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DESIGN OF GATE NETWORKS

• DESIGN OF TWO-LEVEL NETWORKS:
and-or and or-and NETWORKS

• MINIMAL TWO-LEVEL NETWORKS
KARNAUGH MAPS
MINIMIZATION PROCEDURE AND TOOLS
LIMITATIONS OF TWO-LEVEL NETWORKS

• DESIGN OF TWO-LEVEL nand-nand and nor-nor NETWORKS

• PROGRAMMABLE LOGIC: plas and pals.
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DESIGN OF TWO-LEVEL NETWORKS

IMPLEMENTATION:

Level 1 (optional) not GATES

Level 2 and GATES

Level 3 or GATES

LITERALS
(uncomplemented and complemented variables)

not GATES (IF NEEDED)

PRODUCTS: and gates

SUM: or gate

MULTIOUTPUT NETWORKS: ONE or GATE USED FOR EACH
OUTPUT

PRODUCT OF SUMS NETWORKS - SIMILAR
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MODULO-64 INCREMENTER

Input: 0 ≤ x ≤ 63
Output: 0 ≤ z ≤ 63
Function: z = (x + 1) mod 64

x 010101
z 010110

x 001111
z 010000

• RADIX-2 REPRESENTATION

zi =































1 if (xi = 1 and there exists j < i such that xj = 0)
or (xi = 0 and xj = 1 for all j < i)

0 otherwise

z5 = x5(x
′
4 x′3 x′2 x′1 x′0) x′5x4x3x2x1x0

= x5x
′
4 x5x

′
3 x5x

′
2 x5x

′
1 x5x

′
0 x′5x4x3x2x1x0

z4 = x4x
′
3 x4x

′
2 x4x

′
1 x4x

′
0 x′4x3x2x1x0

z3 = x3x
′
2 x3x

′
1 x3x

′
0 x′3x2x1x0

z2 = x2x
′
1 x2x

′
0 x′2x1x0

z1 = x1x
′
0 x′1x0

z0 = x′0
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Figure 5.1: not-and-or MODULO-64 INCREMENTER NETWORK.
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UNCOMPLEMENTED AND COMPLEMENTED INPUTS AVAILABLE

• TWO TYPES OF TWO-LEVEL NETWORKS:

and-or NETWORK⇔ SUM OF PRODUCTS (nand-nand NETWORK)

or-and NETWORK⇔ PRODUCT OF SUMS (nor-nor NETWORK)

z

(a)

x0

x2

x1

x’1
x’2

x1

x’0

x’2
x1

x1

x’0
x2x’1
x0

z

(b)

Figure 5.2: and-or and or-and NETWORKS.

E(x2, x1, x0) = x′2x
′
1x0 x2x1 x1x

′
0

E(x2, x1, x0) = (x′2 x1)(x1 x′0)(x2 x′1 x0)
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MINIMAL TWO-LEVEL NETWORKS

1. INPUTS: UNCOMPLEMENTED AND COMPLEMENTED

2. FANIN UNLIMITED

3. SINGLE-OUTPUT NETWORKS

4. MINIMAL NETWORK:

MINIMUM NUMBER OF GATES WITH MINIMUM NUMBER OF INPUTS

(minimal expression: min. number of terms with min. number of literals)
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NETWORKS WITH DIFFERENT COST

z

Network A

x’0
x1

x2

x2

x0 z
x0

x’2

x0

x1

x2

x1
x1

Network B

Figure 5.3: NETWORKS WITH DIFFERENT COST TO IMPLEMENT f(x2, x1, x0) =one-set(3,6,7).
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MINIMAL EXPRESSIONS

• EQUIVALENT BUT DIFFERENT COST

E1(x2, x1, x0) = x′2x1x
′
0 x′1x0 x2x0

E2(x2, x1, x0) = x2x1x0 x′2x1x
′
0 x′2x

′
1x0 x2x

′
1x0

• BOTH MINIMAL SP AND PS MUST BE OBTAINED AND COMPARED

• BASIS:

ab ab′ = a (for sum of products)

(a b)(a b′) = a (for product of sums)
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GRAPHICAL REPRESENTATION OF SWITCHING FUNCTIONS: kARNAUGH

MAPS

• 2-DIMENSIONAL ARRAY OF CELLS

• n VARIABLES −→ 2n CELLS

• cell i ←→ ASSIGNMENT i

ADJACENCY CONDITION

ANY SET OF 2r ADJACENT ROWS (COLUMNS):

