
8

Relational Languages and Data Models for Continuous Queries
on Sequences and Data Streams

YAN-NEI LAW, Bioinformatics Institute, Singapore
HAIXUN WANG, Microsoft Research Asia, China
CARLO ZANIOLO, University of California Los Angeles

Most data stream management systems are based on extensions of the relational data model and query
languages, but rigorous analyses of the problems and limitations of this approach, and how to overcome
them, are still wanting. In this article, we elucidate the interaction between stream-oriented extensions
of the relational model and continuous query language constructs, and show that the resulting expressive
power problems are even more serious for data streams than for databases. In particular, we study the loss
of expressive power caused by the loss of blocking query operators, and characterize nonblocking queries as
monotonic functions on the database. Thus we introduce the notion of N B-completeness to assure that a
query language is as suitable for continuous queries as it is for traditional database queries. We show that
neither RA nor SQL are N B-complete on unordered sets of tuples, and the problem is even more serious when
the data model is extended to support order—a sine-qua-non in data stream applications. The new limitations
of SQL, compounded with well-known problems in applications such as sequence queries and data mining,
motivate our proposal of extending the language with user-defined aggregates (UDAs). These can be natively
coded in SQL, according to simple syntactic rules that set nonblocking aggregates apart from blocking ones.
We first prove that SQL with UDAs is Turing complete. We then prove that SQL with monotonic UDAs and
union operators can express all monotonic set functions computable by a Turing machine (N B-completeness)
and finally extend this result to queries on sequences ordered by their timestamps. The proposed approach
supports data stream models that are more sophisticated than append-only relations, along with data mining
queries, and other complex applications.

Categories and Subject Descriptors: H.2.1 [Database Management]: Languages—Query languages; H.2.3
[Database Management]: Logical Design—Data models

General Terms: Design, Theory

Additional Key Words and Phrases: Data streams, queries, expressivity

ACM Reference Format:
Law, Y.-N., Wang, H., and Zaniolo, C. 2011. Relational languages and data models for continuous queries on
sequences and data streams. ACM Trans. Datab. Syst. 36, 2, Article 8 (May 2011), 32 pages.
DOI = 10.1145/1966385.1966386 http://doi.acm.org/10.1145/1966385.1966386

1. INTRODUCTION

Data stream management systems represent a vibrant area of research [Babcock et al.
2002; Barbara 1999; Terry et al. 1992; Chandrasekaran and Franklin 2002; Cranor

This work was supported in part by the National Science Foundation, under grant IIS-0917333 and in part
by the Biomedical Research Council of A∗STAR, Singapore.
Authors’ addresses: Y.-N. Law, Bioinformatics Institute, 30 Biopolis Street, Singapore 138671; email:
lawyn@bii.a-star.edu.sg; H. Wang, Microsoft Research Asia, 49 Zhichun Road, Beijing 100080, China; email:
haixunw@microsoft.com; C. Zaniolo, Computer Science Department, University of California, Los Angeles,
CA 90095; email: zaniolo@cs.ucla.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 0362-5915/2011/05-ART8 $10.00

DOI 10.1145/1966385.1966386 http://doi.acm.org/10.1145/1966385.1966386

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

8:2 Y.-N. Law et al.

et al. 2002; Madden et al. 2002; Sullivan 1996; Liu et al. 1999; Chen et al. 2000; Carney
et al. 2002; Golab and Özsu 2003a]. The solution approach taken by most projects
consists of extending database query a languages and data models to support efficient
continuous queries on stream data, and is based on the sound rationale that a unified
programming environment will simplify the development of the many applications that
span traditional databases and data streams. Nevertheless, database query languages
and data models were designed for persistent data residing on disks, rather than for
transient data flowing through the wires. Therefore, their suitability to the new task
must be reevaluated critically, and we must be prepared to address the limitations
that impair their effectiveness in this new role. Indeed, such limitations are many and
severe, and SQL’s ineffectiveness in expressing queries on time series and sequences
has been long recognized in the field and inspired much previous research [Seshadri
et al. 1994; Seshadri 1998; Ramakrishnan et al. 1998; Perng and Parker 1999; Sadri
et al. 2001a, 2001b]. Since data streams are basically unbounded sequences, this can
be viewed as a limitation of SQL for continuous queries. Another well-known problem
area for SQL is data mining [Han et al. 1996; Meo et al. 1996; Imielinski and Virmani
1999; Sarawagi et al. 1998].

While these SQL problems hold for both databases and data streams, the problem
that only nonblocking query operators can be used is specific to data streams [Babcock
et al. 2002]. In this article, we show that all and only monotonic queries can be expressed
using nonblocking operators, and then show that neither relational algebra (RA) nor
SQL are complete for nonblocking queries, since they can only express some monotonic
queries by using blocking operators (which must be disallowed on data streams). This
loss of expressive power is further aggravated by the fact that, in traditional databases,
more complex applications are developed by embedding SQL queries in procedural
language programs, whereby computations that cannot be easily expressed in SQL
would therefore be written in the procedural program. As explained in Section 4.4, this
solution loses much of its power in DSMS since these support a push-based computation
model instead of the pull-based computation model of traditional DBMS.1

The compounding of the traditional SQL problems with the new ones suggests that
we need, (1) theoretical models on how the blocking problem limit constructs and ex-
pressive power of continuous query languages, and (2) practical language extensions
to overcome these limitations. Thus in Law et al. [2004], a formal model was proposed
that characterizes the expressive power of a continuous query language in terms of
its ability to compute monotonic functions, and allowed to derive, (1) an incomplete-
ness result for traditional relational algebra, and (2) a completeness result for SQL
extended with user-defined aggregates (UDAs) natively defined using SQL itself. Thus
the incompleteness result obtained in Law et al. [2004] states that the set of monotonic
operators of relational algebra cannot express all the monotonic queries expressible
in relational algebra, while the completeness result in Law et al. [2004] states that
all the monotonic functions computable by a Turing machine can be expressed using
the monotonic subset of SQL extended with native nonblocking UDAs (whereas, un-
restricted SQL, extended with unrestricted native UDAs can express all computable
queries).

In this article, we provide a formal proof for the incompleteness result stated in Law
et al. [2004], and give the conditions under which the completeness result of Law et al.
[2004] can be generalized from sets of tuples to ordered sequences and streams of tuples.
To achieve this generalization, we introduce the notion of monotonic approximation
and show that monotonic SQL extended with nonblocking native UDAs can express all

1Of course, languages using data-flow-oriented execution models, callbacks, coroutines, etc., could be used
instead of vanilla procedural languages.

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

Relational Languages and Data Models for Continuous Queries 8:3

monotonic functions, modulo delays. In actual DSMS, these delays can be minimized
by punctuation timestamps [Bai et al. 2008]. The original punctuation proposed in
[Tucker et al. 2003a, 2003b] focused on unblocking single streams by exploiting the
logical properties of the data; here instead we use punctuation timestamps to unblock
operators idle-waiting on multiple inputs [Johnson et al. 2005; Bai et al. 2008]. In
Section 8, we discuss the practical benefits of the expressiveness levels achieved by
our operators along with their limitations. Thus, on the one hand, alternative data
stream models and advanced applications can be supported by exploiting the superior
expressiveness of the proposed SQL+UDAs framework; on the other hand, specialized
extensions, such as the recently proposed Kleene-star constructs for searching patterns,
which we briefly discuss in Section 8, provide usability and optimizability benefits
that are not available in our SQL+UDAs framework (but any other Turing-complete
framework is likely to face similar problems).

1.1. Article Organization

The next section presents an overview and discussion of related work. Then in Section
3, we define the notion of nonblocking query operators and show that a function can be
expressed by nonblocking operators if and only if it is monotonic. We prove this result
for a very general data stream model where tuples are not required to have timestamps
and they are simply ordered by their arrivals. In Section 4, we explore the implications
of the “monotonic-only" upon relational query languages, and introduce the formal
notion of N B-completeness to assure that these languages are as suitable on data
streams as they are on stored data. The fact that RA and SQL are not N B-complete
further aggravates their severe expressive power limitations, and convince us that new
constructs are needed to overcome this problem. This is accomplished in Section 5 with
the introduction of user-defined aggregates, which can be easily classified as blocking
and nonblocking on the basis of their syntactic structure. In fact, in Section 6, we show
that SQL with natively defined UDAs becomes Turing complete on DB tables. However,
completeness on data streams requires the introduction of an operator that merges
multiple data streams in a nonblocking way. Therefore, in Section 7, we introduce a
data model whereby tuples are explicitly ordered by their timestamps, and we use this
to define the notion of τ -union, which is equivalent to standard set union, modulo the
delay due to the timestamp skew between the two streams. In Section 8, we discuss
the power and generality of the proposed solution, and show that complex applications
and even semantically richer data stream models can be emulated using append-only
relations and UDAs. Section 9 concludes the article.

2. RELATED WORK

Rather than trying to cover the large body of interesting previous work on data streams,
including Babcock et al. [2002]; Barbara [1999]; Terry et al. [1992]; Chandrasekaran
and Franklin [2002]; Cranor et al. [2002]; Madden et al. [2002]; Sullivan [1996]; Liu
et al. [1999]; Chen et al. [2000]; Carney et al. [2002]; we will refer our reader to two
previous surveys Babcock et al. [2002] and Golab and Özsu [2003a], and just focus on
papers covering blocking operators, data model, query power, and other issues that are
directly relevant to this article’s discussion.

The Tapestry project was the first to model data streams as append-only databases
supporting continuous queries [Terry et al. 1992]. The problem of blocking operators
was also identified in Terry et al. [1992], where strategies were suggested for over-
coming this problem for monotonic queries. Indeed the close relationship between
monotonicity and nonblocking queries has been understood for a long time; however
as far as we know, there has been no previous attempt to prove or formalize this re-
lationship. For instance, two excellent survey papers Babcock et al. [2002] and Golab

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

8:4 Y.-N. Law et al.

and Özsu [2003a] clearly note the relationship, but make no statement to the fact that
queries expressible by nonblocking operators are exactly the monotonic queries—more
remarkably this property is not even mentioned as a folk theorem, or a formal conjec-
ture. For instance, there is no formal characterization of blocking operators in Tucker
et al. [2003a], where punctuated data streams are proposed to overcome the problems
caused by such operators. In Tucker et al. [2003a], the data stream is modelled as an
unbounded sequence of finite lists of elements. Then the punctuation marks proposed
in Tucker et al. [2003a] can be viewed as predicates on stream elements that must eval-
uate to false for every element following the punctuation. Note that a punctuation is an
ordered set of patterns that indicates what should be output and stored for future uses
and when it should be output. Then a stream iterator is proposed that visits the input
incrementally, outputting the results as another punctuated stream and storing the
state, based on the punctuation of the input elements. To achieve this, a unary stream
iterator is defined as five components (inital state, step, pass, prop, and keep),
where inital state is the iterator state before any tuple arrives, step is a function
that takes new tuples and a current state and output new tuples and a modified state
and pass, prop, and keep are three behavior functions that take punctuation marks
and state as input and return additional output tuples, output punctuation, and a mod-
ified state. Clearly, the structure of unary stream iterators is similar to user-defined
aggregates (UDAs), which are very versatile and can also deal with punctuation. UDAs
defined in procedural languages, are also supported in the DSMS Aurora [Carney et al.
2002], where they can be used for more complex queries that are hard to express using
Aurora’s algebra, which consists of the following operators delivered to users through
an attractive UI: Filter, Map, Union, Bsort, Aggregate, Join, Resample [Carney et al.
2002]. In this article, we model data streams as append-only bags of ordered tuples
(unbounded sequences); this is the basic data model adopted by many successful DSMS
[Cranor et al. 2002; Thakkar et al. 2011].

An assortment of semantically richer models have also been proposed in the liter-
ature, starting with CQL [Arasu et al. 2003; Motwani et al. 2003], which engrafts
windows onto this basic representation, and introduces concepts such as Istream, and
Dstream to describe the tuples joining and leaving the window. Theoretical treatments
of these richer data stream models have elucidated their temporal aspects [Krämer
and Seeger 2005] and the relational algebra extensions needed to support them [Golab
and Özsu 2005]. In particular, the model proposed in Krämer and Seeger [2005, 2009]
preserves the ability of expressing arbitrary relational algebra queries on multisets,
including nonmonotonic ones, by assuming that a validity lifespan is associated with
each tuple. In fact, this assumption avoids a blocking behavior at the cost of possi-
bly severe delays [Krämer and Seeger 2009]; similar observations can be made about
the recently proposed Linq query language of StreamInsight [Krishnan and Goldstein
2010].

The approach presented in this article instead retains the Spartan simplicity of
append-only relations, and after a rigorous analysis of the problems encountered on
data streams by relational query languages, proposes a powerful and general solution
to these problems based on UDAs.

This article’s treatment of expressive power issues benefits from a successful line of
database research that led to important theoretical findings [Abiteboul et al. 1995] and
major practical advances, such as the inclusion of recursive queries and their enabling
technology in DBMS [Zaniolo et al. 1997; ISO/IEC 2003]. While database-like query
languages for DSMS have attracted much interest from database researchers, their
focus has been mostly on implementation, and critical issues about expressive power
have, in general, received surprisingly little attention. For instance, after proposing an
abstract calculus for stream processing languages in Soulé et al. [2010], the authors

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

Relational Languages and Data Models for Continuous Queries 8:5

mainly focus on the efficient mapping of this calculus into alternative implementations.
Two exceptions to this trend are the work by Law et al. [2004] mentioned in the in-
troduction, and the work by Gurevich et al. [2007] discussed next. The work discussed
in Gurevich et al. [2007] uses bounded memory machines with the intent of providing
a formal framework where the relationships between computability, continuity, and
monotonicity can be easily explored. Using this framework, the authors prove that a
query Q is computable by a nonblocking operator if and only if Q is monotonic (the
result first presented in Law et al. [2004]). Then they discuss a monotonic version of
set-intersection for sorted data streams, but they do not discuss the monotonicity issue
for the union of multiple streams, that is central to this article, where we also show
that the issue of expressive power is critical for continuous query languages. Indeed,
in the past, expressiveness proved to be a major challenge for database query lan-
guages [Abiteboul et al. 1995], and as discussed in Section 4.4, it represents an even
greater challenge for data stream query languages since, (1) blocking query operators
are disallowed, (2) push-based queries cannot be easily embedded in a pull-based pro-
cedural language, and (3) nonblocking operators of relational algebra cannot express
all monotonic queries expressible in relational algebra. In this article therefore, we
focus on the expressive power problem for continuous query languages, and address
and solve difficult issues that were ignored in Law et al. [2004]. Paramount among
these is the fact that nonunary operators, such as unions and joins, lose their mono-
tonic properties when they are applied to ordered sets and display a partially blocking
behavior [Johnson et al. 2005; Bai et al. 2008]. We deal with this issue in Section 7, by
introducing the notion of monotonic approximation to compensate for skews between
multiple streams. A second key issue addressed, and positively answered in Section 8,
is whether semantically richer data stream models, that were recently proposed in the
literature, are strictly required, or their functionality can instead be attained using the
basic append-only relation model and the richer expressiveness of the continuous query
languages discussed here. We will use an amalgam of formal and informal arguments
to make our points. In particular, in Sections 4.1 and 4.2 we provide the first formal
proof of incompleteness of RA and SQL.

3. NONBLOCKING QUERY OPERATORS

We will next formalize the notion of sequences, which provides a natural data model
for data streams and a simple generalization of database relations. Sequences consist
of ordered tuples, whereas the order is immaterial in relational tables. Streams are
sequences of unbounded length, where the tuples are ordered by, and possibly time-
stamped with, their arrival times. An open problem in this line of research is to find
what generalizations of the relation data model, algebra, and query languages are
needed to deal with sequences and streams [Babcock et al. 2002]. In this section, we
will characterize:
—the blocking/nonblocking properties of operators independent of the language in

which they are expressed; and
—the abstract properties of stream functions expressible by blocking/nonblocking op-

erators.

According to Babcock et al. [2002] “A blocking query operator is a query operator
that is unable to produce the first tuple of the output until it has seen the entire
input.” In an operational reading of this definition, “until it has seen the entire input”
should be taken to mean “until it has detected the end of the input”. For instance, the
traditional aggregates in SQL never produce any tuple until they have seen the last
input tuple: thus these are blocking operators. Since continuous queries must return
answers without waiting for tuples that will arrive in the future, blocking operators

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

8:6 Y.-N. Law et al.

are not suitable for stream processing [Babcock et al. 2002]. Nonblocking operators are
instead suitable for stream processing. We can now define nonblocking operators, as
follows (the opposite of the statement used to define blocking operators): “A nonblocking
query operator is one that produces all the tuples of the output before it has detected
the end of the input.” Here we have discussed operators that are either blocking or
nonblocking; but the case of partially blocking operators is also possible, although
less frequent in practice. For instance, an online average aggregate, which can output
results during the computation and when the end-of-output is detected, is partially
blocking. To characterize the properties of stream operators we will first formalize the
notion of sequences, and computation on sequences.

Definition 3.1. Sequence. Let t1, . . . , tn be tuples from a relation R. Then, the list
S = [t1, . . . , tn] is called a sequence, of length n, of tuples from R. The empty sequence
has length 0 and is denoted by [].
Observe that the tuples t1, . . . , tn in the sequence are not necessarily distinct. We will
use the notation t ∈ S to denote that, for some 1 ≤ i ≤ n, ti = t.

Definition 3.2. Presequence. Let S = [t1, . . . , tn] be a sequence and 0 < k ≤ n. Then,
t1, . . . , tk is the presequence of S of length k, denoted by Sk. [] is the zero-length prese-
quence of S.

Definition 3.3. Partial Order. Let S and L be two sequences. Then, if for some k,
Lk = S we say that S is a presequence of L and write S $ L. If k < n, we say that S is
a proper presequence of L and write S ! L.

Given a relation R, $ is a partial order (reflexive, transitive, and antisymmetric) on se-
quences of tuples from R. We can now consider operators that take sequences (streams)
as input and return sequences (streams) as output. For instance consider an operator
G that takes a sequence S as input and produces a sequence G(S) as output:

S −→ G −→ G(S).

G operates as an incremental transducer, which for each new input tuple in S, adds
zero, one, or several tuples to the output. At step j, G consumes the jth input tuple
and produces any number of tuples as output (as a function of only the tuples seen
so far, since future tuples are still unknown). But rather than focusing on the new
output produced at step j, we will concentrate on the cumulative output produced up
to and including step j. Thus, let Gj(S) be the cumulative output produced up to step
j by our operator G presented with the input sequence S. Gj(S) is a sequence whose
content and length depend on G, j, and S. Consider, for instance, a sequence of length
n: S = Sn. If G is a traditional SQL aggregate, such as SUM or AVG, then Gj(S) is the
empty sequence for j < n, while for j = n, Gj(S) contains a single tuple. However, if
G is the continuous count (continuous sum), defined as follows: for each new tuple, G
returns the count of tuples (sum of a particular column) of the tuples seen so far—that
is of S j , then by definition, Gj(S) $ Gk(S), for j ≤ k—that is the output produced up to
step j is a presequence of that produced up to step k. A null operator N is one where
N(S) = [] for every S. We now have the following definitions.

Definition 3.4. A non-null operator G is said to be

—nonblocking, when for every sequence S and every non-negative integer j ≤ |S|:
Gj(S) = G(S j);

—blocking, when for every sequence S and every positive integer j < |S|: Gj(S) = [].
(Whereas, G|S|(S) = G(S).)

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

Relational Languages and Data Models for Continuous Queries 8:7

Thus, a blocking operator is one that does not deliver any tuple in the output until the
final input tuple. Instead, a nonblocking operator is one that performs the computation
incrementally, that is, the cumulative output at step j < n (for an input sequence S
of length n), can be computed by simply applying G to the presequence S j . Partially
blocking operators are those that do not satisfy either definition—those where, for some
S and j:

[] ! Gj(S) ! G(S j).

We would now like to elevate our abstraction level from that of operators and pro-
grams to that of mathematical functions. We ask the following question. What are
the functions on streams that can be expressed by nonblocking operators? There is a
surprisingly simple answer to this question.

PROPOSITION 3.5. A function F(S) on a sequence S can be computed using a non-
blocking operator, if and only if F is monotonic with respect to the partial ordering
$.

PROOF. To show that nonblocking implies monotonic, consider a sequence S, and its
arbitrary presequence Sk (thus k ≤ n). If G is nonblocking then G(Sk) = Gk(S) and
G(Sn) = Gn(S); but since k ≤ n, Gk(S) $ Gn(S). Vice versa, say that we have a mono-
tonic function F(S) that can be computed by an operator G(S). If G is nonblocking, the
proof is complete. Otherwise, consider the operator H(S) that at step j + 1 returns all
the tuples that are contained in Gj+1(S j+1) but were not in Gj(S j). Obviously H(S) is
non-blocking.

Streams are unbounded sequences; thus only nonblocking operators can be used to
answer queries on streams. We have now discovered that a query Q on a stream S
can be implemented by a nonblocking query operator if and only if Q(S) is monotonic
with respect to $. The traditional aggregate operators (MAX, AVG, etc.) always return a
sequence of length one and they are all nonmonotonic, and therefore blocking. Contin-
uous count and sum are monotonic and nonblocking, and thus suitable for continuous
queries. Other relational query operators that can be used on data streams are selection
and projection. Selection is defined as the function that returns the input tuple if this
satisfies certain conditions. Projection (with or without duplicate elimination) is the
function that returns the input tuple with columns rearranged and removed (but for
projection with duplicate elimination, only if this tuple was not returned previously).
These functions are all monotonic with respect to the presequence partial ordering,
and thus can be freely used on data streams.

To use relational query languages on data streams, however, we will also need to
express RA operators including, union, Cartesian product, joins, set difference, and
relational division—at least to the extent to which these operators are nonblocking.
Surprisingly enough, while the statement“only nonblocking query operators” has been
repeated many times in topical papers and tutorial we still do not have a clear definition
of nonblocking/monotonicity for operators/function with multiple inputs.

3.1. Multiple Inputs

Although they were not considered in Babcock et al. [2002], and discussed only briefly
in Law et al. [2004], operators with multiple inputs are very important and need to be
characterized with respect to their blocking behavior. Here, we will limit our discussion
to binary operators, which are necessary and sufficient for relation algebra queries.

Thus, our binary operator G(S, W) is incrementally fed the two sequences S and
W . Gij(S, W) denotes the cumulative sequence returned by G after it has seen the
first i elements of S and the first j elements of W (after it has seen Si and W j).

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

8:8 Y.-N. Law et al.

If |S| (respectively |W |) denotes the length of S (respectively W), then we have that
G|S||W |(S) = G(S, W) for both blocking and nonblocking functions, however the two
behave quite differently on their presequences.

Definition 3.6. A binary non-null operator G is said to be

—nonblocking, when for every pair of sequences, S and W , and every pair of positive
integers, i ≤ |S| and j ≤ |W |: Gij(S, W) = G(Si, W j).

—blocking, when for every pair of sequences, S and W , and every pair of integers,
i ≤ |S| and j < |W |: Gij(S, W) = [].

For instance, if S and W are two streams of elements, then we can define an operator
match that returns the maximal common presequence of the two—match is obviously a
nonblocking operator. On the other hand, an operator that returns the sorted union of
the two unsorted sequences is blocking (because of the blocking nature of sorting, and
also other problems with union discussed in the following). We can also have operators
(functions) that are blocking (nonmonotonic) on one argument and not, on the other.
For instance, consider a possible extension of set difference to sequences. We define a
function that returns all the elements in S that are not in W blocking on the latter
but nonblocking on the former—as nothing can be returned until the whole W is seen,
but then after that, results can be returned incrementally as new elements of S arrive.
When for every S and W G(S, W) = [], then G is said to be a null operator.

Definition 3.7. A binary non-null operator G will be said to be nonblocking on its
first argument and blocking on its second argument, when for every pair of sequences,
S and W , and every pair of non-negative integers (i, j), i ≤ |S|, j < |W |, the following
two properties hold.

(1) Gij(S, W) = [], and

(2) Gi|W |(S, W) = G(Si, W).

Proposition 3.5 and its proof can be easily extended to binary functions to yield the
following.

PROPOSITION 3.8. A binary function F can be computed by an operator that is non-
blocking with respect to to one or both of its arguments if and only if F is monotonic
with respect to the same argument(s).

3.2. The NonMonotonic Curse of Order

Codd’s relational algebra was designed for sets, that is, collections of tuples where the
order and duplicates are immaterial (as per the commutativity and idempotence prop-
erty, respectively). Thus a function F on sequences is also valid on sets if presented with
two sequences, S1 and S2, that are equivalent modulo commutativity and idempotence.
F(S1) and F(S2) are also equivalent modulo commutativity and idempotence: that is,
S̄1 = S̄2 ⇒ F̄(S1) = F̄(S2), where S̄ (F̄(S)) denote the family of sequences equivalent
to S (F(S)). We are now interested in functions that are valid on both sequences and
sets. Then we have the following proposition.

PROPOSITION 3.9. Let F be a function that is valid on both sequences and sets. Then,
if F is a function on sequences that is monotonic with respect to the presequence partial
order $, then the set function F is monotonic with respect to set containment ⊆.

PROOF. Let S1 and S2 be two sequences where S1 $ S2. Then if S̄1 and S̄2 denote the
sets represented by S1 and S2 we have that S̄1 ⊆ S̄2. Since F is monotonic on sequences,

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

Relational Languages and Data Models for Continuous Queries 8:9

F(S1) $ F(S2); thus F̄(S1) $ F̄(S2). The case of a function with multiple arguments
follows trivially in similar fashion.

