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Simple Packet Network Model

• directed graph G = (V, E), |V | = n, |E| = m;

• d - longest simple path

• synchronous model

• unit capacity edges – 1 packet / time step × edge

• a packet (s, t, π)–injected at s and destined for t,

• and routed along the (possibly implicitly) prescribed paths (π)

• “store and forward” routing – buffers at the tail of edges
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Protocol Analysis

Ideally, protocols are:
• online
• local control

Goal: analyze and compare efficacy of various protocols on various
topologies
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Previous Approaches–Stability Analysis

Network Model

• A priori, buffers are assumed to be infinitely large

• No packets are dropped

Protocols

• Scheduling algorithm: Method for deciding whether to
forward a packet from an output buffer, and if so, which packet

• Greedy scheduling: Always send a packet if there is one to
send. If there is more than one, decide which one to send
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Stability Analysis–cont’d

Traffic Model

• Queuing Theory: Random arrival process (typically poison)
and random destination (typically uniform)

• Adversarial Queuing Theory: Abritrary traffic with the
following restiction.

For each edge and during each inteval of time, the

number of packets injected during that time interval (that

pass through that edge) cannot exceed a certain bound

proprtional to the size of that time interval.

Metric

• Queue size: Maximum number of packets ever in a buffer

• Queuing Theory: Expected Queue Size

• Adversarial Queuing Theory: Worst-Case Queue-Size
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Stable Protocols

• A protocol on a given network is stable if the queue size does
not grow with time

• In order that there be any stable protocols, the traffic model
cannot inherently overload the network

• For “reasonable” traffic models, the queue size of stable
protocols is an increasing function of network parameters

• In AQT, the queue size is at least Ω(d)
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Provisioning Buffer Memory

• With an a priori bound on the network size, and

• With an accurate traffic model

The results of stability analysis can be used to bound the memory
size needed by routers so that no packet is ever dropped

Traffic modeling

• What happens when traffic does not follow the model ?

Scalability

• What happens when the network continues to grow?

Empirically in the Internet the size of the buffers and the traffic are
such that packets are routinely dropped.
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Our Approach: Competitive Network Throughput

Network Model

• Buffers of preallocated size B - The size B is a parameter of
our model and is independent of network parameters.

Protocols

• We require both a scheduling algorithm and a contention
resolution algorithm

• Contention Resolution algorithms: Methods for deciding
which packets in the input ports to transfer to the output ports
and which to drop
- Geedy Contention Resolution: Do not drop packets unless the

output buffer is full

- Preemptive Contention Resolution: May drop packets

already in the buffer
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Our Approach–cont’d

Traffic Model

• Completely arbitrary traffic–no restrictions

Metric

• Competitive ratio of the throughput

• Must fundamentally deal with effects of dropped packets on
throughput in analysis

• No online algorithm can be competitive for the measure of the
number of packets dropped

Goal: Use the Competitive Network Throughput model and
metric to compare and contrast the performance of various
protocols on various network topologies
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Some Details: Throughput-Competitiveness

Compare the online local protocol to the (utopian) offline
clairvoyant algorithm.

• Let ADV t(σ) be the number of packets delivered by the
adversary by time t on traffic σ.

• Let P t(σ) be the number of packets delivered by P by time t on
traffic σ.

A protocol P is c-throughput-competitive if:
∀σ ∀t P t(σ) ≥ (1/c)OPT t(σ)− α.
where α is a constant, independent of the traffic σ.

