- TRANSFORMATIONS TO SATISFY CONSTRAINTS
 - number of gate inputs
 - network size
 - network delay
- \bullet DESIGN OF NETWORKS WITH ${\rm XOR}$ and ${\rm XNOR}$ GATES
- DESIGN OF NETWORKS WITH multiplexers (MUXes)

1

DESIGN MORE COMPLEX THAN FOR TWO-LEVEL NETWORKS

- NO STANDARD FORM
- SEVERAL REQUIREMENTS HAVE TO BE MET SIMULTANEOUSLY
- SEVERAL OUTPUTS HAVE TO BE CONSIDERED
- CAD TOOLS (logic synthesis) USED

- 1. OBTAIN SP or PS EXPRESSIONS FOR THE FUNCTIONS OF THE SYS-TEM
- 2. TRANSFORM THE EXPRESSIONS (or the corresponding two-level networks) so that the requirements are met
- 3. REPLACE AND and OR GATES BY NAND and NOR WHEN APPROPRIATE

SEVERAL ITERATIONS MIGHT BE NEEDED

- SIZE OF NETWORK: number of gates and number of gate inputs
- NUMBER OF GATES REDUCED BY

1. FACTORING

2. SUBEXPRESSIONS SHARED BY SEVERAL NETWORK OUTPUTS

INPUTS:
$$x, y \in \{0, 1\}$$

 $c \in \{GREATER, EQUAL, LESS\}$

OUTPUT: $z \in \{GREATER, EQUAL, LESS\}$

$$\begin{array}{ll} \mathsf{FUNCTION:} & z = \left\{ \begin{array}{ll} GREATER \ \ \mathbf{if} & x > y \ \ \mathbf{or} \ (x = y \ \ \mathbf{and} \ \ c = GREATER) \\ EQUAL & \mathbf{if} & x = y \ \ \mathbf{and} \ \ c = EQUAL \\ LESS & \mathbf{if} & x < y \ \ \mathbf{or} \ (x = y \ \ \mathbf{and} \ \ c = LESS) \end{array} \right. \end{array}$$

(c)

Figure 6.1: COMPARATOR

CODING:

С	c_2	c_1	c_0
\mathcal{Z}	z_2	z_1	z_0
GREATER	1	0	0
EQUAL	0	1	0
LESS	0	0	1

		x, y			
		00	01	10	11
	100	100	001	100	100
\mathcal{C}	010	010	001	100	010
	001	001	001	100	001
	\overline{z}				

• SWITCHING EXPRESSIONS:

$$z_{2} = xy' + xc_{2} + y'c_{2} \quad G$$

$$z_{1} = (x' + y)(x + y')c_{1} \quad E$$

$$z_{0} = x'y + x'c_{0} + yc_{0} \quad S$$

• RESULTING TWO-LEVEL NETWORK:

- 7 AND and 4 $\rm OR$ gates
- 22 equivalent gates
- 25 gate inputs

DEFINE:

$$t = (x + y')$$

$$w = (x' + y)$$

$$z_2 = xy' + tc_2$$

$$z_1 = twc_1$$

$$z_0 = x'y + wc_0$$

- SIZE: 18 EQUIVALENT GATES
- FURTHER REDUCTION: NAND NETWORK 9 EQUIVALENT GATES

(a)

(c)

Figure 6.2: 1-BIT COMPARATOR IMPLEMENTATIONS

6 – Design of Multi-Level Gate Networks

• A TWO-LEVEL IMPLEMENTATION:

$$z_{5} = x_{5}x'_{4} + x_{5}x'_{3} + x_{5}x'_{2} + x_{5}x'_{1} + x_{5}x'_{0} + x'_{5}x_{4}x_{3}x_{2}x_{1}x_{0}$$

$$z_{4} = x_{4}x'_{3} + x_{4}x'_{2} + x_{4}x'_{1} + x_{4}x'_{0} + x'_{4}x_{3}x_{2}x_{1}x_{0}$$

$$z_{3} = x_{3}x'_{2} + x_{3}x'_{1} + x_{3}x'_{0} + x'_{3}x_{2}x_{1}x_{0}$$

$$z_{2} = x_{2}x'_{1} + x_{2}x'_{0} + x'_{2}x_{1}x_{0}$$

$$z_{1} = x_{1}x'_{0} + x'_{1}x_{0}$$

$$z_{0} = x'_{0}$$

• TWO-LEVEL NETWORK:

 $7~\mathrm{NOT}~20~\mathrm{AND}$, $5~\mathrm{OR}$ gates, and 77 gate inputs

FACTORING

$$z_{5} = x_{5}(x'_{4} + x'_{3} + x'_{2} + x'_{1} + x'_{0}) + x'_{5}x_{4}x_{3}x_{2}x_{1}x_{0}$$

$$z_{4} = x_{4}(x'_{3} + x'_{2} + x'_{1} + x'_{0}) + x'_{4}x_{3}x_{2}x_{1}x_{0}$$

$$z_{3} = x_{3}(x'_{2} + x'_{1} + x'_{0}) + x'_{3}x_{2}x_{1}x_{0}$$

$$z_{2} = x_{2}(x'_{1} + x'_{0}) + x'_{2}x_{1}x_{0}$$

$$z_{1} = x_{1}x'_{0} + x'_{1}x_{0}$$

$$z_{0} = x'_{0}$$

• FOUR-LEVEL NETWORK (NOT-OR-AND-OR):

 $7\ \rm NOT\ 10\ AND\ and\ 9\ OR\ gates,\ and\ 61\ gate\ inputs$

Figure 6.3: FOUR-LEVEL NETWORK FOR MODULO-64 INCREMENTER.

- FAN-IN OF GATES ⇔ NUMBER OF OPERANDS PER OPERATOR
- REDUCED BY DECOMPOSING A LARGE GATE INTO SEVERAL SMALLER GATES
- AND AND OR ARE ASSOCIATIVE,

$$a + b + c + d + e + f = (a + b + c) + (d + e + f)$$

TERMS TO DECOMPOSE:

$$(x'_{4} + x'_{3} + x'_{2} + x'_{1} + x'_{0}) = (x'_{4} + x'_{3} + r_{210})$$

$$(x'_{5}x_{4}x_{3}x_{2}x_{1}x_{0}) = x'_{5}a_{43}a_{210}$$

$$(x'_{3} + x'_{2} + x'_{1} + x'_{0}) = x'_{3} + r_{210}$$

$$(x'_{4}x_{3}x_{2}x_{1}x_{0}) = x'_{4}x_{3}a_{210}$$

$$z_{5} = x_{5}(x'_{4} + x'_{3} + r_{210}) + x'_{5}a_{43}a_{210}$$

$$z_{4} = x_{4}(x'_{3} + r_{210}) + x'_{4}x_{3}a_{210}$$

$$z_{3} = x_{3}r_{210} + x'_{3}a_{210}$$

$$z_{2} = x_{2}(x'_{1} + x'_{0}) + x'_{2}x_{1}x_{0}$$

$$z_{1} = x_{1}x'_{0} + x'_{1}x_{0}$$

$$z_{0} = x'_{0}$$

MORE GATES AND MORE LEVELS:
 6 NOT, 18 NAND, 3 NOR, size: 31 equivalent gates

Introduction to Digital Systems

Figure 6.4: REDUCING THE NUMBER OF GATE INPUTS

 $z_i = w \ x \ y_i \qquad 0 \le i \le 63$

17

- OUTPUT LOAD OF NAND PRODUCING $w \cdot x$: 64*I* (*I* is load factor of NOR gate)
- PROPAGATION DELAY (high to low) between x and z_i (load 5 at output):

 $(0.05 + 0.038 \times 64) + (0.07 + 0.016 \times 5) = 2.63ns$

• USE BUFFERS

Gate	Fan-	Propagati	Input factor	Size	
type	in	t_{pLH}	t_{pHL}	[Standard	[equiv.
		[ns]	[ns]	loads]	[gates]
Buffer	1	0.15 + 0.006L	0.19 + 0.003L	2	4
Inv. Buf.	1	0.04 + 0.006L	0.05 + 0.006L	4.7	3

• DELAY:

 $(0.05 + 0.038 \times 4) + (0.15 + 0.006 \times 32) + (0.07 + 0.016 \times 5) = 0.69ns$

INPUT:
$$\underline{x} = (x_7, x_6, \dots, x_0), \quad x_i \in \{0, 1\}$$

OUTPUT: $z \in \{0, 1\}$
FUNCTION: $z = \begin{cases} 1 \text{ if } \Sigma_{i=0}^7 x_i \text{ is even} \\ 0 \text{ otherwise} \end{cases}$

CSP: 128 MINTERMS – NO REDUCTION POSSIBLE

COST: 128 AND gates and one OR gate

EACH AND GATE 8 INPUTS, OR GATE 128 INPUTS

NOT PRACTICAL: large number of gates, large fan-in

$$P(\underline{x}) = P(\underline{x}_l)P(\underline{x}_r) + P'(\underline{x}_l)P'(\underline{x}_r)$$