ASSIGNMENTS DIFFER IN r VARIABLES

• REPRESENTING SWITCHING FUNCTIONS

• REPRESENTING SWITCHING EXPRESSIONS

• GRAPHICAL AID IN SIMPLIFYING EXPRESSIONS
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Figure 5.4: K-Maps
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Figure 5.5: K-map FOR FIVE VARIABLES
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REPRESENTATION OF SWITCHING FUNCTIONS

f (x2, x1, x0) = one-set(0,2,6) x2

x1

x0

1 0 0 1
0 0 0 1

f (x3, x2, x1, x0) = zero-set(1,3,4,6,10,11,13)
x3

x2

x1

x0

1 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0

f (x2, x1, x0) = [one-set(0,4,5), dc-set(2,3)] x2

x1

x0

1 0 – –
1 1 0 0
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RECTANGLES OF 1-CELLS AND SUM OF PRODUCTS

1. MINTERM mj CORRESPONDS TO 1-CELL WITH LABEL j.

2. PRODUCT TERM OF n− 1 LITERALS ←→ RECTANGLE OF TWO AD-
JACENT 1-CELLS

x3x
′
1x0 = x3x

′
1x0(x2 x′2)

= x3x2x
′
1x0 x3x

′
2x
′
1x0

= m13 m9

x3

x2

x1

x0

1
1

�




�

	

�
��

x3x
′
1x0

9

13

Figure 5.6
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RECTANGLES OF 1-CELLS AND SUM OF PRODUCTS (cont.)

3. PRODUCT TERM OF n− 2 LITERALS ←→ RECTANGLE OF FOUR
ADJACENT 1-CELLS

x3x0 = x3x0(x1 x′1)(x2 x′2)

= x3x
′
2x
′
1x0 x3x

′
2x1x0 x3x2x

′
1x0 x3x2x1x0

= m9 m11 m13 m15

x3

x2

x1

x0

1 1
1 1

�



 	

�

	

� �

� x3x09 11

13 15

Figure 5.6

4. PRODUCT TERM OF n− s LITERALS ←→ RECTANGLE OF 2s

ADJACENT 1-CELLS
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Figure 5.7: Representation of product of n− (a + b) variables.
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Figure 5.8: Product terms and rectangles of 1-cells.
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SUM OF PRODUCTS

represented in a K-map by the union of rectangles

E(x3, x2, x1, x0) = x′3x2x1 x′2x1x0 x′0

x3

x2

x1

x0

1 0 1 1
1 0 1 1
1 0 0 1
1 0 1 1

�



�
	

�

	

�



� �

� �

E(a, b, c) = ab ac b′c′

a

b

c

1 0 0 0
1 1 1 1

�




�

	
�



�
	

�



�
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RECTANGLES OF 0-CELLS AND PRODUCT OF SUMS

0-cell 13 CORRESPONDS TO THE MAXTERM

M13 = x′3 x′2 x1 x′0

RECTANGLE OF 2a× 2b 0-cells←→ SUM TERM OF n− (a + b) LITERALS
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MINIMIZATION OF SUMS OF PRODUCTS

IMPLICANT: PRODUCT TERM FOR WHICH f=1

x3

x2

x1

x0

1

1 1 1 1
1 1 1 1
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-D

Figure 5.9: Implicant representation.

IMPLICANTS: x′3x
′
2x
′
1x0, ALL PRODUCT TERMS WITH x3

PRIME iMPLICANT: IMPLICANT NOT COVERED BY ANOTHER
IMPLICANT

PRIME IMPLICANTS: x′2x
′
1x0, x3
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FIND ALL PIs

a) f (x2, x1, x0) = one-set(2,4,6)

x2

x1

x0

0 0 0 1
1 0 0 1

�




�

	
�
�

�
�

PIs: x2x
′
0 and x1x

′
0

b) f (x2, x1, x0) = one-set(0,1,5,7)

x2

x1

x0

1 1 0 0
0 1 1 0

�




�

	
�



�
	

�



�
	 PIs: x′2x

′
1, x2x0, and x′1x0
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c) f (x3, x2, x1, x0) = one-set(0,3,5,7,11,12,13,15)

x3

x2

x1

x0

1 0 1 0
0 1 1 0
1 1 1 0
0 0 1 0

i
�




�

	

�



�
	

�



 	

�

	

� �

PIs: x2x0, x1x0, x3x2x
′
1, and x′3x

′
2x
′
1x
′
0
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MINIMAL SUM OF PRODUCTS CONSISTS OF PRIME IMPLICANTS
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Figure 5.10: MINIMAL SUM OF PRODUCTS AND PRIME IMPLICANTS.

