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Abstract: The aim of this paper is to demonstrate the feasibility of authenticated
throughput-e�cient routing in an unreliable and dynamically changing synchronous
network in which the majority of malicious insiders try to destroy and alter messages
or disrupt communication in any way. More speci�cally, in this paper we seek to answer
the following question: Given a network in which the majority of nodes are controlled
by a node-controlling adversary and whose topology is changing every round, is it
possible to develop a protocol with polynomially-bounded memory per processor that
guarantees throughput-e�cient and correct end-to-end communication? We answer the
question a�rmatively for extremely general corruption patterns: we only request that
the topology of the network and the corruption pattern of the adversary leaves at least
one path each round connecting the sender and receiver through honest nodes (though
this path may change at every round). Out construction works in the public-key setting
and enjoys bounded memory per processor (that is polynomial in the network size and
does not depend on the amount of tra�c). Our protocol achieves optimal transfer
rate with negligible decoding error. We stress that our protocol assumes no knowledge
of which nodes are corrupted nor which path is reliable at any round, and is also
fully distributed with nodes making decisions locally, so that they need not know the
topology of the network at any time.

The optimality that we prove for our protocol is very strong. Given any rout-
ing protocol, we evaluate its e�ciency (rate of message delivery) in the �worst case,�
that is with respect to the worst possible graph and against the worst possible (poly-
nomially bounded) adversarial strategy (subject to the above mentioned connectivity
constraints). Using this metric, we show that there does not exist any protocol that
can be asymptotically superior (in terms of throughput) to ours in this setting.

We remark that the aim of our paper is to demonstrate via explicit example the
feasibility of throughput-e�cient authenticated adversarial routing. However, we stress
that out protocol is not intended to provide a practical solution, as due to its complexity,
no attempt thus far has been made to reduce constants and memory requirements.

Our result is related to recent work of Barak, Goldberg and Xiao in 2008 [9]
who studied fault localization in networks assuming a private-key trusted setup set-
ting. Our work, in contrast, assumes a public-key PKI setup and aims at not only fault
localization, but also transmission optimality. Among other things, our work answers
one of the open questions posed in the Barak et. al. paper regarding fault localization
on multiple paths. The use of a public-key setting to achieve strong error-correction
results in networks was inspired by the work of Micali, Peikert, Sudan and Wilson [14]
? Full version of the paper is available on-line [5].
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who showed that classical error-correction against a polynomially-bounded adversary
can be achieved with surprisingly high precision. Our work is also related to an interac-
tive coding theorem of Rajagopalan and Schulman [15] who showed that in noisy-edge
static-topology networks a constant overhead in communication can also be achieved
(provided none of the processors are malicious), thus establishing an optimal-rate rout-
ing theorem for static-topology networks.

Finally, our work is closely related and builds upon to the problem of End-To-
End Communication in distributed networks, studied by Afek and Gafni [1], Awebuch,
Mansour, and Shavit [8], and Afek, Awerbuch, Gafni, Mansour, Rosen, and Shavit [2],
though none of these papers consider or ensure correctness in the setting of a node-
controlling adversary that may corrupt the majority of the network.

Keywords: Network Routing; End-to-End Communication; Fault Localization; Error-
Correction; Multi-Party Computation; Communication Complexity

1 Introduction
Our goal is to design a routing protocol for an unreliable and dynamically

changing synchronous network that is resilient against malicious insiders who
may try to destroy and alter messages or disrupt communication in any way.
We model the network as a communication graph G = (V, E) where each vertex
(node) is a processor and each edge is a communication link. We do not assume
the topology of this graph is �xed or known by the processors. Rather, we assume
a complete graph on n vertices, where some of the edges are �up� and some are
�down�, and the status of each edge can change dynamically at any time.

We concentrate on the most basic task, namely how two processors in the
network can exchange information. Thus, we assume that there are two desig-
nated vertices, called the sender S and the receiver R, who wish to communicate
with each other. The sender has an in�nite read-once input tape of packets and
the receiver has an in�nite write-once output tape which is initially empty. We
assume that packets are of some bounded size, and that any edge in the sys-
tem that is �up� during some round can transmit only one packet (or control
variables, also of bounded size) per round.

We will evaluate our protocol using the following three considerations:
1. Correctness. A protocol is correct if the sequence of packets output by the

receiver is a pre�x of packets appearing on the sender's input tape, without
duplication or omission.

2. Throughput. This measures the number of packets on the output tape as
a function of the number of rounds that have passed.

3. Processor Memory. This measures the memory required of each node by
the protocol, independent of the number of packets to be transferred.

All three considerations will be measured in the worst-case scenario as standards
that are guaranteed to exist regardless of adversarial interference. One can also
evaluate a protocol based on its dependence on global information to make de-
cisions. The protocol that we present in this paper will not assume the internal
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nodes have a global view of the network. Such protocols are termed �local con-
trol,� in that each node can make all routing decisions based only on the local
conditions of its adjacent edges and neighbors.

Our protocol is designed to be resilient against a malicious, polynomially-
bounded adversary who may attempt to impact the correctness, throughput, and
memory of our protocol by disrupting links between the nodes or by taking
direct control over the nodes and forcing them to deviate from our protocol in
any manner the adversary wishes. In order to relate our work to previous results
and to clarify the two main forms of adversarial interference, we describe two
separate (yet coordinated with each other) adversaries:4

Edge-Scheduling Adversary. This adversary controls the links between nodes
every round. More precisely, for each round, this adversary decides which
edges in the network are up and which are down. We will say that the edge-
scheduling adversary is conforming if for every round there is at least one
path from the sender to the receiver (although the path may change each
round).5 The adversary can make any arbitrary poly-time computation to
maximize interference in routing, so long as it remains conforming.
Node-Controlling Adversary. This adversary controls the nodes of the network
that it has corrupted. More precisely, each round this adversary decides
which nodes to corrupt. Once corrupted, a node is forever under complete
adversarial control and can behave in an arbitrary malicious manner. We say
that the node-controlling adversary is conforming if every round there is a
connection between the sender and receiver consisting of edges that are �up�
for the round (as speci�ed by the edge-scheduling adversary) and that passes
through uncorrupted nodes. We emphasize that this path can change each
round, and there is no other restriction on which nodes the node-controlling
adversary may corrupt (allowing even a vast majority of corrupt nodes).

There is another reason to view these adversaries as distinct: we deal with the
challenges they pose to correctness, throughput, and memory in di�erent ways.
Namely, aside from the conforming condition, the edge-scheduling adversary
cannot be controlled or eliminated. Edges themselves are not inherently �good�
or �bad,� so identifying an edge that has failed does not allow us to forever
refuse the protocol to utilize this edge, as it may come back up at any time
(and indeed it could form a crucial link on the path connecting the sender and
receiver that the conforming assumption guarantees). In sum, we cannot hope
4 The separation into two separate adversaries is arti�cial: our protocol is secure
whether edge-scheduling and corruption of nodes are performed by two separate
adversaries that have di�erent capabilities yet can coordinate their actions with
each other, or this can be viewed as a single coordinated adversary.

5 A more general de�nition of an edge-scheduling adversary would be to allow com-
pletely arbitrary edge failures, with the exception that in the limit there is no per-
manent cut between the sender and receiver. However, this de�nition (while more
general) greatly complicates the exposition, including the de�nition of throughput
rate, and we do not treat it here.
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to control or alter the behavior of the edge-scheduling adversary, but must come
up with a protocol that works well regardless of the behavior of the ever-present
(conforming) edge-scheduling adversary.

By contrast, our protocol will limit the amount of in�uence the node-control-
ling adversary has on correctness, throughput, and memory. Speci�cally, we will
show that if a node deviates from the protocol in a su�ciently destructive manner
(in a well-de�ned sense), then our protocol will be able to identify it as corrupted
in a timely fashion. Once a corrupt node has been identi�ed, it will be eliminated
from the network. Namely, our protocol will call for honest nodes to refuse all
communication with nodes that have been eliminated.6 Thus, there is an inherent
di�erence in how the two adversaries are handled: We can restrict the in�uence of
the node-controlling adversary by eliminating the nodes it has corrupted, while
the edge-scheduling adversary must be dealt with in a more ever-lasting manner.

1.1 Previous Work
To motivate the importance of the problem we consider in this paper, and to

emphasize the signi�cance of our result, it will be useful to highlight recent works
in related areas. To date, routing protocols that consider adversarial networks
have been of two main �avors: End-to-End Communication protocols that con-
sider dynamic topologies (a notion captured by our �edge-scheduling adversary�),
and Fault Detection and Localization protocols, which handle devious behavior
of nodes (as modeled by our �node-controlling adversary�).

End-to-End Communication: One of the most relevant research directions
to our paper is the notion of End-to-End Communication in distributed net-
works, considered by Afek and Gafni [1], Awerbuch, Mansour and Shavit [8],
Afek, Awebuch, Gafni, Mansour, Rosen, and Shavit [2], and Kushilevitz, Ostro-
vsky and Rosen [13]. Indeed, our starting point is the Slide protocol (also known
in practical works as �gravitational �ow� routing) developed in these works. It
was designed to perform end-to-end communication with bounded memory in a
model where (using our terminology) an edge-scheduling adversary controls the
edges (subject to the constraint there is no permanent cut between the sender
and receiver). The Slide protocol has proven to be incredibly useful in a variety
of settings, including multi-commodity �ow (Awerbuch and Leigthon [7]) and in
developing routing protocols that compete well (in terms of packet loss) against
an online bursty adversary ([4]). However, prior to our work there was no version
of the Slide protocol that could handle malicious behavior of the nodes.

Fault Detection and Localization Protocols: At the other end, there
have been a number of works that explore the possibility of a node-controlling
adversary that can corrupt nodes. In particular, there is a recent line of work that
considers a network consisting of a single path from the sender to the receiver,
culminating in the recent work of Barak, Goldberg and Xiao [9] (for further
6 The conforming assumption guarantees that the sender and receiver are incorrupt-
ible, and in our protocol they will identify and eliminate corrupt nodes.
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background on fault localization see references therein). In this model, the ad-
versary can corrupt any node on the path (except the sender and receiver) in a
dynamic and malicious manner. Since corrupting any node on the path will sever
the honest connection between S and R, the goal of a protocol in this model is
not to guarantee that all messages sent to R are received. Instead, the goal is to
detect faults when they occur and to localize the fault to a single edge.

There have been many results that provide Fault Detection (FD) and Fault
Localization (FL) in this model. In Barak et. al. [9], they formalize the de�nitions
in this model and the notion of a secure FD/FL protocol, as well as providing
lower bounds in terms of communication complexity to guarantee accurate fault
detection/location in the presence of a node-controlling adversary. While the
Barak et. al. paper has a similar �avor to our paper, we emphasize that their
protocol does not seek to guarantee successful or e�cient routing between the
sender and receiver. Instead, their proof of security guarantees that if a packet
is deleted, malicious nodes cannot collude to convince S that no fault occurred,
nor can they persuade S into believing that the fault occurred on an honest
edge. Localizing the fault in their paper relies on cryptographic tools, and in
particular the assumption that one-way functions exist. Although utilizing these
tools (such as MACs or Signature Schemes) increases communication cost, it is
shown by Goldberg, Xiao, Barak, and Redford [12] that the existence of a pro-
tocol that is able to securely detect faults (in the presence of a node-controlling
adversary) implies the existence of one-way functions, and it is shown in Barak
et. al. [9] that any protocol that is able to securely localize faults necessarily
requires the intermediate nodes to have a trusted setup. The proofs of these
results do not rely on the fact that there is a single path between S and R, and
we can therefore extend them to the more general network encountered in our
model to justify our use of cryptographic tools and a trusted setup assumption
(i.e. PKI) to identify malicious behavior.