Figure 6.6: NETWORK WITH FAN-IN=4

SUMMARY OF ALTERNATIVE IMPLEMENTATIONS OF PARITY FUNCTION

Table 6.2: CHARACTERISTICS OF ALTERNATIVE IMPLEMENTATIONS FOR THE PARITY FUNCTION

Impl.	Network	Gates			No.	
	input load	Type	Fan-in	Fan-out	Number	levels
1	64	AND	8	1	128	2
		OR	128	-	1	
2	4	AND	4	1	16	6
		OR	4	1	4	
		OR	2	1	3	
		AND	2	1	2	
		NOT	1	1	2	

22

EXAMPLE 6.6: 8-INPUT ODD-PARITY CHECKER

INPUT:
$$\underline{x} = (x_7, \dots, x_0), x_i \in \{0, 1\}$$

OUTPUT: $z \in \{0, 1\}$

FUNCTION: $z = \begin{cases} 0 & \text{if number of } 1'\text{s in } \underline{x} \text{ is even} \\ 1 & \text{if number of } 1'\text{s in } \underline{x} \text{ is odd} \end{cases}$

Figure 6.7: ODD-PARITY CHECKER

 $z = x_7 \oplus x_6 \oplus x_5 \oplus x_4 \oplus x_3 \oplus x_2 \oplus x_1 \oplus x_0$

Introduction to Digital Systems

6 – Design of Multi-Level Gate Networks

INPUT:
$$\underline{x} = (x_{31}, \dots, x_0), x_i \in \{0, 1\}$$

 $\underline{y} = (y_{31}, \dots, y_0), y_i \in \{0, 1\}$
OUTPUT: $z \in \{0, 1\}$

FUNCTION:
$$z = \begin{cases} 1 & \text{if } x_i = y_i & \text{for } 0 \le i \le 31 \\ 0 & \text{otherwise} \end{cases}$$

 $z = AND(XNOR(x_{31}, y_{31}), \dots, XNOR(x_i, y_i), \dots, XNOR(x_0, y_0))$

Figure 6.8: 32-BIT EQUALITY COMPARATOR

- 2-INPUT multiplexer (MUX): $z = MUX[x_1, x_0, s] = x_1 \cdot s + x_0 s'$
- SET {MUX } IS UNIVERSAL (constants 0 and 1 available)

$$NOT(x) = MUX[0, 1, x] = 0 \cdot x + 1 \cdot x' = x'$$

$$AND(x_1, x_0) = MUX[x_1, 0, x_0] = x_1x_0 + 0 \cdot x'_0 = x_1x_0$$

Figure 6.9: 2-INPUT MULTIPLEXER AND NOT and AND GATES

• SHANNON'S DECOMPOSITION (SD)

$$f(x_{n-1}, x_{n-2}, \dots, x_0) = f(x_{n-1}, x_{n-2}, \dots, 1) \cdot x_0$$

+ $f(x_{n-1}, x_{n-2}, \dots, 0) \cdot x'_0$

$$z = f(x_{n-1}, x_{n-2}, \dots, x_0)$$

= $MUX[f(x_{n-1}, x_{n-2}, \dots, x_1, 1), f(x_{n-1}, x_{n-2}, \dots, x_1, 0), x_0]$

EXAMPLE:

$$z = x_3(x_2 + x_0)x_1 = MUX[x_3x_1, x_3x_2x_1, x_0]$$

• OBTAIN A TREE OF MULTIPLEXERS BY REPEATED USE OF SD

Figure 6.10: a) REALIZATION OF SHANNON'S DECOMPOSITION WITH MULTIPLEXER; b) REPEATED DECOMPOSITION.

- IMPLEMENT $f(x_3, x_2, x_1, x_0) = z = x_3(x_1 + x_2x_0)$ WITH MUX TREE
 - DECOMPOSE WITH RESPECT TO x_2, x_1, x_0

$$f(x_3, 0, 0, 0) = 0 \quad f(x_3, 0, 0, 1) = 0$$

$$f_{(x_3, 0, 1, 0)} = x_3 \quad f(x_3, 0, 1, 1) = x_3$$

$$f_{(x_3, 1, 0, 0)} = 0 \quad f(x_3, 1, 0, 1) = x_3$$

$$f_{(x_3, 1, 1, 0)} = x_3 \quad f(x_3, 1, 1, 1) = x_3$$

• ELIMINATE REDUNDANT MUXes

ORDERING OF VARIABLES IN SUBTREES AFFECTS THE NUMBER OF $^{\rm 30}$ MUXes

Figure 6.11: