79: signal prgbData: STD LOGIC VECTOR (7 downto 0);
80: signal prgRS: STD _LOGIC_VECTOR (2 downto O);
81: signal latchData: STD_LOGIC;

82: signal latchRS: STD_LOGIC;

83:

84: -- these are for programming the colourmap of the RAMDAC - to program all 256 lots
85: -- of 3 byte sets of RGB data - uncomment for colour map

86: -- also a signal to increment colourCnt to avoid a race condition

87: --signal prgRGB: STD LOGIC_VECTOR (7 downto 0);
88: --signal colourCnt: STD LOGIC VECTOR (1 downto 0O);
89: --signal incColourCnt: STD_LOGIC;

90:

91: begin

92:

93: -- clock divider by 4 to for a slower clock to avoid timing violations
94: -- uses grey code for minimized logic

95: A: process (rstn, clk)

96: begin

97: if rstn = "0° then

98: gray_cnt <= "00";

99: elsif clk"EVENT and clk = "1 then

100: case(gray_cnt) is

101: when 00" => gray_cnt <= "01";
102: when 01" => gray_cnt <= "11";
103: when 11" => gray_cnt <= "10";
104: when "10" => gray_cnt <= "00";
105: when others => gray_cnt <= "00";
106: end case;

107: end if;

108: end process;

109:

110: -- assign the clock that this entity runs off

111: divclk <= gray_cnt(l);

112:

113: -- read isn"t needed, tie high

114: RDn <= "1°;

115:

116: -- main clocked process

117: B: process (rstn, divclk)

118: begin

119: if rstn = 0" then

120: presState <= stldle;

121: initCnt <= 0;

122: -- add these signals for colour map

123: —- colourCnt <= (others => "07);



124: —- prgRGB <= (others => "07);

125: elsif divclk"event and divclk = "1° then

126: presState <= nextState;

127: —-- dIncrement initCnt

128: if increment = "1° then

129: -- overflow initCnt when it hits 5 as integers don"t
overflow

130: if InitCnt < 5 then

131: initCnt <= initCnt + 1;

132: else

133: initCnt <= 0;

134: end if;

135: end if;

136: -- add these signals for colour map

137: —- it incColourCnt = "1° then

138: -- if colourCnt = "10" then

139: -- colourCnt <= "00";

140: —- prgRGB <= prgRGB + 1;

141: - else

142: —- colourCnt <= colourCnt + 1;

143: -- end if;

144: - end if;

145: end if;

146: end process;

147:

148: -- Main FSM process

149: C: process (presState, start, initCnt)

150: begin

151: -- default signals and outputs for each FSM state

152: -- note that the latch data and rs signals are defaulted to 1, so are

153: -- only 0 in the idle state

154: WRn <= "17;

155: increment <= "07;

156: -- incColourCnt <= "0";

157: prgbData <= (others => "0%);

158: prgRS <= "001";

159: latchData <= "1°;

160: latchRS <= "17;

161: done <= "07;

162:

163: case presState is

164: when stildle =>

165: -- wait for start signal from another process

166: if start = "1" then

167: nextState <= stWrite;

168: -- setup for the First write to the RAMDAC for
use by setting the register select

169: -- lines and the data lines

170: prgRS <= InitRS(initCnt);

171: prgData <= InitDAC(initCnt);

172: else

173: nextState <= stildle;

174: latchData <= "0°;

175: latchRS <="0";

176: end if;

177:

178: when stWrite =>

179: -- hold the register select and data lines for the
write cycle

180: -- and set the active low write signal

181: nextState <= stWrCycle;

182: prgRS <= InitRS(initCnt);

183: prgData <= InitDAC(initCnt);

184: WRn <= "0%;

185:

186: when stWrCycle =>

187: -- continue if all 5 registers that needed programming

have been written to



188:
189:
190:
191:
192:

193:
194:
195:
196:
197:

198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:

213:
214:
215:
216:
217:
218:
219:
220:

221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:

232:
233:

234:
235:
236:
237:
238:
239:
240:

241:

if IinitCnt = 5 then
nextState <= stldle;
done <= "1°;
-- comment the two lines above and uncomment the one below for a colour map
- nextState <= stSetupRGB;

-- continue writing to the registers
else
nextState <= stNextWrite;

end i1f;

-- hold the data to be sure the hold times aren"t
violated

prgRS <= INItRS(initCnt);

prgData <= InitDAC(initCnt);

—-- increment InitCnt to program the next register

increment <= "17;

when stNextWrite =>
nextState <= stWrite;
-- setup for the next write cycle
prgRS <= INItRS(initCnt);
prgData <= InitDAC(initCnt);