Another paper that addresses routing in the Byzantine setting is the work
of Awerbuch, Holmes, Nina-Rotary and Rubens [6], though this paper does not
have a fully formal treatment of security, and indeed a counter-example that
challenges its security is discussed in the appendix of [9].

Error-correction in the active setting: Due to space considerations, we
will not be able to give a comprehensive account of all the work in this area. In-
stead we highlight some of the most relevant works and point out how they di�er
from our setting and results. For a lengthy treatment of error-correcting codes
against polynomially bounded adversaries, we refer to the work of Micali at. al
[14] and references therein. It is important to note that this work deals with a
graph with a single �noisy� edge, as modelled by an adversary who can partially
control and modify information that crosses the edge. In particular, it does not
address throughput e�ciency or memory considerations in a full communica-
tion network, nor does it account for malicious behavior at the vertices. Also
of relevance is the work on Rajagopalan and Schulman on error-correcting net-
work coding [15], where they show how to correct noisy edges during distributed
computation. Their work does not consider actively malicious nodes, and thus



6 Yair Amir, Paul Bunn, and Rafail Ostrovsky

is di�erent from our setting. It should also be noted that their work utilizes
Schulman's tree-codes [18] that allow length-�exible online error-correction. The
important di�erence between our work and that of Schulman is that in our net-
work setting, the amount of malicious activity of corrupt nodes is not restricted.

1.2 Our Results

To date, there has not been a protocol that has considered simultaneously
a network susceptible to faults occurring due to edge-failures and faults occur-
ring due to malicious activity of corrupt nodes. The end-to-end communication
works are not secure when the nodes are susceptible to corruption, and the fault
detection and localization works focus on a single path for some duration of
time, and do not consider a fully distributed routing protocol that utilizes the
entire network and attempts to maximize throughput e�ciency while guarantee-
ing correctness. Indeed, our work answers one of the open questions posed in the
Barak et. al. paper regarding fault localization on multiple paths. In this paper
we bridge the gap between these two research areas and obtain the �rst routing
protocol simultaneously secure against both an edge-scheduling adversary and a
node-controlling adversary, even if these two adversaries attack the network using
an arbitrary coordinated poly-time strategy. Furthermore, our protocol achieves
comparable e�ciency standards in terms of throughput and processor memory
as state-of-the-art protocols that are not secure against a node-controlling ad-
versary, and it does so using local-control. An informal statement of our result
can be found below. We emphasize that the linear transmission rate that we
achieve (assuming at least n2 messages are sent) is asymptotically optimal, as
any protocol operating in a network with a single path connecting sender and
receiver can do no better than one packet per round.

A ROUTING THEOREM FOR ADVERSARIAL NETWORKS (In-
formal): If one-way functions exist, then for any n-node graph and k su�ciently
large, there exists a trusted-setup linear throughput transmission protocol that can
send n2 messages in O(n2) rounds with O(n4(k+log n)) memory per processor that
is resilient against any poly-time conforming Edge-Scheduling Adversary and any
conforming poly-time Node-Controlling Adversary, with negligible (in k) probability
of failure or decoding error.

Secure Against: Processor Throughput Rate
Edge- Node- Memory x rounds→
Sched? Contr? f(x) packets

Slide Protocol of [2] Y ES NO O(n2 log n) f(x) = O(x− n2)

Slide Protocol of [13] Y ES NO O(n log n) f(x) = O(x/n− n2)
(folklore)

(Flooding + Signatures) Y ES Y ES O(1) f(x) = O(x/n− n2)
(folklore)

(Signatures + Sequence No.'s) Y ES Y ES unbounded f(x) = O(x− n2)

Our Protocol Y ES Y ES O(n4(k+log n)) f(x) = O(x− n2)

Fig. 1. Comparison of Our Protocol to Related Existing Protocols and Folklore.



Authenticated Adversarial Routing 7

2 Challenges and Naïve Solutions

Before proceeding, it will be useful to consider a couple of naïve solutions
that achieve the goal of correctness (but perform poorly in terms of throughput),
and help to illustrate some of the technical challenges that our theorem resolves.
Consider the approach of having the sender continuously �ood a single signed
packet into the network for n rounds. Since the conforming assumption guaran-
tees that the network provides a path between the sender and receiver through
honest nodes at every round, this packet will reach the receiver within n rounds,
regardless of adversarial interference. After n rounds, the sender can begin �ood-
ing the network with the next packet, and so forth. Notice that this solution will
require each processor to store and continuously broadcast a single packet at any
time, and hence this solution achieves excellent e�ciency in terms of processor
memory. However, notice that the throughput rate is sub-linear, namely after x
rounds, only O(x/n) packets have been outputted by the receiver.

One idea to try to improve the throughput rate might be to have the sender
streamline the process, sending packets with ever-increasing sequence numbers
without waiting for n rounds to pass (or signed acknowledgments from the re-
ceiver) before sending the next packet. In particular, across each of his edges
the sender will send every packet once, waiting only for the neighboring node's
con�rmation of receipt before sending the next packet across that edge. The pro-
tocol calls for the internal nodes to act similarly. Analysis of this approach shows
that not only has the attempt to improve throughput failed (it is still O(x/n) in
the worst-case scenario), but additionally this modi�cation requires arbitrarily
large (polynomial in n and k) processor memory, since achieving correctness in
the dynamic topology of the graph will force the nodes to remember all of the
packets they see until they have broadcasted them across all adjacent edges or
seen con�rmation of their receipt from the receiver.

2.1 Challenges in Dealing with Node-Controlling Adversaries

In this section, we discuss some potential strategies that the node-controlling
and edge-scheduling adversaries may incorporate to disrupt network communi-
cation. Although our theorem will work in the presence of arbitrary malicious
activity of the adversarial controlled nodes (except with negligible probability),
it will be instructive to list a few obvious forms of devious behavior that our
protocol must protect against. It is important to stress that this list is not in-
tended to be exhaustive. Indeed, we do not claim to know all the speci�c ways
an arbitrary polynomially bounded adversary may force nodes to deviate from
a given protocol, and we rigorously prove that our protocol is secure against all
possible deviations.
Packet Deletion/Modi�cation. Instead of forwarding a packet, a corrupt node
�drops it to the �oor� (i.e. deletes it or e�ectively deletes it by forever storing it in
memory), or modi�es the packet before passing it on. Another manifestation of
this is if the sender requests fault localization information of the internal nodes,
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such as providing documentation of their interactions with neighbors. A corrupt
node can then block or modify information that passes through it in attempt to
hide malicious activity or implicate an honest node.
Introduction of Junk/Duplicate Packets. The adversary can attempt to disrupt
communication �ow and �jam� the network by having corrupted nodes introduce
junk packets or re-broadcast old packets. Notice that junk packets can be handled
by using cryptographic signatures to prevent introduction of �new� packets, but
this does not control the re-transmission of old, correctly signed packets.
Disobedience of Transfer Rules. If the protocol speci�es how nodes should make
decisions on where to send packets, etc., then corrupt nodes can disregard these
rules, including lying to adjacent nodes about their current state.
Coordination of Edge-Failures. The edge-scheduling adversary can attempt to dis-
rupt communication �ow by scheduling edge-failures in any manner that is con-
sistent with the conforming criterion. Coordinating edge-failures can be used to
impede correctness, memory, and throughput in various ways: e.g. packets may
become lost across a failed edge, stuck at a suddenly isolated node, or arrive at
the receiver out of order. A separate issue arises concerning fault localization:
When the sender requests documentation from the internal nodes, the edge-
scheduling adversary can slow progress of this information, as well as attempt to
protect corrupt nodes by allowing them to �play-dead� (setting all of its adjacent
edges to be down), so that incriminating evidence cannot reach the sender.

2.2 Highlights of Our Solution

Our starting point is the Slide protocol [2], which has enjoyed practical suc-
cess in networks with dynamic topologies, but is not secure against nodes that
are allowed to behave maliciously. Due to space constraints, we will only high-
light the main ideas of the protocol here; the interested reader can �nd a full
exposition in [5]. We begin by viewing the edges in the graph as consisting of
two directed edges, and associate to each end of a directed edge a stack data-
structure able to hold 2n packets and to be maintained by the node at that
end. The protocol speci�es the following simple, local condition for transferring
a packet across a directed edge: if there are more packets in the stack at the
originating end than the terminating end, transfer a packet across the edge.
Similarly, within a node's local stacks, packets are shu�ed to average out the
stack heights along each of its edges. Intuitively, packet movement is analogous
to the �ow of water: high stacks create a pressure that force packets to ��ow�
to neighboring lower stacks. At the source, the sender maintains the pressure by
�lling his outgoing stacks (as long as there is room) while the receiver relieves
pressure by consuming packets and keeping his stacks empty. Loosely speaking,
packets traveling to nodes �near� the sender will therefore require a very large
potential, packets traveling to nodes near the receiver will require a small poten-
tial, and packet transfers near intermediate nodes will require packages to have
a moderate potential. Assuming these potential requirements exist, packets will



Authenticated Adversarial Routing 9

pass from the sender with a high potential, and then ��ow� downwards across
nodes requiring less potential, all the way to the receiver.

Because the Slide protocol provides a fully distributed protocol that works
well against an edge-scheduling adversary, our starting point was to try to extend
the protocol by using digital signatures7 to provide resilience against Byzantine
attacks and arbitrary malicious behavior of corrupt nodes. This proved to be
a highly nontrivial task that required us to develop a lot of additional machin-
ery, both in terms of additional protocol ideas and novel techniques for proving
correctness. We give a detailed explanation of our techniques in Section 3, but
due to space considerations we have omitted the formal pseudo-code and rig-
orous proofs of security (these can be found in the full version, see [5]). Below
we give a sample of some of the key ideas we used in ensuring our additional
machinery would be provably secure against a node-controlling adversary, and
yet not signi�cantly a�ect throughput or memory, compared to the original Slide
protocol:
Addressing the �Coordination of Edge-Scheduling� Issues. In the ab-
sence of a node-control- ling adversary, previous versions of the Slide protocol
(e.g. [2]) are secure and e�cient against an edge-scheduling adversary, and it
will be useful to discuss how some of the challenges posed by a network with a
dynamic topology are handled. First, note that the total capacity of the stack
data-structure is bounded by 4n3. That is, each of the n nodes can hold at most
2n packets in each of their 2n stacks (along each directed edge) at any time.

� To handle the loss of packets due to an edge going down while transmitting
a packet, a node is required to maintain a copy of each packet it transmits
along an edge until it receives con�rmation from the neighbor of successful
receipt.

� To handle packets becoming stuck in some internal node's stack due to edge
failures, error-correction is utilized to allow the receiver to decode a full
message without needing every packet. In particular, if an error-correcting
code allowing a fraction of λ faults is utilized, then since the capacity of
the network is 4n3 packets, if the sender is able to pump 4n3/λ codeword
packets into the network and there is no malicious deletion or modi�cation
of packets, then the receiver will necessarily have received enough packets to
decode the message.