Thus, every function that is monotonic with respect to the presequence order is also
monotonic with respect to set containment. The opposite is not true. For instance,
consider the function that when presented with a sequence of numbers returns them
in a sorted order: this function is nonmonotonic on sequences. However, if this is viewed
as a set function, then it becomes an identity transformation, which is monotonic (and
has a trivial nonblocking implementation, along with some blocking ones, such as the
sorting one just described).

In terms of relational algebra, we find that operators such as set difference and
division cannot be used in our continuous queries on data streams since they are non-
monotonic on sets, and thus by Proposition 3.9 also nonmonotonic on sequences. While
this loss was expected, a much more devastating loss is that the union and Carte-
sian product operators that were monotonic on sets have now become nonmonotonic
on sequences. In fact, a function G([a], [b]) to operate as a union, will have to either
return [a, b] or [b, a]. In the first case, we fail the monotonicity test with respect to
G([], [b]) = [b] (since this is not a presequence of [a, b]) and, in the second case, we fail
with respect to G([a], []) = [a]. Similar problems hold for a Cartesian product.

Thus we are now faced with the realization that if we use sequences as our basic
data model, nonmonotonic operators and queries become so dominant that only basic
project/select operations can be expressed as continuous queries. Thus, in the rest of
the article we will seek to correct this situation by introducing query operators and
data models that are conducive to more expressive continuous query constructs. Our
approach will consist of first solving the problem in the traditional framework of Codd’s
relations, which, as we have just seen, is less prone to the nonmonotonicity curse. Then,
after solving the problem for Codd’s relations, in Section 7 we generalize our solution
to data streams ordered by their timestamps.

4. RELATIONS, RA, AND SQL

Codd’s relational model views relations as sets of tuples where the order is immaterial
(commutativity property)2; moreover, duplicates are disallowed or considered immate-
rial (idempotence property).

Thus relations are sets ordered by set containment, ⊆. For Codd’s relations the
notions ⊆ and $ coincide. (Indeed $ always implies ⊆; moreover, if R1 ⊆ R2, then R2
can be arranged as a presequence identical to R1 followed by the remaining tuples in
R2 − R1, if any.)

Thus, for relations and functions on relations our monotonicity theorem specializes
as follows.

PROPOSITION 4.1. A function F on relations can be computed using a nonblocking
operator if and only if F is monotonic with respect to the set containment ordering ⊆.

Proposition 4.1 also holds on binary relations since a function is monotonic with
respect to certain arguments if and only if it can be implemented by an operator that
is nonblocking on the same arguments.

Let us now discuss Codd’s relational algebra, and explore the loss of expressive
power caused by the fact that blocking operators are disallowed. A complete set of RA
operators consists of the unary operators of projection and selection, and the binary
operators of Cartesian product, union, and set difference.

2More limited uses of commutativity could take timestamps into account and these will be discussed in
Section 7.

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

8:10 Y.-N. Law et al.

Terminology. An important observation to be made here is that Codd’s RA opera-
tors are actually mathematical functions defined as mappings from whole relations to
whole relations. Thus they are defined by the fact of whether or not they are mono-
tonic. Union and Cartesian product are monotonic with respect to set containment
and amenable to nonblocking implementations. Set difference R − S is instead anti-
monotonic with respect to its second argument. Only blocking implementations are
possible for nonmonotonic functions. For instance, in an implementation of R − S no
tuple can be returned until the last tuple of S is known. Nonmonotonic functions (and
RA operators) should be avoided in continuous queries since they require blocking
implementations. (We will explore the effects of this limitation in the next section.)
For monotonic functions, both nonblocking and blocking implementations are possible,
and only the first should be used on data streams. For instance, union is monotonic
but a typical DB implementation of R1 ∪ R2 consists in first fetching and returning
all the tuples from R1 and, after this done, fetching and returning those in R2. This
implementation makes the operator blocking with respect to R1 and thus cannot be
used for continuous queries on data streams.

4.1. Relational Algebra

A complete set of operators for relational algebra consists of the following operators:
RA = {∪, *+, σ,#,−}. The monotonic (nonblocking) operators of relational algebra will
be denoted N B-RA, where N B-RA = {∪, *+, σ,#}. The class of queries expressible by RA
(and many equivalent query languages) is called FO queries [Abiteboul et al. 1995].
Let N B-FO denote the monotonic queries in FO. But some monotonic functions in
FO are expressed using set difference, an operator not in N B-RA. For instance, the
intersection of two relations, R1 and R2, a monotonic operation, can be expressed as:
R1 ∩ R2 = R1 − (R1 − R2). On the other hand intersection is in N B-RA, since it can also
be expressed as the natural join of its operands. But the conclusion is different for the
coalesce and until queries discussed next.

Coalesce and Until. Assume we have a temporal domain which, for simplicity, we
represent using nonnegative integers originating at zero integers.3 We use predicate
p(I, J) , with I < J, to denote that the property p holds from point I, included, till point
J, excluded. In other words, we use an interval closed to the left and open to the right
to represent the validity of a property. Our database consists of an arbitrary number of
p facts, and of some q facts that use a similar interval-based representation. Then, the
temporal-logic query p Until q is true when there exists a q(I, J), where p holds for every
point before I. This query can be expressed in several ways [Bohlen 1994; Celko 1995;
Rozenshtein et al. 1993]. Example 1 expresses it using nonrecursive Datalog rules that
first coalesce the p intervals and then check if there is any interval that spans from 0
to the beginning of some q (second rule). The bottom rule in Example 1 defines cep(K)
to hold for the covered end points of intervals: when K is the endpoint of some interval
that is contained in some other interval p(I, J). The next rule from the bottom defines
broken intervals as follows: broken(I1, J2) holds true if (1) I1 is the start-point of some
interval, (2) J2 is the endpoint of an interval to its right, and (3) there is a break point
between the two in the form of the endpoint K that is not covered, that is ¬cep(K). This
break excludes (I1, J2) from the coalesced intervals. Indeed, the third rule from the
bottom defines coalesced intervals as those that satisfy conditions (1) and (2), but are
not broken.

3No relationship is assumed between these integers and the tuple timestamps.

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

Relational Languages and Data Models for Continuous Queries 8:11

Example 4.2. Until (pUq) & Coalesce (coalscp)

pUq(yes) ← q(0, J).
pUq(yes) ← coalscp(0, I), q(J,), I ≥ J.
coalscp(I1, J2) ← p(I1, J1), p(I2, J2), J1 < J2,

¬broken(I1, J2).
broken(I1, J2) ← p(I1, J1), p(I2, J2), p(, K),

J1 ≤ K, K < I2, ¬cep(K).
cep(K) ← p(, K), p(I, J), I ≤ K, K < J.

The safe nonrecursive Datalog program of Example 4.2 can be translated into an RA
expression on the two relations P and Q, representing respectively, the p facts and the
q facts. The resulting RA expression uses set difference to implement negation. This
program and its RA equivalent defines the two queries pUq and coalscp, the first on P
and Q and the second on P only. We will refer to them as the coalesce query and the
until query, and observe that they are monotonic. Indeed, as we add new intervals to
P, we obtain all the old intervals in coalscp and possibly some new ones. For pUq, as
we add new intervals to P and/or Q, the answer could change from an empty set to a
singleton set containing ‘yes‘ but never the other way around. Therefore, the coalesce
query and the until query are in N B-FO. However, we will now prove that they cannot
be expressed in N B-RA.

4.2. Incompleteness of NB-RA

We use the notation Tα and Tω to, respectively, denote the start-point and end-point of
an interval T . Point x is contained in T if and only if Tα ≤ x < Tω. Given a nonempty
set of intervals S, we will use the notations α(S) and ω(S) to, respectively, denote the
least of the start points and the greatest of the end points of intervals in S. An interval
is said to be covered by S when all its points are contained in some interval in S.

Definition 4.3. A nonempty set of intervals S is said to be connected if the interval
[α(S),ω(S)) is covered by S.

If {T1, T2} is connected, then we say that T1 is connected with T2, and vice-versa Let S
be a set of intervals, and let S[a,b) denote the intervals of S connected with [a, b).

S[a,b) = {T ∈ S | T is connected with [a, b)}.

Then we have the following properties.

LEMMA 4.4. If a set of intervals S covers the interval [a, b), then S[a,b) is connected.

PROOF. Given that S covers [a, b), so does S[a,b), and we have that: α(S[a,b)) ≤ a < b ≤
ω(S[a,b)). By construction, S[a,b) covers the points in [a, b). Thus, we only need to prove
that S[a,b) covers [α(S[a,b)), a), if α(S[a,b)) < a, and [b,ω(S[a,b))), if b < ω(S[a,b)). Indeed,
if α(S[a,b)) < a, then, for some T ∈ S[a,b), where Tα = α(S[a,b)); but T is connected with
[a, b) and thus it contains every point in [α(S[a,b)), a). Symmetrically for [b,ω(S[a,b))),
if b < ω(S[a,b)).

Let sum(S) =
∑

T ∈S Tω − Tα denote the sum of lengths of the intervals in S.

LEMMA 4.5. If S is a connected set of intervals, then: ω(S) − α(S) ≤ sum(S).

PROOF. Let us first consider the case of S = {T 1, · · · , T n}, where no interval contains
another interval. We can assume, without any loss of generality, that the intervals
are ordered by their start-points: T i

α ≤ T i+1
α , 1 ≤ i ≤ n, and since no interval contains

another T i
ω ≤ T i+1

ω , 1 ≤ i ≤ n. Furthermore, T i
ω−T i+1

α ≥ 0, because otherwise [T i
ω, T i+1

α)

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

8:12 Y.-N. Law et al.

is not covered by S. Thus:

T n
ω − T 1

α ≤ T n
ω +

(
T n−1

ω − T n
α + · · · + T 2

ω − T 3
α

)
− T 1

α

= T n
ω − T n

α + · · · + T 1
ω − T 1

α = sum(S).

Since ω(S) = T n
ω and α(S) = T 1

α , this concludes our proof for the case where no interval
of S contains another; otherwise let S′ be a maximal subset of S where no interval
contains another. Then, ω(S) − α(S) = ω(S′) − α(S′) whereas sum(S′) ≤ sum(S).

PROPOSITION 4.6. The Coalesce query and the Until query cannot be expressed in N B-
RA.

PROOF. Say that an expression of NB − RA operators is applied to our binary relation
R(α,ω) containing the original intervals to derive another binary relation containing
the coalesced intervals. We can assume, without loss of generality, that the operators
are applied in this order: (1) Cartesian products, (2) selections, (3) projections, and
finally (4) union. Therefore, in phase 1, N Cartesian products on R(α,ω) will produce
a relation R′(α0,ω0, . . . ,αN,ωN), with 2(N + 1) columns; on this, we apply various
selections to filter out some tuples in phase 2; then, in phase 3, we derive a two-column
relation R′′(A, B) by projection operators. So, say that (a, b) ∈ R′′(A, B) was generated
by the projection from a tuple t ∈ R′ (that survived the selection filter). Now, let S
be the set of the following intervals {[t.α0, t.ω0), . . . , [t.αN, t.ωN)}. Then, [a, b) is a valid
interval according to S only if a < b and S covers [a, b). But if S covers [a, b), then
S[a,b) is connected, and b − a ≤ sum(S[a,b)) ≤ sum(S). Now, if our relation R contains
the intervals [0, 1), . . . , [M, M + 1), then coalescing yields an interval of length M + 1,
whereas N Cartesian products on R can only produce coalesced intervals of length
≤ N + 1, which is the sum of N + 1 intervals. In general, an NB − RA expression with
N Cartesian products cannot perform the coalescing on a relation with more than N+1
tuples. To prove the inexpressibility of P Until Q let Q contain only interval [M, M +1)
and let Q = R.

Thus, by disallowing nonmonotonic RA operators, we also lose some monotonic
queries expressible in relational algebra. One possible solution to this problem con-
sists in introducing a fixpoint operator to express recursive queries that are quite
natural in conjunction with monotonic operators. For instance, the Until and Coalesce
queries can be expressed in positive Datalog, as shown in Example 4.7. Indeed, recur-
sive queries for data streams represent a topic of theoretical interest. However, this
direction has not been pursued in current DSMS, since it is expected to bring about
(1) major technical challenges, and (2) limited practical benefits. Regarding (2) in par-
ticular, recursive queries are not expected to solve pressing practical issues on how to
use aggregates in data streams, which are discussed below.

Example 4.7. Until & Coalesce in Recursive Datalog

pUq(yes) ← q(0, J).
pUq(yes) ← coalscp(0, I), q(J,), I ≥ J.
coalscp(I, J) ← p(I, J).
coalscp(I1, J2) ← coalscp(I1, J1), coalscp(I2, J2),

J1 ≥ I2.

4.3. Incompleteness of NB-SQL

We next considerN B-SQL: the nonblocking subset of SQL-2 that can be used for writing
queries on data streams. We need to exclude nonmonotonic constructs, such as EXCEPT,
NOT EXIST, NOT IN, and ALL. Moreover all the standard SQL-2 aggregates, must be left
out because they are blocking. The surprising conclusion is that the expressive power

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

Relational Languages and Data Models for Continuous Queries 8:13

of N B-SQL is the same as N B-RA, although SQL can express more monotonic queries
than RA. In fact, some queries expressed using aggregates are monotonic. For instance,
Example 4.8 computes from empl(EmpNo, Sal, DeptNo), all the departments where the
sum of employee salaries exceeds a given constant C.

Example 4.8. Departments where the sum of employee salaries exceeds C. Assume
Sal > 0.

SELECT DeptNo
FROM empl
GROUP BY DeptNo

HAVING SUM(empl.Sal) > C

The preceding query uses aggregate SUM, which means it is not an N B-SQL query.
However, the computation it expresses is obviously monotonic, insofar as the introduc-
tion of a new empl can only expand the set of departments that satisfy this query; how-
ever this sum query cannot be expressed without the use of aggregates. The problem
of the blocking SQL the queries has long been recognized by data stream researchers,
who have proposed the use of devices such as punctuation [Tucker et al. 2003a] and
windows [Motwani et al. 2003] to address this problem. While these approaches deal
effectively with important aspects of the problem, they do not solve the expressiveness
problems discussed so far. For instance, punctuation and windows cannot be used to
implement the queries of Example 4.2 or Example 4.8 unless some external constraints
can be used to turn these blocking queries into nonblocking queries (such as, bounds on
the maximum number of employees in a department). One approach to remedy these
problems consists in allowing the programmer to use nonmonotonic constructs but
exclusively to write monotonic queries. Then, the queries of Example 4.2 or Example
4.8 will be allowed and the loss of expressive power is avoided. Unfortunately, this ap-
proach is practically attractive only if the compiler/optimizer is capable of recognizing
monotonic queries, and thus warning the user when a certain query is blocking and
thus cannot be used as a continuous query. Unfortunately, deciding whether a query
is monotonic can be computationally intractable and can also depend on information,
such as empl.Sal >0, which is obvious to the user but not the optimizer.

4.4. The Expressive Power Issue

A practical solution approach must go beyond solving problems caused the exclusion
of blocking operators since this is but one of the expressive power problems inflicted
upon SQL by data streams. To illustrate this point, let us consider the old DB practice
of embedding SQL into a procedural language program where the application logic
that cannot be expressed in SQL can then be easily implemented. In this approach,
cursors and get-next constructs are used to express a pull-based computation model
that loses much of its effectiveness in the push-based environment of data streams.
In a DSMS, the answer tuples generated by the continuous queries must be pushed
to the output buffers at once, and the DSMS cannot wait for get-next requests from
an embedding procedural application. Datablades [Technologies 1994] (AKA database
extenders and many other names) are libraries of external functions used in OR-DBMS
to extend their power and ability to support new applications. These functions often
use large objects (BLOBs and CLOBs) to exchange data with SQL: for instance, a whole
sequence could be encoded as a BLOB and shared between the database and the dat-
ablade. This solution is less suitable for data streams, where the computation must
proceed continuously in small increments—for example, by processing each new tuple
in the sequence rather than having to wait for the sequence to be assembled into a
BLOB. Indeed, unlike in OR DBMS, datablades have not played an important role as
an extension mechanism for DSMS. Given the old problems that SQL experienced with

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

8:14 Y.-N. Law et al.

sequence queries and mining queries, and the new ones introduced by data streams,
the best solution is to introduce new operators that extend the N B-power of the query
language. For instance, a natural extension could be to add least fixpoint (LFP) oper-
ators to relational algebra, or equivalently, recursion constructs could be used in SQL
[Abiteboul et al. 1995]. LFP operators and recursive constructs are monotonic and
they extend the power of RA or SQL to enable the expression of all DB-PTime queries
[Abiteboul et al. 1995]. However, it is not clear whether N B-RA+LFP, or N B-SQL with
recursion, are N B-DB-PTime complete—capable of expressing all monotonic queries
in DB-PTime. Although the coalesce and until query can be easily expressed in N B-
RA+LFP, we do not have a general answer for this interesting theoretical question.
We will leave this question for later investigations, since it is not of urgent practi-
cal importance, given that, in the past, recursive SQL queries have not proven very
useful for sequence queries and mining queries. In this article, we instead pursue a
very practical approach based on monotonic user-defined aggregates that deliver much
higher levels of expressive power, not only in theory, but also in practice, as demon-
strated in applications such as punctuated data streams, sequence queries, and mining
queries.

5. USER-DEFINED AGGREGATES

User defined aggregates (UDAs) are important for decision support, stream queries,
and other advanced database applications [Carney et al. 2002; Luo et al. 2005; Cra-
nor et al. 2002]. ATLaS [Wang and Zaniolo 2003] and ESL [Luo et al. 2005] adopt
from SQL-3, the idea of specifying a new UDA by an INITIALIZE, an ITERATE, and a
TERMINATE computation; however, both ATLaS and ESL let users express these three
computations by a single procedure written in SQL—rather than by three procedures
coded in procedural languages as prescribed by SQL-3.4 Example 5.1 defines an aggre-
gate equivalent to the standard AVG aggregate in SQL. The second line in Example 5.1
declares a local table, state, where the sum and count of the values processed so far
are kept. Furthermore, while in this particular example, state contains only one tuple,
it is in fact a table that can be queried and updated using SQL statements and can
contain any number of tuples. These SQL statements are grouped into the three blocks
labeled, respectively, INITIALIZE, ITERATE, and TERMINATE. Thus, INITIALIZE inserts the
value taken from the input stream and sets the count to 1. The ITERATE statement
updates the tuple in state by adding the new input value to the sum and 1 to the count.
The TERMINATE statement returns the ratio between the sum and the count as the final
result of the computation by the INSERT INTO RETURN statement.5 Thus, the TERMINATE
statements are processed just after all the input tuples have been exhausted.

Example 5.1. Defining the standard AVG

AGGREGATE myavg(Next Int) : Real
{ TABLE state(tsum Int, cnt Int);

INITIALIZE : {
INSERT INTO state VALUES (Next, 1);

}
ITERATE : {

UPDATE state
SET tsum=tsum+Next, cnt=cnt+1;

}

4Although UDAs have been left out of SQL:1999 specifications, they were part of early SQL-3 proposals, and
supported by some commercial DBMS.
5To conform to SQL syntax, RETURN is treated as a virtual table; however, it is not a stored table and
cannot be used in any other role.

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

Relational Languages and Data Models for Continuous Queries 8:15

TERMINATE : {
INSERT INTO RETURN

SELECT tsum/cnt FROM state;
}

}

Observe that the SQL statements in the INITIALIZE, ITERATE, and TERMINATE blocks
play the same role as the external functions in SQL-3 aggregates. But here, we have
assembled the three functions under one procedure, thus supporting the declaration of
their shared tables (the state table in this example). This table is allocated just before
the INITIALIZE statement is executed and deallocated just after the TERMINATE state-
ment is completed. This approach to aggregate definition is very general. For instance,
say that we want to support tumbling windows of 200 tuples [Carney et al. 2002]. Then
we can write the UDA of Example 5.2, where the RETURN statements appear in ITERATE
instead of TERMINATE. The UDA tumble avg, so obtained, takes a stream of values as
input and returns a stream of values as output (one every 200 tuples). While each exe-
cution of the RETURN statement here produces only one tuple, in general, the UDA can
return several tuples. Also observe that UDAs are allowed to declare local tables and
apply arbitrary select and update actions on these tables, including the use of built-in
and user-defined aggregates (possibly in a recursive fashion) [Luo et al. 2005].6 Thus
UDAs operate as general stream transformers. Observe that the UDA in Example 5.1
is blocking, while that of Example 5.2 is nonblocking. Thus, nonblocking UDAs are
easily and clearly identified by the fact that their TERMINATE clauses are either empty
or absent. The typical default implementation for SQL aggregates is that the data are
first sorted according to the GROUP-BY attributes; thus the very first operation in the
computation is a blocking operation. Instead, ESL uses a (nonblocking) hash-based im-
plementation for the GROUP-BY (or PARTITION-BY) calls of the UDAs [Luo et al. 2005].
The semantics of UDAs therefore is based on sequential execution, whereby the input
sequence or stream is pipelined through the operations specified in the INITIALIZE and
ITERATE clauses: the only blocking operations (if any) are those specified in TERMINATE,
and these only take place at the end of the computation.

Example 5.2. AVG on a Tumble of 200 Tuples
AGGREGATE tumble avg(Next Int) : Real
{ TABLE state(tsum Int, cnt Int);

INITIALIZE : {
INSERT INTO state VALUES (Next, 1)}

ITERATE: {
UPDATE state

SET tsum=tsum+Next, cnt=cnt+1;
INSERT INTO RETURN

SELECT tsum/cnt FROM state
WHERE cnt

UPDATE state SET tsum=0, cnt=0
WHERE cnt

}
TERMINATE : { }

}
UDAs can be called and used in the same way as any other built-in aggregate. For

instance, say that we are given a stored sequence (or an incoming stream) of purchase
actions:

webevents(CustomerID, Event, Amount, Time)

6ATLaS user manual. http://wis.cs.ucla.edu/atlas.

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

8:16 Y.-N. Law et al.

Since UDAs process tuples one-at-a-time (in a fashion similar to that of the cursors
used to interface programming languages with SQL) they dovetail with the model of
physically-ordered sequences, and can express well the search for patterns in such
sequences. For instance, we want to find the situations where users, immediately after
placing an order, ask for a rebate and then cancel the order. Finding this pattern in
SQL requires two self-joins to be computed on the incoming stream of Web events. In
general, recognizing a pattern of n events requires n − 1 joins, and queries involving
many stream joins can be difficult to express in SQL, and can also be very inefficient
to execute in a DSMS. Also, the notion that a tuple t2 must immediately follow a given
tuple t1, without any tuple in between, is logically quite simple, but it requires a rather
complex formulation in standard SQL. UDAs can be used to solve these problems. For
instance, say that we want to detect the pattern of, (1) an order, followed by, (2) a
rebate, and then (3) a cancellation of the original order. Then, the nonblocking UDA of
Example 5.3 can be used to return the string “pattern123” with the CustomerID whose
events have just matched the pattern (the aggregate will be called with the group-by
clause on CustomerID). This UDA models a finite state machine, where 0 denotes the
failure state, which is set whenever the right combination of current-state and input
is not observed. Otherwise, the state is first set to 1, and then advanced till 3, where
“pattern123” is returned, and the search for the pattern continues on the rest of the
sequence.

Example 5.3. First the order, then the rebate, and finally the cancellation
AGGREGATE pattern(Next Char) : Char
{ TABLE state(sno Int);

INITIALIZE : {
INSERT INTO state VALUES(0);
UPDATE state SET sno = 1

WHEN Next=‘order’;}
ITERATE: {

UPDATE state SET sno = 0
WHERE NOT(sno = 1 AND

Next = ‘rebate’)
AND NOT(sno = 2 AND Next = ‘cancel’)
AND Next <> ‘order’

UPDATE state SET sno = 1
WHERE Next=‘order’;

UPDATE state SET sno = sno+1
WHERE (sno = 1 AND Next = ‘rebate’)

OR(sno = 2 AND Next = ‘cancel’)
INSERT INTO RETURN

SELECT ‘pattern123’ FROM state
WHERE sno = 3;

}
}

UDAs can also be effectively used to handle punctuated data streams, which have
been proposed in Tucker et al. [2003a] to overcome blocking problems. In addition to
performing their normal computations, the UDAs on punctuated data streams must
recognize the punctuation marks, and produce their results when these arrive. For
instance, in Example 5.4, we want to output the average stock value of each company,
when we receive its closing value tuple denoted by a special punctuation mark indicat-
ing that no more tuple of this company will arrive. In this case, a value of 1 in the close
column serves as the special punctuation mark; once this value is detected, we return
the average for this company. We use the table state to store the summary (sum and
count) of each company.

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

Relational Languages and Data Models for Continuous Queries 8:17

Example 5.4. The average price for each company is returned when its closing price
is received.
AGGREGATE CoSum(cid Int, price Real, close Int) : Real
{ TABLE state(tcid Int, tsum Int, tcnt Int);

INITIALIZE : {
INSERT INTO state VALUES (cid, price, 1);}

ITERATE: {
UPDATE state

SET tsum=tsum+price, tcnt=tcnt+1;
WHERE tcid=cid;

INSERT INTO state
SELECT cid, price, 1 FROM state
WHERE cid NOT IN (

SELECT tcid FROM state);
INSERT INTO RETURN

SELECT tsum/tcnt FROM state
WHERE tcid=cid AND close=1;

}
TERMINATE : { }

}

A native extension of SQL, called SQL-TS, was proposed in Sadri et al. [2001a], to find
patterns in sequences and data streams. While SQL-TS represents a powerful special-
purpose language for querying sequential patterns, we found that the same queries
can also be efficiently supported using UDAs. In fact both SQL-TS and its powerful
extensions called K*SQL [Mozafari et al. 2010a] have been implemented efficiently in
our DSMS [Thakkar et al. 2011] by mapping them into UDAs.

