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DESIGN OF MULTILEVEL NETWORKS

• TRANSFORMATIONS TO SATISFY CONSTRAINTS

- number of gate inputs

- network size

- network delay

• DESIGN OF NETWORKS WITH xor and xnor GATES

• DESIGN OF NETWORKS WITH multiplexers (muxes)

Introduction to Digital Systems 6 – Design of Multi-Level Gate Networks



2

DESIGN MORE COMPLEX THAN FOR TWO-LEVEL NETWORKS

• NO STANDARD FORM

• SEVERAL REQUIREMENTS HAVE TO BE MET SIMULTANEOUSLY

• SEVERAL OUTPUTS HAVE TO BE CONSIDERED

• CAD TOOLS (logic synthesis) USED
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A DESIGN PROCEDURE

1. OBTAIN SP or PS EXPRESSIONS FOR THE FUNCTIONS OF THE SYS-
TEM

2. TRANSFORM THE EXPRESSIONS (or the corresponding two-level net-
works) so that the requirements are met

3. REPLACE and and or GATES BY nand and nor WHEN APPROPRIATE

SEVERAL ITERATIONS MIGHT BE NEEDED
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TYPICAL TRANSFORMATIONS TO MEET NETWORK REQUIREMENTS

• SIZE OF NETWORK: number of gates and number of gate inputs

• NUMBER OF GATES REDUCED BY

1. FACTORING

2. SUBEXPRESSIONS SHARED BY SEVERAL NETWORK OUTPUTS
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EXAMPLE 6.1: 1-BIT COMPARATOR

INPUTS: x, y ∈ {0, 1}
c ∈ {GREATER, EQUAL, LESS}

OUTPUT: z ∈ {GREATER, EQUAL, LESS}

FUNCTION: z =































GREATER if x > y or (x = y and c = GREATER)
EQUAL if x = y and c = EQUAL

LESS if x < y or (x = y and c = LESS)

Introduction to Digital Systems 6 – Design of Multi-Level Gate Networks



6

Example 6.1: Comparator (cont.)
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Figure 6.1: COMPARATOR
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Example 6.1: Comparator (cont.)

CODING:

c c2 c1 c0

z z2 z1 z0

GREATER 1 0 0
EQUAL 0 1 0
LESS 0 0 1

x, y

00 01 10 11
100 100 001 100 100

c 010 010 001 100 010
001 001 001 100 001

z
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Example 6.1: Comparator (cont.)

• SWITCHING EXPRESSIONS:

z2 = xy′ xc2 y′c2 G

z1 = (x′ y)(x y′)c1 E

z0 = x′y x′c0 yc0 S

• RESULTING TWO-LEVEL NETWORK:

- 7 and and 4 or gates

- 22 equivalent gates

- 25 gate inputs
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REDUCING NETWORK SIZE (cont.)

DEFINE:

t = (x y′)

w = (x′ y)

z2 = xy′ tc2

z1 = twc1

z0 = x′y wc0

• SIZE: 18 EQUIVALENT GATES

• FURTHER REDUCTION: NAND NETWORK – 9 EQUIVALENT GATES
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Figure 6.2: 1-BIT COMPARATOR IMPLEMENTATIONS
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EXAMPLE 6.2: MODULO-64 INCREMENTER

• A TWO-LEVEL IMPLEMENTATION:

z5 = x5x
′
4 x5x

′
3 x5x

′
2 x5x

′
1 x5x

′
0 x′

5x4x3x2x1x0

z4 = x4x
′
3 x4x

′
2 x4x

′
1 x4x

′
0 x′

4x3x2x1x0

z3 = x3x
′
2 x3x

′
1 x3x

′
0 x′

3x2x1x0

z2 = x2x
′
1 x2x

′
0 x′

2x1x0

z1 = x1x
′
0 x′

1x0

z0 = x′
0

• TWO-LEVEL NETWORK:
7 not 20 and , 5 or gates, and 77 gate inputs
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FACTORING

z5 = x5(x
′
4 x′

3 x′
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1 x′
0) x′
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z4 = x4(x
′
3 x′
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1 x′

0) x′
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z3 = x3(x
′
2 x′

1 x′
0) x′
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′
1 x′

0) x′
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′
0 x′
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0

• FOUR-LEVEL NETWORK (not-or-and-or):

7 not 10 and and 9 or gates, and 61 gate inputs

Introduction to Digital Systems 6 – Design of Multi-Level Gate Networks



13
4-LEVEL IMPLEMENTATION OF MODULO-64 INCREMENTER
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Figure 6.3: FOUR-LEVEL NETWORK FOR MODULO-64 INCREMENTER.
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THE FAN-IN OF GATES

• FAN-IN OF GATES ⇔ NUMBER OF OPERANDS PER OPERATOR

• REDUCED BY DECOMPOSING A LARGE GATE INTO SEVERAL SMALLER
GATES

• and AND or ARE ASSOCIATIVE,

a b c d e f = (a b c) (d e f )
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INCREMENTER WITH MAX FAN-IN OF 3

TERMS TO DECOMPOSE:

(x′
4 x′

3 x′
2 x′

1 x′
0) = (x′

4 x′
3 r210)

(x′
5x4x3x2x1x0) = x′

5a43a210

(x′
3 x′

2 x′
1 x′

0) = x′
3 + r210

(x′
4x3x2x1x0) = x′

4x3a210

z5 = x5(x
′
4 x′

3 r210) x′
5a43a210

z4 = x4(x
′
3 r210) x′

4x3a210

z3 = x3r210 x′
3a210

z2 = x2(x
′
1 x′

0) x′
2x1x0

z1 = x1x
′
0 x′

1x0

z0 = x′
0

• MORE GATES AND MORE LEVELS:
6 NOT, 18 NAND, 3 NOR, size: 31 equivalent gates
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Figure 6.4: REDUCING THE NUMBER OF GATE INPUTS
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EXAMPLE 6.4: REDUCING OUTPUT LOAD OF A GATE (Buffering)

zi = w x yi 0 ≤ i ≤ 63

x

w

z0y’0

z1y’1

z2y’2

z 61y’61

z 62y’62
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(a) (b)

x

w

z0y’0

z1y’1

z 31y’31
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z 33y’33

z 63y’63

Figure 6.5: REDUCING THE OUTPUT LOAD
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• OUTPUT LOAD OF NAND PRODUCING w · x: 64I (I is load factor of
NOR gate)

• PROPAGATION DELAY (high to low) between x and zi (load 5 at output):

(0.05 + 0.038 × 64) + (0.07 + 0.016 × 5) = 2.63ns

• USE BUFFERS

Gate Fan- Propagation delays Input factor Size

type in tpLH tpHL [Standard [equiv.

[ns] [ns] loads] [gates]

Buffer 1 0.15 + 0.006L 0.19 + 0.003L 2 4

Inv. Buf. 1 0.04 + 0.006L 0.05 + 0.006L 4.7 3

• DELAY:

(0.05 + 0.038 × 4) + (0.15 + 0.006 × 32) + (0.07 + 0.016 × 5) = 0.69ns
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EXAMPLE 6.5: EVEN PARITY CIRCUIT – alternatives

INPUT: x = (x7, x6, . . . , x0), xi ∈ {0, 1}
OUTPUT: z ∈ {0, 1}

FUNCTION: z =















1 if
∑7

i=0 xi is even
0 otherwise
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IMPLEMENTATION 1: TWO-LEVEL NETWORK.

CSP: 128 MINTERMS – NO REDUCTION POSSIBLE

COST: 128 and gates and one or gate

EACH and GATE 8 INPUTS, or GATE 128 INPUTS

NOT PRACTICAL: large number of gates, large fan-in
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IMPLEMENTATION 2: DIVIDE INTO TWO PARTS

P (x) = P (xl)P (xr) + P ′(xl)P
′(xr)

z

x3 x0x2 x1x’3 x’2 x’1 x’0

x7 x4x6 x5x’7 x’6 x’5 x’4

t0000

t0011

t1100

t1111

w0000

w0011

w1100

w1111

Figure 6.6: NETWORK WITH FAN-IN=4
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SUMMARY OF ALTERNATIVE IMPLEMENTATIONS OF PARITY

FUNCTION

Table 6.2: CHARACTERISTICS OF ALTERNATIVE IMPLEMENTATIONS FOR THE PARITY FUNCTION

Impl. Network Gates No.

input load Type Fan-in Fan-out Number levels

1 64 and 8 1 128 2

or 128 - 1

2 4 and 4 1 16 6

or 4 1 4

or 2 1 3

and 2 1 2

not 1 1 2
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NETWORKS WITH xor AND xnor GATES

EXAMPLE 6.6: 8-INPUT ODD-PARITY CHECKER

INPUT: x = (x7, . . . , x0), xi ∈ {0, 1}
OUTPUT: z ∈ {0, 1}

FUNCTION: z =















0 if number of 1′s in x is even
1 if number of 1′s in x is odd

z

x0

x1

x2

x3

x4

x5

x6

x7

Figure 6.7: ODD-PARITY CHECKER

z = x7 ⊕ x6 ⊕ x5 ⊕ x4 ⊕ x3 ⊕ x2 ⊕ x1 ⊕ x0
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EXAMPLE: 32-BIT EQUALITY COMPARATOR

INPUT: x = (x31, . . . , x0), xi ∈ {0, 1}
y = (y31, . . . , y0), yi ∈ {0, 1}

OUTPUT: z ∈ {0, 1}

FUNCTION: z =















1 if xi = yi for 0 ≤ i ≤ 31
0 otherwise

z = AND(XNOR(x31, y31), . . . , XNOR(xi, yi), . . . , XNOR(x0, y0))

Introduction to Digital Systems 6 – Design of Multi-Level Gate Networks



25

z

y0

x0

y1

x1

x3

y3
x2

y2

y30

x30

y31

x31

Figure 6.8: 32-BIT EQUALITY COMPARATOR

Introduction to Digital Systems 6 – Design of Multi-Level Gate Networks



26
NETWORKS WITH 2-INPUT MULTIPLEXERS

• 2-INPUT multiplexer (mux): z = MUX [x1, x0, s] = x1 · s x0s
′

• SET {MUX } IS UNIVERSAL (constants 0 and 1 available)

NOT (x) = MUX [0, 1, x] = 0 · x 1 · x′ = x′

AND(x1, x0) = MUX [x1, 0, x0] = x1x0 0 · x′
0 = x1x0

(b)

0

1

MUX

x

z

1

0

NOT

0

1

MUX

s

0x

1x

(a)

z = 1x 0x+s s’
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0x

1x

0

AND

z

Figure 6.9: 2-INPUT MULTIPLEXER AND NOT and AND GATES
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IMPLEMENTATION OF SFs WITH NETWORK OF MUXes

• SHANNON’S DECOMPOSITION (SD)

f (xn−1, xn−2, . . . , x0) = f (xn−1, xn−2, . . . , 1) · x0

f (xn−1, xn−2, . . . , 0) · x′
0

z = f (xn−1, xn−2, . . . , x0)

= MUX [f (xn−1, xn−2, . . . , x1, 1), f (xn−1, xn−2, . . . , x1, 0), x0]

EXAMPLE:

z = x3(x2 + x0)x1 = MUX [x3x1, x3x2x1, x0]
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DESIGN OF NETWORKS WITH MUXes

• OBTAIN A TREE OF MULTIPLEXERS BY REPEATED USE OF SD
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Figure 6.10: a) REALIZATION OF SHANNON’S DECOMPOSITION WITH MULTIPLEXER; b) REPEATED DECOMPOSITION.
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Example 6.8

• IMPLEMENT f (x3, x2, x1, x0) = z = x3(x1 x2x0) WITH MUX TREE

• DECOMPOSE WITH RESPECT TO x2, x1, x0

f (x3, 0, 0, 0) = 0 f (x3, 0, 0, 1) = 0
f(x3, 0, 1, 0) = x3 f (x3, 0, 1, 1) = x3

f(x3, 1, 0, 0) = 0 f (x3, 1, 0, 1) = x3

f(x3, 1, 1, 0) = x3 f (x3, 1, 1, 1) = x3

• ELIMINATE REDUNDANT MUXes
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ORDERING OF VARIABLES IN SUBTREES AFFECTS THE NUMBER OF

MUXes
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Figure 6.11:
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