Introduction to Digital Systems 5 – Design of Two-Level Gate Networks



22
Example 5.9

E(x2, x1, x0) = x2x
′
1x
′
0 x2x1x

′
0 x1x

′
0

x2

x1

x0

0 0 0 1
1 0 0 1i i

�




�

	
�
�

�
�

@
@R

x2x
′
1x
′
0

� x2x1x
′
0

� x1x
′
0

6
x2x

′
0

not PIs: x2x
′
1x
′
0 and x2x1x

′
0

PI: x2x
′
0, x1x

′
0

REDUCED SP: E(x2, x1, x0) = x2x
′
0 x1x

′
0

Introduction to Digital Systems 5 – Design of Two-Level Gate Networks



23

ESSENTIAL PRIME IMPLICANTS (EPI)

pe(a) = 1 and p(a) = 0 FOR ANY OTHER PI p

x2

x1

x0

1 1
1 1 1

�




�

	

�




�

	
�



�
	

�
�

�
�

EPIs: x′1x
′
0 and x1x0

NON-ESSENTIAL: x2x1, x2x
′
0.

• ALL EPIs ARE INCLUDED IN A MINIMAL SP
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PROCEDURE FOR FINDING MIN SP

1. DETERMINE ALL PIs

2. OBTAIN THE EPIs

3. IF NOT ALL 1-CELLS COVERED, CHOOSE A COVER FROM THE RE-
MAINING PIs

Introduction to Digital Systems 5 – Design of Two-Level Gate Networks
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EXAMPLE 5.10

FIND A MINIMAL SP:

a) E(x3, x2, x1, x0) = x′3x
′
2 x′3x2x0 x1x0

x3

x2

x1

x0

1 1 1 1
1 1

1
1

�




�

	

�



 	

�

	

� ��



�
	

• PIs: x′3x
′
2, x′3x0, and x1x0

• ALL EPIs

• UNIQUE MIN SP: x′3x
′
2 x′3x0 x1x0
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b) E(x2, x1, x0) = ∑

m(0, 3, 4, 6, 7)

x2

x1

x0

1 1
1 1 1

�




�

	

�




�

	
�



�
	

�
�

�
�

• PIs: x′1x
′
0, x1x0, x2x

′
0, and x2x1

• EPIs: x′1x
′
0 and x1x0

• EXTRA COVER: x2x
′
0 or x2x1

• TWO MIN SPs:

x′1x
′
0 x1x0 x2x

′
0 and x′1x

′
0 x1x0 x2x1
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c) E(x2, x1, x0) = ∑

m(0, 1, 2, 5, 6, 7)

x2

x1

x0

1 1 1
1 1 1

�




�

	

�




�

	

�



�
	�



�
	

�



�
	

�
�

�
�

• PIs: x′2x
′
1, x′2x

′
0, x2x0, x2x1, x′1x0, and x1x

′
0

• No EPIs

• TWO MIN SPs

x′2x
′
1 x2x0 x1x

′
0 and x′2x

′
0 x′1x0 x2x1
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MINIMAL SPs FOR INCOMPLETELY SPECIFIED FUNCTIONS

x3

x2

x1

x0

1 1 1 0
0 - 1 0
1 - 0 -
1 0 - -

�



�
	

�



 	

�

	

� �

�

	

�




A minimal SP

E(x3, x2, x1, x0) = x3x
′
0 x′3x0 x′3x

′
2x
′
1
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MINIMIZATION OF PRODUCTS OF SUMS

IMPLICATE: SUM TERM FOR WHICH f = 0.

PRIME IMPLICATE: IMPLICATE NOT COVERED BY ANOTHER IM-
PLICATE

ESSENTIAL PRIME IMPLICATE: AT LEAST ONE ”CELL” NOT IN-
CLUDED IN OTHER IMPLICATE

f (x3, x2, x1, x0) = zero-set(7,13,15)

x3

x2

x1

x0

1 1 1 1
1 1 0 1
1 0 0 1
1 1 1 1

�




�

	
�



�
	

THE PRIME IMPLICATES: (x′3 x′2 x′0) and (x′2 x′1 x′0)

BOTH ESSENTIAL
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PROCEDURE FOR FINDING MIN PS

1. DETERMINE ALL PRIME IMPLICATES

2. DETERMINE THE ESSENTIAL PRIME IMPLICATES

3. FROM SET OF NONESSENTIAL PRIME IMPLICATES, SELECT COVER
OF REMAINING 0-CELLS

x3

x2

x1

x0

1 1 1 0
1 0 0 1
1 0 0 1
1 1 1 -

�



 	

�

	

� �

� �

� �

• THE PRIME IMPLICATES: (x′0 x′2) and (x0 x2 x′1)

• BOTH ESSENTIAL, THE MINIMAL PS IS (x′0 x′2)(x0 x2 x′1)
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MINIMAL TWO-LEVEL GATE NETWORK DESIGN: EXAMPLE 5.14

Input: x ∈ {0, 1, 2, ..., 9}, coded in BCD as
x = (x3, x2, x1, x0), xi ∈ {0, 1}

Output: z ∈ {0, 1}

Function: z =















1 if x ∈ {0, 2, 3, 5, 8}
0 otherwise

THE VALUES {10,11,12,13,14,15} ARE “DON’T CARES”

x3

x2

x1

x0

1 0 1 1
0 1 0 0
– – – –
1 0 – –

�




�

	
�

�

�

�

� �


 	

MIN SP: z = x′2x1 x′2x
′
0 x2x

′
1x0

MIN PS: z = (x′2 x′1)(x
′
2 x0)(x2 x1 x′0)
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z

x0

x’1
x2

x1

x’2

x’0

x’2

Figure 5.11: MINIMAL and-or NETWORK
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EXAMPLE 5.15

Input: x ∈ {0, 1, 2, ..., 15}
represented in binary code by x = (x3, x2, x1, x0)

Output: z ∈ {0, 1}

Function: z =















1 if x ∈ {0, 1, 3, 5, 7, 11, 12, 13, 14}
0 otherwise

THE K-MAP:

x3

x2

x1

x0

1 1 1 0
0 1 1 0
1 1 0 1
0 0 1 0

�



 	

�

	

� ��



�
	�




�

	
�
�

�
�

� �

� �

min SP: z = x′3x0 x′3x
′
2x
′
1 x2x

′
1x0 x3x2x

′
0 x′2x1x0

min PS: z = (x′3 x2 x1)(x3 x′2 x0)(x2 x′1 x0)(x
′
3 x′2 x′1 x′0)

COST(PS) < COST(SP)
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z

x’3
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x’2

x2
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x’1

x’3
x’2
x’1
x’0

Figure 5.12: MINIMAL or-and NETWORK
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DESIGN OF MULTIPLE-OUTPUT TWO-LEVEL GATE NETWORKS

• SEPARATE NETWORK FOR EACH OUTPUT: NO SHARING
EXAMPLE 5.16

Inputs: (x2, x1, x0), xi ∈ {0, 1}
Output: z ∈ {0, 1, 2, 3}
Function: z = ∑2

i=0 xi

1. THE SWITCHING FUNCTIONS IN TABULAR FORM ARE

x2 x1 x0 z1 z0

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
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EXAMPLE 5.16 (cont.)

2. THE CORRESPONDING K-MAPS ARE
z1

x2

x1

x0

0 0 1 0
0 1 1 1

z0

x2

x1

x0

0 1 0 1
1 0 1 0

3. MINIMAL SPs:

z1 = x2x1 x2x0 x1x0

z0 = x′2x
′
1x0 x′2x1x

′
0 x2x

′
1x
′
0 x2x1x0

4. MINIMAL PSs:

z1 = (x2 x0)(x2 x1)(x1 x0)

z0 = (x2 x1 x0)(x2 x′1 x′0)

(x′2 x1 x′0)(x
′
2 x′1 x0)

5. SP AND PS EXPRESSIONS HAVE THE SAME COST
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z 1
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Figure 5.13: MINIMAL TWO-OUTPUT and-or NETWORK
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TWO-LEVEL NAND-NAND AND NOR-NOR NETWORKS

E = p1 p2 p3 . . . pn

p1, p2, . . . ARE PRODUCT TERMS

E = (p′1 · p
′
2 · p

′
3 . . . p′n)

′

or

E = NAND(NAND1, NAND2, NAND3, . . . , NANDn)

Introduction to Digital Systems 5 – Design of Two-Level Gate Networks



39

x5
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x1 x0

x2

x7
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x’7

(a) (b)