� The Slide protocol has a natural bound in terms of memory per processor
of O(n2 log n) bits, where the bottleneck is the possibility of a node holding

7 In this paper we use public-key operations to sign individual packets with control
information. Clearly, this is too expensive to do per-packet in practice. There are
methods of amortizing the cost of signatures by signing �batches� of packets; using
private-key initialization [9, 12], or using a combination of private-key and public key
operations, such as �on-line/o�-line� signatures [10, 17]. For the sake of clarity and
since the primary focus of our paper is theoretical feasibility, we restrict our attention
to the straight-forward public-key setting without considering these additional cost-
saving techniques.
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up to 2n2 packets in its stacks, where each packet requires O(log n) bits to
describe its position in the code.

Of course, these techniques are only valid if nodes are acting honestly, which
leads us to our �rst extension idea.
Handling Packet Modification and Introduction of Junk Packets.
Before inserting any packets into the network, the sender will authenticate each
packet using his digital signature, and intermediate nodes and the receiver never
accept or forward messages not appropriately signed. This simultaneously pre-
vents honest nodes becoming bogged down with junk packets, as well as ensuring
that if the receiver has obtained enough authenticated packets to decode, a node-
controlling adversary cannot impede the successful decoding of the message as
the integrity of the codeword packets is guaranteed by the inforgibility of the
sender's signature.
Fault Detection. In the absence of a node-controlling adversary, our protocol
looks almost identical to the Slide protocol of [2], with the addition of signatures
that accompany all interactions between two nodes. First, the sender attempts
to pump the 4n3/λ codeword packets of the �rst message into the network,
with packet movement exactly as in the original Slide protocol. We consider all
possible outcomes:

1. The sender is able to insert all codeword packets and the receiver is able to de-
code. In this case, the message was transmitted successfully, and our protocol
moves to transfer the next message.

2. The sender is able to insert all codeword packets, but the receiver has not
received enough to decode. In this case, the receiver �oods the network with
a single-bit message indicating packet deletion has occurred.

3. The sender is able to insert all codeword packets, but the receiver cannot decode
because he has received duplicated packets. Although the sender's authenti-
cating signature guarantees the receiver will not receive junk or modi�ed
packets, a corrupt node can duplicate valid packets. Therefore, the receiver
may receive enough packets to decode, but cannot because he has received
duplicates. In this case, the receiver �oods the network with a single message
indicating the label of a duplicated packet.

4. After some amount of time, the sender still has not inserted all codeword packets.
In this case, the duplication of old packets is so severe that the network
has become jammed, and the sender is prevented from inserting packets
even along the honest path that the conforming assumption guarantees. If
the sender believes the jamming cannot be accounted for by edge-failures
alone, he will halt transmission and move to localizing a corrupt node.8 One

8 We emphasize here the importance that the sender is able to distinguish the case
that the jamming is a result of the edge-scheduling adversary's controlling of edges
verses the case that a corrupt node is duplicating packets. After all, in the case of
the former, there is no reward for �localizing� the fault to an edge that has failed,
as all edges are controlled by the edge-scheduling adversary, and therefore no edge
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contribution this paper makes is to prove a lower bound on the insertion rate
of the sender for the Slide protocol in the absence of the node-controlling
adversary. This bound not only alerts the sender when the jamming he is
experiencing exceeds what can be expected in the absence of corrupt nodes,
but it also provides a mechanism for localizing the o�ending node(s).

The above four cases exhaust all possibilities. Furthermore, if a transmission
is not successful, the sender is not only able to detect the fact that malicious
activity has occurred, but he is also able to distinguish the form (i.e. Case 2-4)
of the malicious activity. Meanwhile, for the top case, our protocol enjoys (within
a constant factor) an equivalent throughput rate as the original Slide protocol.
Fault Localization. Once a fault has been detected, it remains to describe
how to localize the problem to the o�ending node. To this end, we use digital
signatures to achieve a new mechanism we call �Routing with Responsibility.�
By forcing nodes to sign key parts of every communication with their neighbors
during the transfer of packets, they can later be held accountable for their ac-
tions. In particular, once the sender has identi�ed the reason for failure (Cases
2-4 above), he will request all internal nodes to return status reports, which are
signatures on the relevant parts of the communication with their neighbors. We
then prove in each case that with the complete status report from every node,
the sender can identify and eliminate a corrupt node. Of course, malicious nodes
may choose not to send self-incriminating information. We handle this separately
as explained below.
Processor Memory. The signatures on the communication a node has with
its neighbors for the purpose of fault localization is a burden on the memory
required of each processor that is not encountered in the original Slide protocol.
One major challenge was to reduce the amount of signed information each node
must maintain as much as possible, while still guaranteeing that each node has
maintained �enough� information to identify a corrupt node in the case of ar-
bitrary malicious activity leading to a failure of type 2-4 above. The content of
Theorem 32 in Section 3 demonstrates that the extra memory required of our
protocol is a factor of n2 higher than that of the original Slide protocol.
Incomplete Information. As already mentioned, we will show that as long
as the sender has the complete status reports from every node, he will be able to
identify a corrupt node, regardless of the reason for failure 2-4 above. However,
this relies on the sender obtaining all of the relevant information; the absence
of even a single node's information can prevent the localization of a fault. We
address this challenge in the following ways:

1. We minimize the amount of information the sender requires of each node.
This way, a node need not be connected to the sender for very many rounds
in order for the sender to receive its information. Speci�cally, regardless of

is inherently better than another. But in the case a node is duplicating packets,
if the sender can identify the node, it can eliminate it and e�ectively reduce the
node-controlling adversary's ability to disrupt communication in the future.
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the reason for failure 2-4 above, a status report consists of only n pieces of
information from each node, i.e. one packet for each of its edges.