Indeed, UDAs provide a powerful vehicle for state-based reasoning, and pattern-
searching. In general, concepts and queries that can be expressed using an FSM can be
easily and automatically translated into UDAs. In fact, in Appendix A we prove that
the following property holds.

PROPOSITION 5.5. Assume query Q searches for a pattern defined by a FSM M. Let n
be the number of links in M. Then there exists a UDA with n + 2 statements that can
implement Q.

The strong synergy between UDAs and finite-state automata is confirmed by the fact
that UDAs are able to express the ultimate state machine: the Turing machine.

Observe that most of the UDAs in our examples have an empty terminate state.
Since the terminate state is the only one that responds to the end of the input we have
the following property.

PROPOSITION 5.6. N B UDAs: UDAs TERMINATE state is empty or missing are nonblock-
ing.

UDAs represent a very powerful computational device and combined with union they
deliver Turing completeness; likewise, N B-UDAs combined with union will deliver
N B-completeness under the assumptions described in the coming sections.

6. COMPLETENESS ON RELATIONS AND DATA STREAMS

The power of a query language is defined as the class of functions it can express on
(an input tape encoding) the database [Abiteboul et al. 1995]. Achieving a high level of
expressive power is difficult for database query languages, and attempts to character-
ize and improve their expressive power have been the focus of much topical research
[Abiteboul et al. 1995]. Furthermore, in Section 4, we investigated the power of RA
and SQL in expressing continuous queries on sets of tuples, and found that this is

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

8:18 Y.-N. Law et al.

further impaired by the fact that, (1) only monotonic functions can be expressed (to
avoid blocking operators), and (2) RA and SQL are not N B-complete. In the rest of the
article, we focus on improving this dismal state of affairs. In this section, we show that
the UDAs introduced in the previous section change the situation completely, inasmuch
as their addition makes SQL, (a) Turing complete, that is, capable of expressing all
computable set functions, and (b) N B-complete, that is, capable of computing all mono-
tonic set functions using only nonblocking constructs. Then in Section 8, we extend
these results to data streams explicitly ordered by their timestamps.

The proof that UDAs make SQL Turing-complete is given in Appendix B, where
we show that UDAs can express any function (and therefore any set function) by
encoding one or more tables into an input tape. However such an encoding is a blocking
computation, which is not allowed for continuous queries on data streams. Therefore,
in order to achieve N B-completeness: the ability of expressing every monotonic set
function, we proceed in two steps, A and B as follows.

(A) We combine multiple streams into one stream using the set union operator. Before
the union is actually computed we, (1) make the various data streams union-
compatible by adding columns filled with suitable values to the various streams,
and (2) add an additional column to remember which data stream each tuple
came from (both these operations can be performed by a monotonic UDA). Our
given monotonic set function on multiple streams can now be reexpressed as a
monotonic set function F on the union stream generated by this step.

(B) Our monotonic set function F on a single data stream can be computed by a
UDA that uses three local tables, called IN, T APE, and OU T , and performs the
following operations for each new arriving tuple.

Delta Computation.
(a) Append the encoded new tuple to IN,
(b) Copy IN to T APE, then

compute F(IN) − OU T as described in Section 5.7
(c) Return the result obtained in (b) and append it to OU T .

Since these operations are executed on each arriving new tuple, they are performed
in the ITERATE state of the UDA, which is therefore nonblocking. Since both the UDAs
used in [A] and [B] are nonblocking and set union is monotonic, we can conclude that
nonblocking UDAs and set union are N B-complete for set functions, insofar as the
following.

PROPOSITION 6.1. A query language that supports nonblocking UDAs and set union
can express all monotonic set functions on data streams.

In summary, after observing the devastating effect that the nonblocking assumption
has on relational query languages, we moved to boost their expressive power by UDAs,
and following Law et al. [2004], showed that, (1) SQL with UDAs is Turing-complete
(can express all computable functions), and (2) also N B-complete (it can compute all
monotonic functions). Now, observe that (1) is practically significant, since it provides
a solution to the expressive power problem that has long eluded database researchers.
However, (2) is only of modest practical interest since an unordered set of tuples and
query languages that only express set functions are not sufficient for data stream

7Since F is monotonic, its corresponding UDA is nonblocking, and thus the delta computation is performed
in its ITERATE state, where the difference F(IN) − OU T is actually computed and its result is returned. For
specific aggregates, rather than computing the difference of the materialized F(IN) and OU T , we can derive
and use in ITERATE, the symbolic delta-expression of this difference. Examples 5.2–5.4 illustrate this more
efficient alternative.

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

Relational Languages and Data Models for Continuous Queries 8:19

applications where temporal ordering plays a pivotal role. Therefore, in the next section
we formalize the notion of timestamp-ordered sequences and then endeavor to extend
(2) to this framework.

7. TIMESTAMPED DATA STREAMS

We consider explicitly timestamped sequences and data streams, where tuples are or-
dered by the increasing values of their timestamps. Thus, two sequences are considered
equivalent if they are obtained from each other by commuting tuples having the same
timestamps. However, if we commute two tuples with different timestamps we obtain
two different sequences. Therefore let us reiterate that the data model under which we
are now operating is one where, (1) the order of tuples sharing the same timestamp
is immaterial (commutativity for contemporary tuples), but (2) if t1 < t2, every tuple
with timestamp t1 precedes every tuple with timestamp t2. We will now define a partial
ordering between timestamped sequences and investigate monotonic functions with
respect to that order.

Let S be a timestamped sequence, and τ be an arbitrary timestamp. The τ -
presequence of S (or more precisely, the pre-τ presequence of S) is obtained from S
by eliminating all tuples with timestamp following τ .

Definition 7.1. τ -presequence. Let S and R be two sequences ordered by their times-
tamp. Rτ is defined as the set of tuples of R with timestamp less than or equal to τ > 0. If
S = Rτ for some τ , then S is said to be a τ -presequence of R, denoted S $t R. In general,
let S1, . . . , Sn and R1, . . . , Rn be timestamped sequences. (S1, . . . , Sn) $t (R1, . . . , Rn)
when (S1, . . . , Sn) = (Rτ

1, . . . , Rτ
n) for some τ .

Thus, two timestamped sequences are considered equal if they are τ -presequences of
each other.

Valid query operators on timestamped sequences take their input(s) and generate
their output sequences, ordered by their timestamps. We are only interested in query
operators and functions that accept as input(s) and produce as outputs sequences
by increasing timestamp order. Examples of these include relational selection and
projection (assuming that the later does not eliminate the timestamp column). Also,
all operators must compute valid functions on timestamped sequences: functions that
produce the same result irrespective of the order in which contemporary tuples are
arranged. Thus, for instance, if the input is the pair (timestamp, value), a function
that returns the sum of value for each timestamp is a valid function.8 However, the
function that returns a continuous sum for the values having the same timestamp
would return different sequences for different orders of contemporary tuples and thus
does not define a valid function, even if the input and output are properly ordered.9

Order is also essential when working with timestamped sequences. For instance
take an operator that returns all the elements in the input sequence except for those
with maximal value. Let us first consider an operator allbutmax1, which returns the
values as soon as it can conclude that this cannot be a maximal element; thus on input
[(t1, 6), (t2, 5), (t3, 4), (t4, 8)], allbutmax1 (will return (t1, 6) as soon as it sees (t4, 8), thus
producing [(t2, 5), (t3, 4), (t1, 6)]. If we assume that t1 < t2 < t3 < t4, the sequence so
produced violates the required timestamp order. Thus allbutmax1 is neither a valid
operator, nor does it define a valid function on timestamped sequences. Of course, we
could use instead, a blocking operator allbutmax2, which presented with the same

8In SQL, this set function can be expressed as:
select timestamp, sum(value) from myinput groupby timestamp.

9In SQL:2003, this OLAP function can be expressed as:
select timestamp, sum(value)over(partition by timestamp) from myinput.

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

8:20 Y.-N. Law et al.

sequence, delays the output (possibly till the end of the sequence) and then returns
[(t1, 6), (t2, 5), (t3, 4)]. Now, allbutmax2 is a valid operator on timestamped sequences,
defining a valid function on the same. Unfortunately, allbutmax2 is blocking and the cor-
responding function is nonmonotonic with respect to the τ -presequence ordering. How-
ever, this function is obviously monotonic on sets, and in that domain, allbutmax1and
allbutmax2, provide two alternative implementations: the first is nonblocking and the
second is blocking.

The notion of monotonicity can be defined quite naturally for τ -presequences as
follows.

Definition 7.2. A unary operator G is monotonic if L $t S implies G(L) $t G(S). A bi-
nary operator H is monotonic when (L1, L2) $t (S1, S2) implies H(L1, L2) $t H(S1, S2).

In operational terms, S $t R can be viewed as a statement that R was obtained from
S = Rτ by appending some additional tuples with timestamps larger than those in S.
For instance, S might be the stream received up to time τ , and R the stream received
after waiting a little longer up to time τ ′ > τ .

Then, the notion of nonblocking operators on logical sequences will be defined as fol-
lows. (Gτ (S) and Hτ (L, S) denote the τ -presequence of G(S) and H(L, S), respectively).

Definition 7.3. Nonblocking Query Operators.

—A nonnull unary operator G is said to be nonblocking, when Gτ (S) = G(Sτ), for every
τ .

—A nonnull binary operator H is said to be nonblocking, when, Hτ (L, S) = H(Lτ , Sτ),
for every τ .

Then we have the following proposition that can be easily proved along the lines of
Propositions 3.9 and 6.1.

PROPOSITION 7.4. Functions on sequences ordered by their timestamps can be imple-
mented by nonblocking operators if and only if they are monotonic with respect to. $t.

For instance, selection and projection are clearly monotonic single-input functions
and implementable by nonblocking operators. UDAs that express monotonic functions
on timestamped sequences have the following simple characteristics: (1) their TERMINATE

state is either missing or returns no value, and (2) they only produce tuples whose
timestamped value is equal or greater than that of the previous one.10

Thus, there is no serious issue with unary operators, and we can use the argument
from the previous section to show that UDA can express all functions that are monotonic
with respect to the τ -presequence ordering. Unfortunately, we will see next that the
situation for binary operators is more difficult.

For binary functions, we can define the standard set-based intersection operator
that takes the set of tuples that are present in both streams, ordering them by in-
creasing timestamps. This is a function that is obviously monotonic with respect to
τ -preordering, and thus trivially implementable by nonblocking operators. Unfortu-
nately the standard set union that lists the tuples in either stream ordered by their
timestamps is neither monotonic with respect to τ -preordering nor it can be imple-
mented by a nonblocking operator! Indeed, consider the following two sequences of
(time, value) pairs.

10For instance, this condition holds if the timestamp value of each output tuple is taken from the current
input tuple, or from a clock.

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

Relational Languages and Data Models for Continuous Queries 8:21

S = [(1, a), (4, b)] and

L = [(2, c)]. The set-union of these two sequences is

W = [(1, a), (2, c), (4, b)].

But if

S = [(1, a), (4, b)] and

L′ = [(2, c), (3, d)]. The set-union of the two becomes

W ′ = [(1, a), (2, c), (3, d), (4, b)].

W is not a τ -presequence of W ′ whereas L is a τ -presequence of L′.
Therefore, union is nonmonotonic and cannot be used. But without union we can-

not express computations on multiple streams, and other binary operators, such as
joins, suffer from similar problems. In order to achieve, or at least approach, N B-
completeness on multiple streams we will next introduce a monotonic approximation.

7.1. Monotonic Approximation

The generalizations of functions of relational algebra for timestamped data streams is
trivial for selection and projection, and very difficult for union, Cartesian product, joins
and other binary operators (from these, the case of operators with several arguments
can be easily derived). In fact, these operators are no longer monotonic, and thus we
will not be able to perform step A in Section 6 to merge streams if we use the standard
union.

To address this problem we will introduce monotonic approximations of union and
Cartesian product that we will call τ -union. (Similar generalizations can be defined
for Cartesian products and joins, as we will discuss later.) Therefore, let S and L be
timestamped sequences, and ω(L), ω(S) denote the largest timestamp in L and S,
respectively.

Definition 7.5. Let L and S be timestamped sequences and t = min(ω(L),ω(S)).
Then, the τ -Union of L and S, denoted τ -union(L, S), is defined as follows. τ -
union(L, S) = Lt ∪ St.

Thus, τ -union is computed by considering the two sequences or streams only up to the
min of the last timestamps in the two streams. Thus, for instance, consider sequences
of pairs, such as (2, c), where 2 is the pair timestamp in seconds and c is the actual
value.

τ -union([(1, a)], []) = [];

τ -union([(1, a)], [(2, c)]) = [(1, a)].

Observe that while the result of τ -union and set union are normally different, the
output of τ -union tends to catch up with the result of set union after the arrival of
additional tuples. Thus, the result of the set union of [(1, a)] and [] is actually produced
by τ -union after (2, c) is added to its second input—the same result is produced by
τ -union one second later than the set union. Likewise, the set union result of [(1, a)]
and [(2, c)] is only returned by τ -union after a new tuple with timestamp greater or
equal to 2 is added to the first input—after some nonnegative delay. Thus, τ -union is a
delayed approximation of set union. We will now formalize this behavior by the notion
of delayed approximation for both binary and unary functions (where an example of
the latter is given in the following).

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

8:22 Y.-N. Law et al.

Definition 7.6. Let F and G be two valid unary [respectively binary] functions on
timestamped sequences. F is said to be an approximation of G with delay D for input
S [respectively inputs S and W] when the following two conditions hold:

(1) If t is a timestamp of some tuple in F(S), then Ft(S) = Gt(S) [respectively If t is a
timestamp of some tuple in F(S, W), then Ft(S, W) = Gt(S, W)].

(2) For every t ≥ ω(S) − D, there exists a δ ≤ D such that F(St+δ) = G(St) [respectively
For every timestamp t ≥ max(ω(S),ω(W)) − D, there exists a δ ≤ D such that
F(St+δ, Wt+δ) = G(St, Wt)].

The first condition is basically a correctness condition that states that the sequence
of tuples produced by F up to and including the tuples with timestamp t is the same
sequence as that produced by G up to and including the tuples with timestamp t. The
second condition instead specifies that, once we see certain tuples returned by G, we will
only have to wait a time δ ≤ D to see the same tuples returned by F, but this property
only holds until we reach a time that precedes by D, the end of the input stream(s).
Let us now illustrate these definitions with examples. An interesting example for
unary functions is provided by the computation of window with panes (a.k.a., slides)
aggregates. Consider for instance the function count@3 that returns the cumulative
count of value every 3 seconds (we use a slide construct [Carney et al. 2002; Thakkar
et al. 2011] to modify the behavior of the count aggregate, which now returns results
every 3-second slide, instead of every incoming tuple as in basic window aggregates).
Therefore results will only be produced after 3 seconds, 6 seconds, 9 seconds, and so
on. For instance consider the following sequence.

S = [(1, a), (2, d), (4, b), (4, c), (5, c), (8, e)].

On this sequence, our count@3 aggregate should return the following result.

count@3(S) = [(3, 2), (6, 5), (9, 6)].

However, count@3 is nonmonotonic (e.g., if we add a pair (8, f), then the last pair in
count@3(S) should be (9, 7) instead of (9, 6)). Thus, count@3(S) cannot be supported
in real time, and will have to settle for its monotonic approximation mcount@3(S),
described next. Our mcount@3(S) cannot produce any result until it has seen the third
tuple with timestamp 4. Only at that point, we can conclude that all the tuples in
the first 3 second slide have been counted, and return the result for that slide: thus
mcount@3(S4) = [(3, 2)] = count@3(S2).

For S5, count@3(S5) returns a total count of 5 (this is the running count at the com-
pletion of the second slide), but mcount@3 cannot produce this result until if has seen
the next tuple that has timestamp 8. Thus in our case, mcount@3(S8) = [(3, 2), (6, 5)] =
count@3(S5). Moreover, since mcount@3(S8) = count@3(S5), the last three seconds of
the input are simply ignored by mcount@3, and the final pair (6, 5) is never returned.
Thus, for this example, D = 3 using the notation of Definition 7.6.

The problem is even more serious for binary operators, such as τ -union. For instance,
say that the tuples in the two streams keep flowing in every d chronons. While this
is the case, τ -union(S, W) will catch up with S ∪ W with a delay of d. But then say,
that S terminates before W does. In this case all the tuples in W with timestamps
falling in the interval ω(W) − ω(S) will never appear in τ -union(S, W) although they
rightfully belong to S ∪ W . Thus according to Definition 7.6, the worst case delay is
d + ω(W) − ω(S).

Thus, τ -union can turn into a very coarse approximation of union when infrequent
arrivals in one stream delay the output of the tuples from the other stream, and when
the arrivals stop in one input (because the source of the data or the transmission line
fails). Similar problems occur in other binary operators, such as the joins of different

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

Relational Languages and Data Models for Continuous Queries 8:23

data streams, which are not discussed here because, although very useful, they are not
needed in terms of expressiveness.

Although it was not treated in the formal framework of monotonicity and expressive-
ness we address here, the practical problem that the computation must wait idly for the
arrival of more tuples before it can accurately predict the next output tuple has been
recognized in the past, and simple but effective solutions to this problem have been
proposed in Johnson et al. [2005] and Bai et al. [2008], using punctuation tuples con-
taining only timestamp information. In the simplest version, timestamps are injected
into the streams at regular time intervals [Johnson et al. 2005]. Punctuation tuples
can also be generated on demand as described in Bai et al. [2008]. In this case, when
computing the union on data streams A and B, when only the tuple on A is available,
the DSMS takes care of generating a punctuation tuple for B with timestamp value
greater or equal than that of A (and symmetrically when B has a tuple and A has none).
This will not occur in an instantaneous manner in typical DSMS implementations us-
ing chains of cascading operators and buffers [Cranor et al. 2002; Madden et al. 2002;
Johnson et al. 2005; Bai et al. 2008]. In fact, for internally timestamped data streams,
there will be a small delay to check the upstream buffers, and if these are all empty, to
consult the system clock. An even more significant delay might be needed for externally
timestamped data streams. However, we will move past these delays and define the
notion of perfectly harmonized data streams. We say that data streams A and B are
perfectly harmonized when for each tuple in A there exists a tuple in B with greater
or equal timestamp, and vice versa. Observe that, since we work with unbounded but
finite data streams, the two tuples ending two perfectly harmonized data streams have
identical timestamps (e.g., the end-of-time timestamp often used for “now” in temporal
databases, is quite suitable in this role).11

Our interest in perfectly harmonized data streams follows from the fact that τ -union
and set union behave identically on these data streams, thus we can apply the reasoning
used on sets to conclude the following.

PROPOSITION 7.7. A query language that supports nonblocking UDAs and τ -union
can express all monotonic set functions on perfectly harmonized data streams.

This important theoretical result about the N B-completeness of our τ -union + UDA
framework, is however limited with the realization that this holds only for the idealized
situation. In reality, some delay will be needed for the system to punctate data streams
to perfectly harmonize them—to assure that when there is a data tuple in one stream
there always is a tuple in the other stream with greater or equal timestamp. In practice
moreover, we have the more common situation where the continuous query function
F, that would deliver the intended result on a perfectly harmonized data stream, is
instead applied to the two data streams that are affected by a skew of δ. Then, the
current τ -union result approximates the correct result with a delay of δ. Moreover, since
the UDA introduces no further delay, we can conclude that this delayed approximation
also holds for the final query result.

This conclusion also holds for Cartesian products and joins, for which monotonic
τ -approximation versions have been proposed and discussed in the literature, along
with punctuation techniques to minimize their idled-waiting [Johnson et al. 2005; Bai
et al. 2008]. In terms of expressive power, which is the focus of this article, we see that
products and joins are not necessary once we have UDAs and unions. In fact, joins can
be computed by first computing the τ -union of the two streams, and then feeding it to
a UDA that computes the join.

11For periodically punctuated data streams the perfect model can be also be realized when the time granu-
larity is coarse enough that punctuation marks can be generated every chronon.

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

8:24 Y.-N. Law et al.

8. MORE COMPLEX DATA STREAM MODELS

Windows, synopses, concrete views, and related concepts have been proposed to sup-
plement the basic append-only-table model of data streams. In this section, we show
that the operators previously presented can be extended naturally to realize these
approaches, thus achieving a unified treatment and understanding.

Synopses. The past history of a data stream quickly grows in time to sizes that
exceed what can be effectively stored and searched; therefore, synopses are used to
summarize recent data and derive approximate answers for queries. For example, the
join of a stream A with stream B can be approximated as the join of W(A) with W(B),
where W(A) and W(B) respectively denote a window on A and a window on B. Then,
the window join of A and B is computed by matching every new tuple arriving in W(A)
with the tuples in W(B) and vice versa. Many variations of this basic scheme have
been studied, and various window join algorithms have been proposed to support their
efficient implementation and minimize the number of output tuples that were dropped,
because only the synopsis is used in lieu of the complete data stream [Kang et al. 2003;
Golab and Özsu 2003b]. Window join operators are highly desirable built-in operators
in DSMS, because of performance considerations. However, they are not indispensable
in terms of expressive power since they can be computed by, (1) making A and B union-
compatible with the addition of new columns, (2) taking the union of the two streams
so derived, and (3) computing their join using a UDA that stores the two windows W(A)
and W(B), and computes their result as described in the preceding. In special situations
where application-specific constraints can be used to customize the UDA used in (3),
this approach might also yield superior performance.

Concrete Views and Expiring Tuples. Concrete views can be used to create windows
on data streams [Jagadish et al. 1995], and often call for explicit events to occur when
tuples leave the windows (whereas, as discussed in the preceeding, no explicit action is
required when tuples leave the windows used to compute joins). A technique shown to
be effective in many applications [Golab and Özsu 2005] consists in modelling tuples
leaving a window by means of “negative tuples” (whereas those arriving in the window
are modelled as positive tuples). For instance, let us consider a situation where the user
looking at the screen of a client workstation should see a list of transportation stocks
whose trading during the last hour exceeded a certain level. Then, the DSMS must
perform the following operations continuously: (1) add up the activities on each stock
for the last hour (using a window aggregate that is further discussed in the following),
(2) send a positive tuple for each new stock in the list, and (3) send a negative tuple for
each stock that must be removed from the list because of its insufficient trading during
the last hour. The positive tuples and negative tuples could be in two different data
streams or could be combined into a single stream by the addition of tags to identify
whether the tuple is positive or negative. The use of negative tuples in implementing
relational operators, including nonmonotonic operators on concrete views is discussed
in Golab and Özsu [2005]. All of these operators are easily expressed using UDAs.
Therefore, we can retain the basic data model of append-only relations, and use the
power of the UDAs to deal with the positive/negative tags, which now provide an
application-specific representation rather than a model enhancement. In fact, in many
applications it is highly desirable to go beyond this simple positive/negative tuple
scheme. For instance, to show the current value of those stocks in the concrete view, we
could use an update stream. Then, we might use one data stream, where each tuple is
tagged as either append, remove, and replace, or use three separate streams, as in CQL
[Arasu et al. 2003]. The best choice among these alternatives is bound to be application-
dependent. Another common situation is when concrete views have unique keys. In

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

Relational Languages and Data Models for Continuous Queries 8:25

this situation we only need positive tuples since these can be assigned the following
meaning. Insert this new value and eliminate the old tuple with the same key value if
one was present. To signify that a tuple with given key must be eliminated, rather than
replaced, we can use null values, or values that are not allowed (e.g., negative prices
for stocks). Yet another possible solution, that offers unique advantages in certain
applications, is that of timestamping tuples with their validity period [Krämer and
Seeger 2005]—this is the “direct” representation studied in Golab and Özsu [2005].
In summary, there are many ways to represent deleted and updated tuples, and an
interesting spectrum of data stream models and extended relational algebra operators
have been defined for that [Arasu et al. 2003; Krämer and Seeger 2005; Golab and Özsu
2005]. On the other hand, each of these extensions adds complexity to the basic data
model, so it is desirable in some applications but not in others. In this article, we have
instead proposed an approach where different representations of expiring or updated
tuples are supported very effectively via application-specific UDAs—thus retaining the
simplicity of append-only relations as the basic data stream model.

Windows and Aggregates. Aggregates on logical or physical windows are invaluable
in data stream applications since they turn blocking aggregates into nonblocking ones
that return results continuously. A logical window is specified as the set of stream
tuples that have arrived since time T − τ , where T is the current time and τ is the
size of the window. A physical window instead contains the last n tuples, where n is
the size of the window. SQL:2003 window aggregates (e.g., its OLAP functions) return
results only when a new tuple arrives. This is the only semantics of interest for physical
windows, where tuples expire only when a new tuple arrives. But for logical windows,
there have been proposals [Hammad et al. 2004; Golab and Özsu 2005] that advocate
returning the value for the aggregate both when a new tuple arrives (α-event) and
when an old one expires (ω-event). We will refer to this approach where both the α and
the ω events are recognized, as α + ω semantics.