Figure 5.15: TRANSFORMATION OF and-or NETWORK INTO nand NETWORK

Introduction to Digital Systems 5 – Design of Two-Level Gate Networks



40
EXAMPLE: NOR NETWORK

z = x′5(x4 x′3)(x2 x1 x0)

x’3

x4

x0

x2

z

x1

x5

x’3

x4

x0

x2

z

x1

x’5

(a) (b)

Figure 5.16: EQUIVALENT or-and AND nor NETWORKS
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LIMITATIONS OF TWO-LEVEL NETWORKS

1. THE REQUIREMENT OF UNCOMPLEMENTED AND COMPLEMENTED
INPUTS

IF NOT SATISFIED, AN ADDITIONAL LEVEL OF not GATES NEEDED

2. A TWO-LEVEL IMPLEMENTATION OF A FUNCTION MIGHT REQUIRE
A LARGE NUMBER OF GATES AND IRREGULAR CONNECTIONS

3. EXISTING TECHNOLOGIES HAVE LIMITATIONS IN THE FAN-IN OF THE
GATES

4. THE PROCEDURE ESSENTIALLY LIMITED TO THE SINGLE-OUTPUT
CASE

5. THE COST CRITERION OF MINIMIZING THE NUMBER OF GATES IS
NOT ADEQUATE FOR MANY msi/lsi/vlsi DESIGNS
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PROGRAMMABLE mODULES: PLAs and PALs

• STANDARD (FIXED) STRUCTURE

• CUSTOMIZED (PROGRAMMED) FOR A PARTICULAR FUNCTION

– DURING THE LAST STAGE OF FABRICATION

– WHEN INCORPORATED INTO A SYSTEM

• FLEXIBLE USE

• MORE EXPENSIVE AND SLOWER THAN FIXED-FUNCTION MODULES

• OTHER TYPES DISCUSSED IN Chapter 12

Introduction to Digital Systems 5 – Design of Two-Level Gate Networks



43

A
N

D
  A

rr
ay

O
R

 A
rr

ay

--
   

pr
og

ra
m

m
ab

le
 c

on
ne

ct
io

n

x
0

x
1

x
n-

1

z
0

z
1

z
k-

1

1
2

k

1 2 3 r

--
   

co
nn

ec
tio

n 
m

ad
eProgrammable array of 

AND gates

Programmable array of 
OR gates

In
pu

ts

P
ro

du
ct

 te
rm

s

O
ut

pu
ts

(a
)

(b
)

(e
na

bl
e)

th
re

e-
st

at
e 

bu
ffe

rs

E

E
n

E

Figure 5.17: PROGRAMMABLE LOGIC ARRAY (pla): a) BLOCK DIAGRAM; b) LOGIC DIAGRAM.
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mos pla (or-and VERSION)

Gnd
Gnd Gnd Gnd Gnd

Vdd

Vdd

Gnd

Gnd

a a’ b b’ c c’

w = ((a + c)’ + (b + c’)’)’ = (a + b)(b + c’)

OR Array
(NOR Array)

(a + c)’

(b + c’)’

(a + b)’

z = ((a + b)’+ c’)’ = (a + b) c

c’

w z

E

pull-up
devices

pull-up
devices

AND Array

(NOR Array)

Figure 5.18: EXAMPLE OF pla IMPLEMENTATION AT THE CIRCUIT LEVEL: FRAGMENT OF A mos pla.
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IMPLEMENTATION OF SWITCHING FUNCTIONS USING plas

A BCD-to-Gray CONVERTER

Inputs: d = (d3, d2, d1, d0), dj ∈ {0, 1}
Outputs: g = (g3, g2, g1, g0), gj ∈ {0, 1}

Function:
i d3d2d1d0 g3g2g1g0

0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101

EXPRESSIONS:

g3 = d3

g2 = d3 d2

g1 = d′2d1 d2d
′
1

g0 = d1d
′
0 d′1d0
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AND  Array

OR Array

--   programmable connection
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Note: a PLA chip  would have more rows and columns
then shown here

Figure 5.19: PLA IMPLEMENTATION OF BCD-Gray CODE CONVERTER.
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PAL : A PROGRAMMABLE MODULE WITH FIXED or ARRAY

• FASTER, MORE INPUTS AND PRODUCT TERMS COMPARED TO
PLAs

AND  Array

--   programmable connection
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three-state
 buffers
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1 z
0

Figure 5.20: LOGIC DIAGRAM OF A PAL
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Figure 5.21: 16-INPUT, 8-OUTPUT pal(P16H8)
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