-- start programming the RGB values to the colour map
-- note RS is defaulted to 001, which is what is required
-- for programming the colour map
-- These steps program the RAMDACs colour map. To set the
colours
-- see the if statement below the end of the case statement
- when stSetupRGB =>
-— nextState <= stWriteRGB;
- when stWriteRGB =>
- nextState <= stNextWriteRGB;
-— WRn <= "0";
—-= when stNextWriteRGB =>
-- iF all 256 sets of 3 byte RGB values are programmed,

-- to the idle state and assert done

- if prgRGB = "11111111" and colourCnt = ""10" then
- nextState <= stldle;

- done <= "17;

-- else

- nextState <= stSetupRGB;

- end if;

- incColourCnt <= "17°;

end case;

-- the following statement will program the RAMDACs colour map. To
change the

-- colours it programs with, comment out different lines
= if presState = stSetupRGB or presState = stWriteRGB or presState =
stNextWriteRGB then

- if colourCnt = 00" then -- Red
component
- prgData <= prgRGB;

-— Full Red scaling
- prgbata <= prgRGB(7 downto 5) & '11111";-- 3:3:2 Red
scaling

-—- prgbata <= (others => "0%);
-- No Red component
—-= elsif colourCnt = "01" then -
Green component
- prgbata <= prgRGB;
-— Full Green scaling
- prgData <= prgRGB(4 downto 2) & "11111";-- 3:3:2 Green
scaling
- prgData <= (others => "07);
-- No Green component



242: —- else
-- Blue component

243: - prgData <= prgRGB;
-— Full Blue scaling
244 —- prgbata <= prgRGB(1 downto 0) & "11111";-- 3:3:2 Blue
scaling
245: —- prgbata <= (others => "0%);
-- No Blue component
246: —- end if;
247: —- Leave the following line commented if using the if statement above
248: —- prgbData <= prgRGB;
-— Full Grey scaling
249: —- end if;
250: end process;
251: —-
252: -- assign data and RS prgData and prgRS repsectively when they need to be latched
253: -- otherwise keep them at high impedance to create a tri state buffer
254: data <= prgData when latchData = "1" else (others => "Z");
255: RS <= prgRS when latchRS = "1° else (others => "Z%);
256:

257: end prgramdacver2_arch;



2: —-- vgacore._vhd

4: —- Author(s): Ashley Partis and Jorgen Peddersen

5: —-- Based largely on a version on the XESS (www.xess.com) page. Thanks to XESS.
- —- Created: Jan 2001
: —-- Last Modified: Feb 2001

8: —-

9: -- Creates VGA timing signals to a monitor, timings are currently for 72Hz (@
10: -- 800 * 600. To change the resolution or refresh rate, change the value of
11: -- the constants and the generics to whatever is desired. Changing the
12: -- resolution and / or refresh also means the clock speed may have to change
13: -- (currently based off a 50MHz clock) .

14: —-
5 -1 . . ———_——————
16:

17: library IEEE;
18: use IEEE.std_logic_1164_all;
19: use IEEE.std_logic_unsigned.all;

20:

21: entity vgacore is

22: generic (

23: H_SIZE : integer :-= 800; —-
horizontal size of input image, MAX 800

24: V_SIZE : integer := 600 —-=
vertical size of input image, MAX 600

25: );

26: port

27: (

28: reset: in std _logic; -
asynchronous active low reset

29: clock: in std_logic; -
clock

30: hsyncb: buffer std_logic: -
horizontal (line) sync

31: vsyncb: out std_logic; —=
vertical (frame) sync

32: latch: out STD_LOGIC; -
latches new rgb value

33: enable: out STD_LOGIC; —=
enable/ground RGB output lines

34: hloc: out std_logic_vector(9 downto 0); -- horizontal address
to be decoded for video RAM

35: vloc: out std_logic_vector(9 downto 0) -- vertical address to
be decoded for video RAM

36: );

37: end vgacore;

38:

39: architecture vgacore_arch of vgacore is

40:

41: -- one of the sync signals

42: —-

43: —- |<-—-——--- Active Region -——————————— S|<---—-—————- Blanking
Region —-———-—-——- >|

44: —- | (Pixels) |

I
45 —- | |
I

46: - | |

47: —- ———! ———————— t—_— e e ———————— t—_—
_____________ N

48: i_ I I I I I

49: - | | |<--Front |<---Sync
| <---Back |

50: -- | | | Porch-->| Time---

>| Porch--->|



51: - ————-—- | |l

52: —- | |
I
53: —- <---—-—---———— Period ——————————-—— -
———————————— >|
54: —-
55: -- horizontal timing signals

56: constant H_PIXELS: INTEGER:= H_SIZE;