2. If the sender does not have the n pieces of information from a node, it cannot
a�ord to wait inde�nitely. After all, the edge-scheduling adversary may keep
the node disconnected inde�nitely, or a corrupt node may simply refuse to
respond. For this purpose, we create a blacklist for non-responding nodes,
which will disallow them from transferring codeword packets in the future.
This way, anytime the receiver fails to decode a codeword as in Cases 2-
4 above, the sender can request the information he needs, blacklist nodes
not responding within some short amount of time, and then re-attempt to
transmit the codeword using only non-blacklisted nodes. Nodes should not
transfer codeword packets to blacklisted nodes, but they do still communicate
with them to transfer the information the sender has requested. If a new
transmission again fails, the sender will only need to request information from
nodes that were participating, i.e. he will not need to collect new information
from blacklisted nodes (although the nodes will remain blacklisted until the
sender gets the original information he requested of them). Nodes will be
removed from the blacklist and re-allowed to route codeword packets as
soon as the sender receives their information.

The Blacklist. Blacklisting nodes is a delicate matter; we want to place ma-
licious nodes �playing-dead� on this list, while at the same time we don't want
honest nodes that are temporarily disconnected from being on this list for too
long. We prove in the full version (see [5]) that the occasional honest node that
gets put on the blacklist won't signi�cantly hinder packet transmission. Intu-
itively, this is true because any honest node that is an important link between
the sender and receiver will not remain on the blacklist for very long, as his con-
nection to the sender guarantees the sender will receive all requested information
from the node in a timely manner.

Ultimately, the blacklist allows us to control the amount of malicious
activity to which a single corrupt node can contribute. Indeed, we show that
each failed message transmission (Cases 2-4 above) can be localized (eventually)
to (at least) one corrupt node. More precisely, the blacklist allows us to argue that
malicious activity can cause at most n failed transmissions before a corrupt node
can necessarily be identi�ed and eliminated. Since there are at most n corrupt
nodes, this bounds the number of failed transmissions at n2. The result of this
is that other than at most n2 failed message transmissions, our protocol enjoys
the same throughput e�ciency of the old Slide protocol. The formal statement
of this and a sketch of the proof are the contents of Theorem 33 in Section 3.

3 Routing Against a Node-Controlling + Edge-Scheduling
Adversary

3.1 De�nitions
In this section, we brie�y describe our protocol. Due to space constraints,

a detailed presentation, including formal pseudo-code and rigorous proofs, has
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been omitted (these can be found in the full version [5]). As mentioned in
the Introduction, our model considers end-to-end communication in a network
consisting of n nodes in the presence of conforming edge-scheduling and node-
controlling adversaries. We assume a synchronous network with discrete stages,
where a stage is de�ned to be the unit of time in which every edge can transfer
a single packet of P bits.9 A round will consist of two consecutive stages dur-
ing which packets are transferred between adjacent nodes (the Routing Phase),
followed by the Re-Shu�e Phase in which nodes perform (instantaneous) local
maintenance of their bu�ers. A transmission (usually denoted by T) will con-
sist of O(n3) rounds during which the sender inserts packets corresponding to
a single codeword. At the end of each transmission, the receiver will broadcast
an end of transmission message, indicating whether it could successfully decode
the codeword. In the case that the receiver cannot decode, we will say that the
transmission failed, and otherwise the transmission was successful.

In the case a transmission fails, the sender will determine the reason for failure
(Cases 2-4 from Section 2.2, and also F2-F4 below), and request nodes to return
status reports that correspond to a particular piece of signed communication
between each node and its neighbors. We will refer to status report packets as
parcels to clarify discussion in distinguishing them from the codeword packets.

The �rst step in providing a guarantee of e�ciency (in terms of throughput)
is to prove that every failed transmission falls under one of the following cases
(the number of packets per codeword, D, will be de�ned in the next section):

F2. The receiver could not decode, and the sender has inserted D packets
F3. The receiver could not decode, the sender has inserted D packets, and
the receiver has not received any duplicated packets corresponding to the
current codeword
F4. The receiver could not decode and cases F2 and F3 do not happen

We describe in Section 3.3 how we identify a corrupt node in each case. The
primary tool that will be used to handle case F2 will be the notion of potential,
de�ned now.

De�nition 31. The height HB of any internal bu�er B is the number of packets
currently stored in the bu�er. The potential ΦB of the bu�er is the arithmetic
sum up to HB , i.e. ΦB =

∑H
i=1 i = H(H+1)

2 .

3.2 Description of the Node-Controlling+Edge-Scheduling Protocol
Setup. The sender has a sequence of messages {m1,m2, . . . } of uniform size
M = 6σ(P−2k)n3

λ that he will expand into codewords {b1, b2, . . . } of size C = M
σ

(σ is the information rate and λ the error-rate of any error-correcting code). The
9 We assume P > O(k + log n), where k is the security parameter used for the signa-
ture scheme and n is the number of nodes. In particular, this will allow packets to
carry two signatures (requires 2k bits) and a codeword index (requires log n bits) in
addition to the codeword information.
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codewords are divided into packets of size P − 2k (P is the number of bits that
can be transferred by an edge in a single stage, k is the security parameter),
which will allow packets to have enough room to hold two signatures of size k.
Since the number of packets per codeword is D := C

P−2k = 6(P−2k)n3

(P−2k)λ = 6n3

λ ,
if R receives (1− λ)D distinct packets corresponding to the same codeword, he
will be able to decode.

Each internal node has the following bu�ers:

1. Incoming and Outgoing Bu�ers. For each incoming/outgoing edge, a node
will have a bu�er that has the capacity to hold 2n packets at any given
time. The receiver has one large storage bu�er, and the sender has a �Copy
of Current Packets� bu�er to be used any time a transmission fails and needs
to be repeated.

2. Signature Bu�ers. Each node has a signature bu�er along each edge to keep
track of incoming (resp. outgoing) information exchanged with its neighbor
along that edge. The signature bu�ers will hold information corresponding
to changes in: 1) The net number of packets passed across each adjacent
edge; 2) The cumulative change in potential due to packet transfers across
each adjacent edge; and 3) For each packet p, the net number of times p has
passed across each adjacent edge. Each of the three items above, together
with the current round index and transmission index, will be signed by the
adjacent node before they are stored.