Both these semantics can be expressed using UDAs. The realization of the α seman-
tics requires a UDA that memorizes the tuples in the window. Then, when a new tuple
arrives, the expired tuples are first removed from the window, then the new tuple is
added, and finally the aggregate is recomputed on the updated window, and its value
returned to the output. Performance-oriented improvements to this basic scheme have
been proposed for simple aggregates [Arasu and Widom 2004; Li et al. 2005b], and the
case of general UDAs was discussed in Thakkar et al. [2011]. Data structures similar
to SteMs [Madden et al. 2002] are effective in maintaining the state of windows. These
performance-oriented improvements are quite beneficial but fall outside the scope of
this article, which concentrates on semantic issues. Therefore, we will only discuss the
α + ω semantics, since this has been considered a more desirable alternative than the
α-only semantics inherited from SQL:2003 [Arasu and Widom 2004; Li et al. 2005a].
We will next show that the α + ω semantics can also be achieved quite naturally in our
framework. In fact, say that we have a data stream S of time-stamped tuples, and a
logical window of size τ on the stream, and an aggregate A (built-in or user defined).
Then the computation of A on τ under the α + ω semantics can be computed using
the algorithm shown in the following, where we use the first three steps to gener-
ate the positive/negative tuples corresponding to the logical window, and the last step
computes the actual aggregate.

Supporting the α + ω Semantics.

(1) Let Sp (respectively Sn) be the stream obtained from S by adding a positive (re-
spectively negative) tag to each tuple in S.

(2) For each tuple in Sn, update its timestamp by adding the size of the window—the
time interval τ . Let us denote the data stream so obtained by S′n.

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

8:26 Y.-N. Law et al.

(3) Let S′ denote the union Sp ∪ S′n.
(4) Process S′ using an UDA that operates as follows: if the new tuple in S′ is positive,

then, (1) add it to the list of memorized tuples, (2) recompute the aggregate A on
the list, and (3) return the result. Likewise, if the new tuple in S′ is negative, then
(1) delete it from the list of memorized tuples, (2) recompute the aggregate A on
the resulting list, and (3) return the result.

Therefore, we use the union operator to sort-merge the positive tuples and the nega-
tive tuples into the correct order, thus implementing the α + ω semantics for logical
windows. This implementation completely captures the declarative semantics of our
query operators viewed as mappings from the input streams to the output streams.
But it also reveals that basic quality-of-service issues of α + ω windows can be reduced
to those of union, and are thus amenable to a similar solution. The practical usefulness
of α + ω windows depends on the promptness with which ω tuples are generated once
the tuples have logically expired. Here we have discovered that prompt responses in
α + ω windows can be achieved by eliminating idle-waits in the execution of union
operators, which is the problem discussed in Section 7.1. Idle-waits can compromise
the promptness of response upon negative tuples produced by expirations. Indeed, a
negative tuple with time T + τ might wait indefinitely until a tuple with time stamp
value ≥ T + τ appears in Sp, incurring an idle-wait problem. Heartbeat techniques
have been shown to be effective to reduce the idle-wait problem for union and related
operators, and can be used for the case at hand [Johnson et al. 2005]. Idle-waits are not
a problem for the positive tuples in Sp, since for each tuple with timestamp T there is
a tuple with timestamp T + τ in S′n.

Impact of Query Languages upon Stream Data Models. Therefore, by extending our
query language into a very powerful one, we can retain the Spartan simplicity of the
basic data model (append-only tables), and yet support in a flexible and general way,
the vast assortment of extensions that have been advocated for data streams, each of
which is most beneficial in different applications. Our approach is conducive to a unified
treatment, and unifies disparate semantic issues. For instance, we showed that new
semantics proposed for aggregates such as the α + ω semantics can be reduced to the
α-only semantics of SQL:2003, and related issues of responsiveness can be addressed
using the heartbeat techniques used to minimize idle-waits in the implementation of
union operators [Srivastava and Widom 2004].

Greater expressiveness for continuous query languages has been the main focus
of this article, which showed that this goal can be achieved using UDAs defined in
SQL. Ease of use and query optimizability represent other important goals in the
design of effective query languages. Thus, inasmuch as joins lead to simpler queries
more amenable to optimization, they should be supported in a practical query lan-
guage, although they are not strictly needed in terms of expressive power. Likewise,
the UDA extensions proposed in Bai et al. [2006] are not essential in terms of expres-
sive power, but greatly simplify the specification of window aggregates and the efficient
computation of the aggregate values on windows and panes [Li et al. 2005]. In a simi-
lar vein, several pattern languages have been recently proposed using Kleene-closure
constructs. Languages, such as SQL-TS [Sadri et al. 2004], SASE+ [Wu et al. 2006;
Gyllstrom et al. 2008], the newly proposed SQL standards for match-recognize [Zemke
et al. 2007], and finally K*SQL [Mozafari et al. 2010c, 2010b], illustrate the desirability
of these extensions because of the great usability and specialized optimization tech-
niques [Mozafari et al. 2010b] they entail. These exciting developments do not diminish
the practical and theoretical significance of the results presented in this article. On the
practical side, it should be noted that the implementations of both SQL-TS and K*SQL

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

Relational Languages and Data Models for Continuous Queries 8:27

were based on UDAs [Mozafari et al. 2010c, 2010b]. On the theoretical side, we observe
that these extensions have yet to explore the blocking and monotonic approximation
issues that limit their expressive power—particularly for languages such as SASE+,
where patterns are specified over multiple data streams and thus rely on implicit union
operators.

9. CONCLUSIONS

There is much recent interest on how relational query languages and data models
can be extended to support effectively continuous queries on data streams. This ap-
proach is promising insofar as it allows DSMS researchers and designers to build
on theory and experience developed with relational query language; also for users,
this can simplify programming for the very many applications that span both data
streams and database tables. However, the data stream computing environment is
so different from the database one, that extending to the latter, theories and con-
structs developed for the former, requires an in-depth analysis and critical evaluation
of the interrelated issues that arise at, (1) the data model level due to the need to
support order in data streams, and (2) the query language level where the exclusion
of blocking query operators compromises expressive power. There is a strong rela-
tionship between the two, since for example, a nonblocking operator in the standard
relational model might no longer be so in an ordered data model. This article is the
first to elucidate this important difference and how it impacts key operators such as
union.

We began by extending the definition of blocking operators from Babcock et al. [2002]
to binary operators, and showing that functions can be realized by nonblocking query
operators if and only if they are monotonic. This allows us to introduce the notion
of N B-completeness and use it as a criterion to determine the suitability of query
languages for data streams, and as a tool for establishing the expressive power hi-
erarchy of such languages. A language is N B-complete if all the monotonic queries
expressible in the language can be expressed via its nonblocking query operators. We
proved that RA and SQL are not N B-complete. Thus by using them on relational
streams, besides loosing the ability to express nonmonotonic queries, we also lose the
ability of writing some monotonic queries. In order to make up for this severe loss
of expressive power, we suggested the support of natively defined UDAs in SQL. We
show that, with this extension, SQL becomes Turing complete on database tables and
N B-complete (can express via nonblocking computations, all set functions that are
monotonic with respect to set-containment). Then the article showed how these results
can be extended to data streams where ordering becomes an integral part of the data
model. Thus we proposed the notions presequence and τ -presequence that generalize
the notion of set-containment for tuples that are, respectively, ordered implicity by
their arrival or explicitly by their timestamps. We showed that union and other mono-
tonic operators in relational algebra lose their monotonicity properties when they are
applied to ordered sets. Thus we introduce the notion of monotonic approximations for
these operators, that emulate their relational counterparts modulo a time delay. We
were thus able to extend our results on Turing-completeness through UDAs to data
streams explicitly ordered by their timestamps. Therefore the article lays the foun-
dation for a powerful class of relational data models and query languages that are
Turing-complete on stored tables, and N B-complete on data streams. The power and
practicality of this framework was further demonstrated by several application exam-
ples, and the fact that it can be used to emulate richer data stream models (e.g., those
using negative tuples), which have been proposed because of their usefulness in specific
applications.

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

8:28 Y.-N. Law et al.

APPENDIXES

A. FINITE STATE MACHINES

Observe that UDAs can be used to implement efficiently finite states machines (FSM).
Let n be the number of arcs in the FSM. Then we can construct a UDA as follows:
we use a local table to store the current state, the next state, and the information for
comparison. Then we use one statement for initialization. Then for each of the n arcs in
the FSM, we use an update statement changing the current state where the conditions
on the arc are satisfied. Finally, we use one statement for transitioning to the final state,
and the result is returned once we reach this final state. Thus as stated in Proposition
5.5, a FSM with n arcs can be expressed using a UDA with n+2 statements. This ability
to support FSM implies that the search for patterns expressed using Kleene-closure
expressions can also be implemented using UDAs [Mozafari et al. 2010b].

B. IMPLEMENTING TURING MACHINES USING UDAS

A Turing Machine is defined by a tuple M = (Q,',ϒ, δ, q0, !, F), where Q is a finite set
of states, ' ⊆ ϒ is a finite set of input symbols, ϒ is a finite set of tape symbols with
Q∩ ϒ = φ, ! ∈ ϒ − ' is a reserved symbol representing the blank symbol, q0 ⊆ Q is an
initial state, F ⊆ Q is a set of accepting or final states, δ : Q×ϒ → Q×ϒ × {1, 0,−1} is
a transition mapping, where 1,0,−1 denote motion directions. In our implementation,
a user may define a Turing Machine by giving four elements: a transition map(E1),
accepting states(E2), a tape containing the input(E3), and an initial state(E4). With
UDA, we put E1 into a table called transition. E2 is put into table accept. E3 is put
into table tape, which uses an attribute called pos to memorize the position of each
symbol in the tape. Also, there is a table called current, which stores the current state,
the current symbol, and its position on the tape during each iteration. At the first
iteration, the initial state (E4) and the leftmost symbol on the tape (pos=0) are put
into current. For each iteration, a tuple of current is passed to a UDA called turing. If
the transition function is defined for the (state, symbol) pair, we obtain the next state,
the new symbol, and the motion direction for the tape head. Then, the symbol pointed
by the tape head is replaced by the new symbol. We move the head to the next position,
which is given by pos + move. If it is a nonexisting position on the tape, a new blank
symbol is inserted at that position. Then, the updated tuple is inserted into current,
which is then passed to the UDA turing for the next iteration. These procedures are
repeated until the transition function δ is not defined for some (state, symbol) pair.
In this case, the machine halts and checks whether the current state is an accepting
state or not, based on the list of accepting states in table accept. The following is the
implementation of a Turing Machine using UDAs.
TABLE current(stat Char(1), symbol Char(1), pos Int);
TABLE tape(symbol Char(1), pos Int);
TABLE transition(curstate Char(1), cursymbol Char(1),

move int, nextstate Char(1), nextsymbol Char(1));
TABLE accept(accept Char(1));
AGGREGATE turing(stat Char(1), symbol Char(1),

curpos Int) : Int
{ INITIALIZE: ITERATE: {

/*If TM halts, return 1/0(accept/reject)*/
INSERT INTO RETURN

SELECT R.C
FROM (SELECT count(accept) C

FROM accept A
WHERE A.accept = stat) R

WHERE NOT EXISTS (
SELECT * FROM transition T

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

Relational Languages and Data Models for Continuous Queries 8:29

Table I. Transition Mapping δ for Finding the Maximum

0 1 2 3 !
p q, 2, 1 u, !, 1 p, !, 1
q q, 0, 1 r, 1, 1 q, !, 1
r s, 3, −1 t, 1, −1 r, 3, 1 t, !, −1
s s, 0, −1 s, 1, −1 p, 2, 1 s, 3, −1 s, !, −1
t w, 0, −1 t, !, −1 t, 0, −1 t, !, −1 t, !, 1
u u, 0, 1 v, 1, −1 u, 0, 1
v v, 0, −1 p, !, 1
w w, 0, −1 w, o,−1 p, !, 1

WHERE stat = T.curstate AND symbol = T.cursymbol);
/* write tape */
DELETE FROM tape

WHERE pos = curpos;
INSERT INTO tape

SELECT T.nextsymbol, curpos
FROM transition T
WHERE T.curstate = stat AND T.cursymbol = symbol;

/* add blank symbol if necessary */
INSERT INTO tape

SELECT ‘!’, curpos + T.move
FROM transition T
WHERE T.curstate = stat AND T.cursymbol = symbol

AND NOT EXISTS (
SELECT * FROM tape
WHERE pos = curpos + T.move);

/* move head to the next position */
INSERT INTO current

SELECT T.nextstate, A.symbol, A.pos
FROM tape A, transition T
WHERE T.curstate = stat AND T.cursymbol = symbol)

AND A.pos=curpos+T.move;}}
INSERT INTO current

SELECT ‘p’, A.symbol, 0
FROM tape A WHERE A.pos = 0;

SELECT turing(stat, symbol, pos) FROM current;

In the following, we implement a Turing Machine to find the maximum among the
input numbers. The maximum will be stored back into the tape.

Example B.1. Turing Machine for finding the maximum.

Let M = (Q, {0, 1}, {0, 1, 2, 3, !}, δ, p, !, {}) be a Turing Machine for finding the maximum
where δ is given by Table I. For simplicity, we assume that each number is an integer.
Then we represent them in unary; that is, i ≥ 0 is represented by the string 0i. These
integers are placed on the input tape separated by 1s. The idea of this machine is to
repeatedly compare the two left-most integers in the input tape and to store the largest
one back into the input tape. When the machine halts, we eliminate all symbols but 0s
to extract the integer (in unary) in the input tape as the output of the query, which is
the maximum number.