• Some input traffic sequences inherently have low throughput

• The online algorithm is only penalized when the offline
algorithm has high throughput and it has low throughput
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Well-Known Greedy Protocols

Consider the following prioritizaion schemes for
• Scheduling, and
• Preemptive Contention Resolution

NTG - Nearest To Go
FFO - Furthest From Origin

FTG - Furthest To Go
NTO - Nearest To Origin

LIS - Longest In System
SIS - Shortest In System

FIFO - First In First Out

• We typically use the same scheme for both scheduling and
contention resolution
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Main Results

• All greedy protocols are competitive on all DAGS:

For graph G, O(f(G))-competitive

• Some greedy protocols are not competitive on networks that
contain a cycle:

FTG, NTO, SIS, FIFO

• Some greedy protocols are competitive on arbitrary networks:

NTG, FFO, LIS

• For the topology of the line:

NTG - O(n2/3)-competitive

FTG; LIS - Θ(n)-competitive

Any greedy protocol is Ω(n1/2)-competitive.
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Main Results (cont’d)

A comparison of several deterministic greedy protocols. The rows
denote whether the protocols are throughput-competitive or AQT
stable for all networks. [Borodin et al., Andrews et al., Gamarnik] :

NTG FFO FTG NTO SIS LIS FIFO

stable No No Yes Yes Yes Yes No

competitive Yes Yes No No No Yes No

• FTG is stable on any topology as long as traffic
allows stability [Gamarnik; Andrews et al.];
• NTG can be unstable even at
arbitrary low injection rates [Borodin et al.].

All 4 combinations of stable or unstable with competitive or
non-competitive are present!
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Main Results (cont’d)

Stability analysis may not be the right means to compare protocols:

• in continuously growing networks,

• with ill-behaved traffic, and

• with buffers that don’t scale in size with the network

• the Internet.
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REST of THE TALK: two examples

• NTG is Throughput-Competetive on all networkds.

• FTG is NOT Throughput-Competetive on the cycle.
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Nearest-To-Go is Throughput Competitive

Lemma: If at time t NTG stores k packets, then by time t + dB it
delivers at least min{k, B} packets.

Proof:

`τ - shortest distance-to-destination in network at time τ .
If `τ = 1, a packet is delivered at time τ + 1.
If `τ > 1, `τ+1 < `τ .
Therefore at least one packet is delivered within d time steps.

Number of packets in the system drops below min{k,B} only by
packet arrival.

2
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Nearest-To-Go (cont.)

definitions:

• weight of packet p -

weight(p) =





1 if p delivered by adversary

0 otherwise

• Frame j - [(j − 1)dB + 1, jdB)

• aj - total weight of packets injected in frame j.
• bj - number of packets delivered by NTG in frame j.
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Nearest-To-Go (cont.)

Lemma: ∀j, bj + bj+1 ≥ min{aj , B}.
Proof:

case 1: NTG stores at some time in frame j B packets.
bj + bj+1 ≥ B.

case 2: During all of frame j NTG stores less than B packets.
No packet is dropped during frame j.
A t the end of frame j, NTG has at least aj − bj < B

packets.
bj+1 ≥ aj − bj ; bj + bj+1 ≥ aj .

2

Lemma: ∀j, aj ≤ 2mdB.

Proof:

At most m · dB delivered during frame.
At most mB stored in buffers at the end of frame.
2

Corollary: ∀j, bj + bj+1 ≥ aj

2md .
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Nearest-To-Go (cont.)

Theorem: NTGt ≥ ADV t

4md −B.

Proof:

NTGt =
∑s

j=1 bj ≥
1
2

∑s−1
j=1(bj + bj+1) ≥

1
2

∑s−1
j=1

aj

2md ≥
ADV t

4md −B

2
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FTG not competitive on the cycle

• Unidirectional cycle of n nodes, [0, n− 1].

• ∀t, ∀i, inject at i a packet with destination (i + 2) mod n.

• Adversary can deliver (roughly) half of all the packets.
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Conclusions

• A model for the analysis of network protocols in a setting that
explicitly addresses dropped packets, allows constant-sise
buffers and arbitrary traffic.

• A number of results using this model comparing protocols and
topologies.

• Some conclusions are in contrast to those of Adversarial
Queuing Theory — Stability analysis may not be the right
means to compare protocols:
– in continuously growing networks,
– with ill-behaved traffic,
– with buffers that don’t scale in size with the network, and
– for the Internet.

• Many open questions!