3. Broadcast Bu�er. This is where nodes will temporarily store their neigh-
bor's (and their own) state information that the sender will need to identify
malicious activity. A node's broadcast bu�er can hold the start and end of
transmission parcels (see below), blacklist information, and up to n parcels
of status report information for each node in the network.

4. Data Bu�er. This keeps track of eliminated and blacklisted nodes. The
sender's data bu�er will also be able to store information for up to n failed
transmissions, including why they failed, blacklisted nodes, and up to n sta-
tus report parcels per node per failed transmission.

Also as part of the Setup, all nodes learn the relevant parameters (P , n, λ, and
σ), each node receives a private key from a trusted third party for signing, and
each node receives public information that allows them to verify the signature
of every other node in the network.

Routing Phase. This consists of two consecutive stages during which nodes
transfer codeword packets and broadcast parcels that comprise status reports
and auxiliary information. The manner in which packets and parcels are trans-
ferred across a directed edge10 E(A,B) is succinctly described in the �gure below.
We state once and for all that if a node ever receives inaccurate or mis-signed
10 For clarity, even though we are considering �directed edge� E(A, B), we indicate

communication that travels from B to A. In reality, this communication will pass
across E(B, A).
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information, it will act as if no information was received at all (e.g. as if the edge
had failed for that stage).

At the end of every transmission, the receiver will broadcast a parcel indi-
cating if it was able to decode the previous codeword, as well as containing the
label of a codeword packet he received twice (if one exists). From this, the sender
will create the start of transmission (SOT) broadcast, which includes informa-
tion concerning up to n failed transmissions, including why the transmission
failed and which nodes are blacklisted (or eliminated) for those transmissions.
We stress that no node is allowed to transfer any codeword packets until it has
received the complete SOT broadcast.
Stage A B

HA := Height of bu�er along E(A,B)

1
Height of prev. p. sent (if still in A)
Round prev. packet was sent −→
Con�rmation of rec. of broadcast info.

←−
HB :=Ht. of bu�er along E(A,B)

Round prev. packet was received
Sig's on values for edge E(A,B)

Send p. and Sig's on values for E(A,B) if: Receive packet if:
•A has rec.'d SOT bdcst •B has rec.'d SOT bdcst

2 •B is not on A's blacklist/eliminated −→ •A is not on B's blacklist/elim.
− HA > HB OR
− B didn't rec. prev. packet sent

←− Broadcast Information

Fig. 2. Description of Communication Exchange Along Directed Edge E(A, B) During
the Routing Phase of Some Round.

Re-Shu�e Rules. At the end of each round, nodes will shu�e the packets they
are holding to balance the distribution of packets in their incoming and outgoing
bu�ers. After re-shu�ing, all bu�ers will have the same number of packets, where
preference will be given to outgoing bu�ers if perfect balancing is not possible.
During the Re-Shu�e Phase, the sender will �ll each of his outgoing bu�ers
(in an arbitrary order) with packets corresponding to the current codeword.
Meanwhile, the receiver will empty all of its incoming bu�ers into its storage
bu�er. If at any time R has received enough packets to decode a codeword bi,
then R outputs message mi and empties his storage bu�er.

3.3 Analysis of Our Node-Controlling + Edge-Scheduling Protocol

We state our results concerning the correctness, throughput, and memory of
our adversarial routing protocol.

Theorem 32. The memory required of each node is at most O(n4(k + log n)).

Proof. (Sketch) Looking at the information each node is required to store in their
bu�ers (see Setup of Section 3.2), the dominant expense comes from maintaining
the signature bu�ers. The theorem follows as there are O(n) such bu�ers, and
each has the capacity to hold D=O(n3) packets of P=O(k + log n) bits.
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Theorem 33. Except for the at most n2 transmissions that may fail due to ma-
licious activity, our Routing Protocol enjoys linear throughput. More precisely,
after x transmissions, the receiver has correctly outputted at least x − n2 mes-
sages. If the number of transmissions x is quadratic in n or greater, than the
failed transmissions due to adversarial behavior become asymptotically negligi-
ble. Since a transmission lasts O(n3) rounds and messages contain O(n3) bits,
information is transferred through the network at a linear rate.

We begin with a sequence of lemmas:
Lemma 1. Every failed transmission falls under Case F2, F3, or F4; the sender
(with the aide of the end of transmission parcel) can determine at the end of each
transmission which case occurred.
Proof. That Cases F2-F4 cover all possibilities is clear. The sender will know
Case F2 has occurred since the sender keeps track of how many packets he has
inserted in each transmission. The sender will know Case F4 has occurred if the
receiver returns the label of a packet received twice (in the end of transmission
parcel). Otherwise, a failed transmission is Case F3.
Lemma 2. If a transmission fails and Case F4 occurred, then if the sender has
collected the complete status report from every participating node, then the
sender can identify a corrupt node.
Proof. (Sketch) Case F4 roughly corresponds to a mixed adversarial strategy of
packet deletion and packet duplication: a corrupt node has been replacing cur-
rent codeword packets with duplicated packets. When a transmission T fails due
to Case F4, the sender has the label of a packet p that has been received at least
twice by the receiver, and a node's status report contains its signed communica-
tion with neighbors regarding the number of times p transferred between them.
The idea is to use the status reports to �nd a node who output p more times
than it input p. In the full version, we argue that if the sender has the complete
status reports from all nodes who participated in this transmission, then he will
be able to �nd such a node N ∈ G, and this node is necessarily corrupt.
Lemma 3. If a transmission fails and Case F3 occurred, then if the sender has
collected the complete status report from every participating node, then the
sender can identify a corrupt node.
Proof. (Sketch) Case F3 roughly corresponds to an adversarial strategy of packet
deletion. When a transmission fails due to Case F3, a node's status report con-
tains its signed communication with neighbors regarding the net number of pack-
ets transferred between them. The idea is to use the status reports to �nd a node
who input more packets than it output. In the full version, we argue that if the
sender has the complete status reports from all nodes who participated in this
transmission, then he will be able to �nd such a node N ∈ G, and this node is
necessarily corrupt.
Lemma 4. If a transmission fails and Case F2 occurred, then if the sender has
collected the complete status report from every participating node, then the
sender can identify a corrupt node.
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Proof. (Sketch) Case F2 roughly corresponds to an adversarial strategy of packet
duplication. When a transmission fails due to F2, a node's status report contains
its signed communication with neighbors regarding the net change in potential
due to the packet transfers between them.