We have shown that UDA can express any function encoded in an arbitrary input
tape. A simple UDA can be used to encode a given table and then, on its TERMINATE

state, call the UDA that performs the actual computations. For several tables we can
let the various UDAs write into the same input tape, with the last UDA calling the
actual computation.

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

8:30 Y.-N. Law et al.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for many suggested improvements. Yijian Bai, Richard Luo
Chang, Hetal Thakkar, and Nikolay Laptev deserve credit for their efficient implementation of UDAs in the
Stream Mill DSMS.

REFERENCES
ABITEBOUL, S., HULL, R., AND VIANU, V. 1995. Foundations of Databases. Addison-Wesley.
ARASU, A., BABU, S., AND WIDOM, J. 2003. CQL: A language for continuous queries over streams and relations.

In Proceedings of the International Conference on Database Programming Languages (DBPL). 1–19.
ARASU, A. AND WIDOM, J. 2004. Resource sharing in continuous sliding-window aggregates. In Proceedings of

the International Conference on Very large Database (VLDB). 336–347.
BABCOCK, B., BABU, S., DATAR, M., MOTAWANI, R., AND WIDOM, J. 2002. Models and issues in data stream systems.

In Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS).

BAI, Y., THAKKAR, H., WANG, H., LUO, C., AND ZANIOLO, C. 2006. A data stream language and system designed for
power and extensibility. In Proceedings of the International Conference on Information and Knowledge
Management (CIKM). 337–346.

BAI, Y., THAKKAR, H., WANG, H., AND ZANIOLO, C. 2008. Timestamp management and query execution models
in data stream management systems. IEEE Internet Comput. 12, 6, 13–21.

BARBARA, D. 1999. The characterization of continuous queries. Intl. J. Coop. Inform. Syst. 8, 4, 295–323.
BOHLEN, M. H. 1994. The temporal deductive database system chronolog. Ph.D. thesis, Department Infor-

matick, ETH Zurich.
CARNEY, D., CETINTEMEL, U., CHERNIACK, M., CONVEY, C., LEE, S., SEIDMAN, G., STONEBRAKER, M., TATBUL, N., AND

ZDONIK, S. 2002. Monitoring streams—a new class of data management applications. In Proceedings of
the International Conference on Very large Databases (VLDB).

CELKO, J. 1995. SQL for Smarties. Morgan Kaufmann, Chapter Advanced SQL Programming.
CHANDRASEKARAN, S. AND FRANKLIN, M. 2002. Streaming queries over streaming data. In Proceedings of the

International Conference on Very large Databases (VLDB).
CHEN, J., DEWITT, D. J., TIAN, F., AND WANG, Y. 2000. NiagaraCQ: A scalable continuous query system for

internet databases. In Proceedings of the ACM SIGMOD International Conference on Management of
Data (SIGMOD). 379–390.

CRANOR, C., GAO, Y., JOHNSON, T., SHKAPENYUK, V., AND SPATSCHECK, O. 2002. Gigascope: High performance net-
work monitoring with an SQL interface. In Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD). ACM Press, 623.

GOLAB, L. AND ÖZSU, M. T. 2003a. Issues in data stream management. ACM SIGMOD Record 32, 2, 5–14.
GOLAB, L. AND ÖZSU, M. T. 2003b. Processing sliding window multi-joins in continuous queries over

data streams. In Proceedings of the International Conference on Very large Databases (VLDB).
500–511.

GOLAB, L. AND ÖZSU, M. T. 2005. Update-pattern-aware modeling and processing of continuous queries.
In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD).
658–669.

GUREVICH, Y., LEINDERS, D., AND DEN BUSSCHE, J. V. 2007. A theory of stream queries. In Proceedings of Database
Programming Languages, 11th International Symposium (DBPL). M. Arenas and M. I. Schwartzbach,
Eds. Springer, 153–168.

GYLLSTROM, D., AGRAWAL, J., DIAO, Y., AND IMMERMAN, N. 2008. On supporting kleene closure over event streams.
In Proceedings of the International Conference on Data Engineering (ICDE). 1391–1393.

HAN, J., FU, Y., WANG, W., KOPERSKI, K., AND ZAIANE, O. R. 1996. DMQL: A data mining query language for
relational databases. In Proceedings of Workshop on Research Issues on Data Mining and Knowledge
Discovery (DMKD). 27–33.

IMIELINSKI, T. AND VIRMANI, A. 1999. MSQL: a query language for database mining. Data Mining Knowl.
Discov. 3, 373–408.

ISO/IEC. 2003. Database languages—sql, iso/iec 9075-*:2003.
JAGADISH, H., MUMICK, I., AND SILBERSCHATZ, A. 1995. View maintenance issues for the chronicle data model.

In Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS). 113–124.

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

Relational Languages and Data Models for Continuous Queries 8:31

JOHNSON, T., MUTHUKRISHNAN, S., SHKAPENYUK, V., AND SPATSCHECK, O. 2005. A heartbeat mechanism and its
application in gigascope. In Proceedings of the International Conference on Very large Databases (VLDB).
1079–1088.

KANG, J., NAUGHTON, J. F., AND VIGLAS, S. 2003. Evaluating window joins over unbounded streams. In Proceed-
ings of the International Conference on Data Engineering (ICDE). 341–352.

KRÄMER, J. AND SEEGER, B. 2005. A temporal foundation for continuous queries over data streams. In Proceed-
ings of the International Conference on Management of Data (COMAD). 70–82.

KRÄMER, J. AND SEEGER, B. 2009. Semantics and implementation of continuous sliding window queries over
data streams. ACM Trans. Datab. Syst. 34, 1.

KRISHNAN, R. AND GOLDSTEIN, J. 2010. Microsoft streaminsight: A hitchhiker’s guide to Microsoft streaminsight
queries. www.microsoft.com/download/8/9/C/89C4DB34-6AB9-4AA2-B2F5-4.

LAW, Y.-N., WANG, H., AND ZANIOLO, C. 2004. Data models and query language for data streams. In Proceedings
of the International Conference on Very Large Databases (VLDB). 492–503.

LI, J., MAIER, D., TUFTE, K., PAPADIMOS, V., AND TUCKE, P. A. 2005a. Semantics and evaluation techniques for
window aggregates in data streams. In Proceedings of the ACM SIGMOD International Conference on
Mangement of Data (SIGMOD). 311–322.

LI, J., MAIER, D., TUFTE, K., PAPADIMOS, V., AND TUCKER, P. A. 2005. No pane, no gain: efficient evaluation of
sliding-window aggregates over data streams. SIGMOD Record 34, 1, 39–44.

LIU, L., PU, C., AND TANG, W. 1999. Continual queries for internet scale event-driven information delivery.
IEEE Trans. Knowl. Data Eng. 11, 4, 583–590.

LUO, C., THAKKAR, H., WANG, H., AND ZANIOLO, C. 2005. A native extension of SQL for mining data streams.
In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD).
873–875.

MADDEN, S., SHAH, M. A., HELLERSTEIN, J. M., AND RAMAN, V. 2002. Continuously adaptive continuous queries
over streams. In Proceedings of the ACM SIGMOD International Conference on Management of Data
(SIGMOD). 49–61.

MEO, R., PSAILA, G., AND CERI, S. 1996. A new SQL-like operator for mining association rules. In Proceedings
of the International Conference on Very large Databases (VLDB). 122–133.

MOTWANI, R., WIDOM, J., ARASU, A., BABCOCK, B., S. BABU, M. D., MANKU, G., OLSTON, C., ROSENSTEIN, J., AND VARMA,
R. 2003. Query processing, approximation, and resource management in a data stream management
system. In Proceedings of the 1st CIDR Conference.

MOZAFARI, B., ZENG, K., AND ZANIOLO, C. 2010a. From regular expressions to nested words: Unifying languages
and query execution for relational and xml sequences. Proc. VLDB 3, 1, 150–161.

MOZAFARI, B., ZENG, K., AND ZANIOLO, C. 2010b. From regular expressions to nested words: Unifying languages
and query execution for relational and XML sequences. In Proceedings of the International Conference
on Very large Database (VLDB).

MOZAFARI, B., ZENG, K., AND ZANIOLO, C. 2010c. K*SQL: a unifying engine for sequence patterns and XML.
In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD).
1143–1146.

PERNG, C.-S. AND PARKER, D. S. 1999. SQL/LPP: A time series extension of SQL based on limited patience
patterns. In Proceedings of the International Conference on Database and Expert Systems (DEXA).
Lecture Notes in Computer Science Series, vol. 1677. Springer.

RAMAKRISHNAN, R., DONJERKOVIC, D., RANGANATHAN, A., BEYER, K., AND KRISHNAPRASAD, M. 1998. SRQL: Sorted
relational query language. In Proceedings of the International Conference on Scientific and Statistical
Database Management (SSBM).

ROZENSHTEIN, D., ABRAMOVICH, A., AND BIRGER, E. 1993. Loop-free SQL solutions for finding continuous regions.
SQL Forum 2, 6.

SADRI, R., ZANIOLO, C., ZARKESH, A., AND ADIBI, J. 2001a. Optimization of sequence queries in database sys-
tems. In Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS).

SADRI, R., ZANIOLO, C., ZARKESH, A. M., AND ADIBI, J. 2001b. A sequential pattern query language for support-
ing instant data minining for e-services. In Proceedings of the International Conference on Very large
Databases (VLDB). 653–656.

SADRI, R., ZANIOLO, C., ZARKESH, A. M., AND ADIBI, J. 2004. Expressing and optimizing sequence queries in
database systems. ACM Trans. Datab. Syst. 29, 2, 282–318.

SARAWAGI, S., THOMAS, S., AND AGRAWAL, R. 1998. Integrating association rule mining with relational database
systems: Alternatives and implications. In Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD).

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

8:32 Y.-N. Law et al.

SESHADRI, P. 1998. Predator: A resource for database research. SIGMOD Record 27, 1, 16–20.
SESHADRI, P., LIVNY, M., AND RAMAKRISHNAN, R. 1994. Sequence query processing. In Proceedings of the ACM

SIGMOD International Conference on Management of Data (SIGMOD). R. T. Snodgrass and M. Winslett,
Eds. ACM Press, 430–441.

SOULÉ, R., HIRZEL, M., GRIMM, R., GEDIK, B., ANDRADE, H., KUMAR, V., AND WU, K.-L. 2010. A universal calculus
for stream processing languages. In Proceedings of the Conference on Programming Languages and
Systems (ESOP). A. D. Gordon, Ed. Springer, 507–528.

SRIVASTAVA, U. AND WIDOM, J. 2004. Flexible time management in data stream systems. In Proceedings of the
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Databases Systems (PODS). 263–274.

SULLIVAN, M. 1996. Tribeca: A stream database manager for network traffic analysis. In Proceedings of the
International Conference on Very large Database (VLDB).

TECHNOLOGIES, I. I. 1994. Illustra user guide.
TERRY, D., GOLDBERG, D., NICHOLS, D., AND OKI, B. 1992. Continuous queries over append-only databases. In

Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD). 321–330.
THAKKAR, H., LAPTEV, N., MOUSAVI, H., MOZAFARI, B., RUSSO, V., AND ZANIOLO, C. 2011. SMM: a data stream

management system for knowledge discovery. In Proceedings of the International Conference on Data
Engineering (ICDE) 27, 1.

TUCKER P., MAIER, D., AND SHEARD T. 2003a. Applying punctuation schemes to queries over continuous data
streams. IEEE Data Eng. Bull. 26, 1, 33–40.

TUCKER, P. A., MAIER, D., SHEARD, T., AND FEGARAS, L. 2003b. Exploiting punctuation semantics in continuous
data streams. IEEE Trans. Knowl. Data Eng. 15, 3, 555–568.

WANG, H. AND ZANIOLO, C. 2003. ATLaS: a native extension of SQL for data minining. In Proceedings of the
3rd SIAM International Conference on Data Mining. 130–141.

WU, E., DIAO, Y., AND RIZVI, S. 2006. High-performance complex event processing over streams. In Proceedings
of the ACM SIGMOD International Conference on Management of Data (SIGMOD). 407–418.

ZANIOLO, C., CERI, S., FALOUTSOS, C., SNODGRASS, R., SUBRAHMANIAN, V. S., AND ZICARI, R. 1997. Advanced Database
Systems. Morgan Kaufmann.

ZEMKE, F., WITKOWSKI, A., CHERNIAK, M., AND COLBY, L. 2007. Pattern matching in sequences of rows.
In http://asktom.oracle.com/tkyte/row-patternrecogniton-11-public.pdf http://www.sqlsnippets.com/
en/topic-12162.html.

Received April 2010; revised September 2010, November 2010; accepted November 2010

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 8, Publication date: May 2011.

