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Abstract

In this paper, we consider a new visual cryptography scheme that allows for sharing of
multiple secret images on graphs: we are given an arbitrary graph (V, E) where every node and
every edge are assigned an arbitrary image. Images on the vertices are “public” and images
on the edges are “secret”. The problem that we are considering is how to make a construction
such that when the encoded images of two adjacent vertices are printed on transparencies and
overlapped, the secret image corresponding to the edge is revealed. We define the most stringent
security guarantees for this problem (perfect secrecy) and show a general construction for all
graphs where the cost (in terms of pixel expansion and contrast of the images) is proportional
to the chromatic number of the cube of the underlying graph. For the case of bounded degree
graphs, this gives us constant-factor pixel expansion and contrast. This compares favorably to
previous works, where pixel expansion and contrast are proportional to the number of images.
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1 Introduction

Secret sharing, introduced independently by Blakley[Bla79] and Shamir[Sha79], is a scheme for an
authority to encode a secret into shares to be distributed to a set of n participants such that only
qualified subsets of these participants may reconstruct the secret. It is also required that unqualified
subsets learn nothing about the secret. In their works, both Blakley and Shamir describe a k-out-
of-n threshold secret sharing scheme, where any subset of at least k participants may reconstruct
the secret. In general, there is a set Γ, known as an access structure, which denotes the collection
of subsets of participants that can recover the secret. Note that Γ must be monotone increasing,
i.e. if A ∈ Γ and A ⊂ B ⊂ P then B ∈ Γ. The study of secret sharing schemes has been
generalized to arbitrary access structures[BL90, ISN87]. Multi-secret sharing involves multiple
secrets, with possibly different access structures, to be shared across participants. In this scenario,
the authority can distribute shares in a way that different qualified participant sets may recover
different secrets. These schemes[BSV93, BSC+94, BSSV97, Cre03] perform better than trivially
instantiating multiple single-secret sharing schemes.

Visual cryptography schemes (VCS), introduced by Naor and Shamir[NS94], involve a dealer
encoding a secret (or target) image into shares to be distributed to n participants. These shares,
when printed on transparencies, may be recombined simply by overlapping them. When a qualified
subset of the participants overlap their transparencies, a human-recognizable facsimile of the secret
image appears. The main benefit of such schemes is that the participants do not need to rely
on machines to perform the reconstruction. In a generalization of this scheme, it is sometimes
additionally required that each share is a human-recognizable image. In this type of extension,
each participant may have their own source image (that is known to the authority) and the share
generated for each user by the authority must “look” like their source image (see Section 2 for
definitions). If the shares are generated in this fashion to match the source images, we call the
scheme an Extended Visual Cryptography Scheme (EVCS). Indeed, many researchers have worked
on EVCSs, giving constructions and proving bounds for them [ABSS96b, ABSS96a, ABSS01].

1.1 Organization of Our Results

The works [ABSS96b, ABSS96a, ABSS01] focused on the case where there was only one secret image
to be reconstructed. In this paper, we consider the natural generalization of this for multiple secret
images. The problem our paper addresses is how to extend previous constructions so that each pair
of participants may have their own unique secret image that they can reconstruct together. We may
treat this as a graph where each vertex represents a participant and each edge represents a secret
image. We refer to this model as a Graph-Based Extended Visual Cryptography Scheme (GEVCS).
In Section 2, we propose a definition of security and correctness for GEVCSs. We summarize our
main results in Section 3 and spend the rest of the paper on the proofs and constructions. We
will show first that the definition is satisfiable by a näıve construction in Section 4, then describe a
better general construction for any graph in Section 5. In Section 6, we give a sample construction.
Finally, in Section 7, we employ our construction on bounded degree graphs to give a GEVCS with
constant-factor pixel expansion and contrast. Additionally, in Appendix A, we provide a visual
example.
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Figure 1: Overlapping Operation Figure 2: Pixel Expansion

1.2 Comparison to Previous Results

The previous results most relevant to our work are the multi-secret visual cryptography schemes
proposed in [Dro96, KI98, IY03, CWL06, WYL+06, YWL+06]. Droste[Dro96] introduced the
idea of different resulting images when overlapping different combinations of transparencies. The
schemes described in Katoh-Imai [KI98], Iwamoto-Yamamoto [IY03] and Chen-Wu-Laih [CWL06]
are special restricted cases of the problem we are addressing. Both Wang et. al.[WYL+06] and Yi
et. al.[YWL+06] proposed a scheme for multiple visual secrets and general access structures. Using
binary tree graphs for comparison, the [WYL+06, YWL+06] schemes’ pixel expansions would grow
on the order of the number of nodes, while our main construction has a pixel expansion of no more
than 25 for even arbitrarily many nodes. Because of these practical considerations we had in mind
(i.e. much better results, and with constant pixel expansion), we chose to use the graph-based
model instead of a general access structure for this paper.