Notice that a single packet in some internal bu�er at height H should (if
all nodes are honest) contribute this amount H to the bu�er's potential. Since
packets in the sender's bu�ers do not count towards potential, when a packet
is inserted by the sender, the total potential in the network will increase by
the height the packet assumes in the incoming bu�er that receives this packet
(which is at most 2n). Since the sender inserted less than D packets in Case F2,
(in the absence of malicious activity) the total potential in the network can have
increased by at most 2nD. Meanwhile, we argue in the full version [5] that in each
of the 4D −D rounds in which the sender could not insert a packet, the packet
movement along the active honest path for the round will necessarily cause a
decrease of at least n in the total potential in the network. Since the maximum
amount of potential added to the network (due to insertions by the sender and
in the absence of malicious activity) is 2nD, while the minimum decrease in
potential is 3nD, there would be a negative amount of potential in the network.
By de�nition of potential, this is impossible, and thus there must be a corrupt
node who is contributing to illegal increases in potential (e.g. by duplicating
packets). We show in the full version [5] how the status reports (which contain
information on potential changes across each edge) can be used by the sender to
identify and eliminate a corrupt node.

Lemma 5. There can be at most n failed transmissions before the sender nec-
essarily has the complete status report from every node that participated in one
of those n transmissions.
Proof. (Sketch) A node will only be allowed to participate in a transmission if it
is in �good standing� with the sender; i.e. the sender is not missing any status
report parcel from the node. Therefore, for every failed transmission for which
the sender does not have the complete status report from all participating nodes,
there will be a distinct node N ∈ G whose status report the sender does not
have. Since there are n nodes, there are at most n such transmissions.

Proof of Theorem 33 (Sketch) We provide here only a very brief sketch of the
proof, leaving the details to the full version [5]. We proceed by making a sequence
of Lemmas. Theorem 33 now follows from Lemmas 1-5 as follows. There are at
most n2 failed transmissions (Cases F2-F4) since Lemma F5 states that after
n failed transmissions, the sender will have the complete status report from
every participating node for one of these transmissions, and then Lemmas 1-4
state that the sender can identify (and eliminate) a corrupt node. After a node
has been eliminated, the network is reduced to n − 1 nodes, and the argument
can be repeated recursively. Since there are at most n corruptible nodes, there
are at most n2 failed transmissions. Meanwhile, all successful transmissions enjoy
linear throughput, as each transmission lasts 4D=O(n3) rounds and successfully
decoded codewords contain M=O(n3) bits.
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4 Conclusion and Open Problems

In this paper, we have described a protocol that is secure simultaneously
against conforming node-controlling and edge-scheduling adversaries. Our results
are of a theoretical nature, with rigorous proofs of correctness and guarantees
of performance. Surprisingly, our protocol shows that the additional protection
against the node-controlling adversary, on top of protection against the edge-
scheduling adversary, can be achieved without any additional asymptotic cost in
terms of throughput.

While our results do provide a signi�cant step in the search for protocols
that work in a dynamic setting (edge-failures controlled by the edge-scheduling
adversary) where some of the nodes are susceptible to corruption (by a node-
controlling adversary), there remain important open questions. The original Slide
protocol11 requires each internal node to have bu�ers of size O(n2 log n), while
ours requires O(n4 log n), though this can be slightly improved with additional
assumptions.12 In practice, the extra factor of n2 may make our protocol infeasi-
ble for implementation, even for overlay networks. While the need for signatures
inherently force an increase in memory per node in our protocol verses the origi-
nal Slide protocol, this is not what contributes to the extra O(n2) factor. Rather,
the only reason we need the extra memory is to handle the third kind of ma-
licious behavior, which roughly corresponds to the mixed adversarial strategy
of a corrupt node replacing a valid packet with an old packet that the node
has duplicated. Recall that in order to detect this, for every packet a node sees
and for every neighbor, a node must keep a (signed) record of how many times
this packet has traversed the adjacent edge (the O(n3) packets per codeword
and O(n) neighbors per node yield the O(n4) bound on memory). Therefore,
one open problem is �nding a less memory-intensive way to handle this type of
adversarial behavior.

Our model also makes additional assumptions that would be interesting to
relax. In particular, it remains an open problem to �nd a protocol that provides
e�cient routing against a node-controlling and edge-scheduling adversary in a
network that is fully asynchronous (without the use of timing assumptions, which
can be used to replace full synchrony in our solution) and/or does not restrict the
adversaries to be conforming. As mentioned in the Introduction, if the adversary
is not conforming, then he can simply permanently disconnect the sender and
receiver, disallowing any possible progress. Therefore, results in this direction
would have to �rst de�ne some notion of connectedness between sender and
receiver, and then state throughput e�ciency results in terms of this de�nition.

11 In [13], it was shown how to modify the Slide protocol so that it only requires
O(n log n) memory per internal node. We did not explore in this paper if and/or
how their techniques could be applied to our protocol to similarly reduce it by a
factor of n.

12 If we are given an a-priori bound that a path-length of any conforming path is at
most L, the O(n4 log n) can be somewhat reduced to O(Ln3 log n).
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