57: constant H_FRONTPORCH: INTEGER:= 56 + (800 - H_SIZE) / 2;

58: constant H_SYNCTIME: INTEGER:= 120;

59: constant H_BACKPORCH: INTEGER:= 63 + (800 - H_PIXELS) / 2;

60: constant H_PERIOD: INTEGER:= H_SYNCTIME + H_PIXELS + H_FRONTPORCH + H BACKPORCH;

62: -- vertical timing signals

63: constant V_LINES: INTEGER:= V_SIZE;

64: constant V_FRONTPORCH: INTEGER:= 37 + (600 - V_SIZE) / 2;

65: constant V_SYNCTIME: INTEGER:= 6;

66: constant V_BACKPORCH: INTEGER:= 23 + (600 - V_SIZE) / 2;

67: constant V_PERIOD: INTEGER:= V_SYNCTIME + V_LINES + V_FRONTPORCH + V_BACKPORCH;

69: signal hcnt: std _logic_vector(10 downto O);
-- horizontal pixel counter

70: signal vent: std_logic_vector(9 downto 0);
-- vertical line counter

71:

72: begin

73:

74: -- control the reset, increment and overflow of the horizontal pixel count

75: A: process(clock, reset)

76: begin

77 -- reset asynchronously clears horizontal counter

78: if reset = 0" then

79: hcnt <= (others => "07);

80: -- horiz. counter increments on rising edge of dot clock

81: elsif (clock“event and clock = "1") then

82: -- horiz. counter restarts after the horizontal period (set by the
constants)

83: if hcnt < H_PERIOD then

84: hcnt <= hent + 1;

85: else

86: hcnt <= (others => "07);

87: end if;

88: end if;

89: end process;

90:

91: -- control the reset, increment and overflow of the vertical line counter after every

horizontal line
92: B: process(hsyncb, reset)

93: begin

94: -- reset asynchronously clears line counter

95: if reset="0" then

96: vent <= (others => "07);

97: -- vert. line counter increments after every horiz. line

98: elsif (hsyncb“event and hsyncb = “1°) then

99: -- vert. line counter rolls-over after the set number of lines (set by
the constants)

100: if vent < V_PERIOD then

101: vent <= vent + 13

102: else

103: vent <= (others => "07);

104: end if;

105: end if;

106: end process;

107:

108: -- set the horizontal sync high time and low time according to the constants

109: C: process(clock, reset)
110: begin



111: -- reset asynchronously sets horizontal sync to inactive
112: if reset = "0° then

113: hsynch <= "17;

114: -- horizontal sync is recomputed on the rising edge of every dot clock

115: elsif (clock"event and clock = "17) then

116: -- horiz. sync is low in this interval to signal start of a new line

117: if (hcnt >= (H_FRONTPORCH + H_PIXELS) and hcnt < (H_PIXELS +
H_FRONTPORCH + H_SYNCTIME)) then

118: hsyncb <= "07;

119: else

120: hsynch <= "17;

121: end if;

122: end if;

123: end process;

124:

125: —-- set the vertical sync high time and low time according to the constants

126: D: process(hsyncb, reset)

127: begin

128: -- reset asynchronously sets vertical sync to inactive

129: if reset = "0" then

130: vsynch <= "1%;

131: -- vertical sync is recomputed at the end of every line of pixels

132: elsif (hsyncb"event and hsyncb = “1°) then

133: -- vert. sync is low in this interval to signal start of a new frame

134: if (vent >= (V_LINES + V_FRONTPORCH) and vcnt < (V_LINES +
V_FRONTPORCH + V_SYNCTIME)) then

135: vsyncb <= "0°;

136: else

137: vsynch <= "17;

138: end if;

139: end if;

140: end process;

141:

142: -- whether it should latch the current data or not

143: -- (always with a 50MHz clock - blanking is handled on the RAMDAC by asserting a
signal)

144: latch <= NOT reset;

145:

146: -- asserts the blaking signal (active low)

147: E: process (clock)

148: begin

149: if clock™EVENT and clock = "1° then

150: -- if we are outside the visible range on the screen then tell the
RAMDAC to blank

151: -- in this section by putting enable low

152: if hcnt >= H PIXELS or vcnt >= V_LINES then

153: enable <= "0";

154: else

155: enable <= "17";

156: end if;

157: end if;

158: end process;

159:

160: -- The video RAM address is built from the lower 9 bits of the vertical

161: -- line counter and bits 7-2 of the horizontal pixel counter.

162: -- Allows easy access for the current address of the current pixel in RAM

163: H:

164: hloc <= hcnt(9 downto 0);
165: vloc <= vcnt(9 downto 0);
166:

167: end vgacore_arch;
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