Our work differs from other previous results in visual cryptography, such as [NS94, ABSS96b,
ABSS96a, ABSS01], by handling multiple secret images. These results use graph-based access
structures as an example, however our scheme handles the case of one secret image per edge as
opposed to only one secret image per graph structure. On the other hand, there are constructions of
(non-visual) secret sharing or multi-secret sharing on a graph-based access structure[Sti94, BSSV95,
BSSV97, Cre03, Csi05]. These are special types of access structures in which a graph G = (V,E)
is used to represent the sets of qualified participants. Each vertex is treated as a participant,
and an edge between two participants indicates the two of them together may recover a secret.
The constructions given in this paper involve graph decompositions, but our methods differ from
these previous constructions as we must take into account the visual aspects in addition to the
multi-secret requirements. We will describe our novel decomposition in the following sections.

1.3 Background

We give a review of extended visual cryptography in the case of 2 participants and produce a 2-out-
of-2 scheme (denoted (2, 2)-EVCS). We begin by introducing the physical model of the problem.
Physical Model. The physical model of our scheme will use images printed on transparencies (as
in [NS94]). Black pixels will be printed onto the transparency making these portions completely
opaque, leaving the remaining portion completely transparent (we will refer to these as white
pixels). Thus the transparency can be viewed as a Boolean matrix, where a 1 in the (i, j)th entry
represents a black pixel at that location and a 0 represents a white pixel. When overlapping two
transparencies, the result will have a black pixel where either of the two had a black pixel, and a
white pixel only where both have a white pixel (Figure 1). This operation may be viewed as the
Boolean OR operation performed entrywise on the two matrices. Because our constructions are all
pixel-wise operations, all images are henceforth just a single black or white pixel.

The operation of overlapping two transparencies is inherently a destructive operation; one
cannot “invert” the opaqueness caused by overlapping with a black pixel. This is apparent by
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the fact that the OR operation lowers entropy. Thus, in order to retain information, we will
introduce some redundancy in the way a black or white pixel may be viewed. We sometimes refer
to this process as encoding an image, and one should keep in mind the distinction between the
original and the encoded image (which contains more information). In particular, we encode 1
pixel as m (usually chosen to be a perfect square) subpixels (known as the pixel expansion), each
which may be black or white. If the original image was of size p× q, then the encoded image will
be of size p

√
m × q

√
m. Each of the 2m colorings of the subpixels of an encoded pixel may be

visually interpreted as a single black or white pixel. The natural visual interpretation is to say if
there are more than some threshold d black subpixels then view it as black, otherwise view it as
white (Figure 2). To accommodate the human eye, we may wish to preclude encodings that appear
ambiguous in color. To do this, we can impose a contrast requirement that says an encoding of a
white pixel must have less than d−α black subpixels (α is known as the absolute contrast, α/m the
relative contrast). If we let 1 indicate a black pixel and 0 indicate a white pixel, then this may be
viewed as an error correcting code where any string with Hamming weight greater than d encodes
a 1 and any string with Hamming weight less than d− α encodes a 0.
Extended Visual Cryptography. We review the problem of extended visual cryptography for
two participants and a dealer. Loosely speaking, the goal of the dealer is to take public images A1

and A2 and a secret image B and create secure encoded shares S1 and S2 such that Si “looks like”
Ai and the overlap of S1 and S2 “looks like” B. Formally, the setup is as follows: each participant
has a public image, say “A1” and “A2”, which are known as the two source images. There is a
secret image, say “B”, known as the target image, to be shared between them by a dealer. The
dealer must then encode A1 and A2 into shares S1 and S2 (possibly under different encodings) by
selecting the colors of the subpixels in a way so that when S1 and S2 are overlapped, the result is
an encoding of B (possibly yet another encoding). In addition, like in a secret sharing scheme, we
will define a perfect secrecy requirement that should be satisfied.
Contrast Correctness. While many encodings could in theory solve the above problem, we
wish to restrict ourselves to only those encodings that satisfy some contrast property. Although this
creates a more difficult problem, the effort put into finding a solution is rewarded by the practical
property of the scheme that allows the unaided decoding of the images by the human eye. We say
a particular encoding is (α-)contrast correct if the absolute contrast of the encoding is at least α.
Note that in a single visual cryptography scheme, there may be many different encodings, e.g. S1

encodes A1 under one encoding, S2 encodes A2 using another encoding, and the overlap of S1 and
S2 encodes B in yet another encoding.
Perfect Secrecy. The shares individually should not reveal any information about the secret
image. We view this as a game between a probabilistic poly-time dealer D and an adversary A
with infinite computational power. The adversary generates the two source images (recall they are
treated as single pixels) A1 and A2 and an index i ∈ {1, 2}. The dealer then randomly selects
the target image B as either a black or white pixel and creates shares S1 and S2 for B and sends
Si back. The adversary must then attempt to guess what the color of B is. We say the dealer’s
algorithm is perfectly secret if the probability that the adversary wins is exactly 1/2. More formally,

Pr
[
(A1, A2, i) ← A, B ← {black, white}, {S1, S2} ← D(A1, A2, B), B′ ← A(Si);B = B′] =

1
2

An EVCS Construction. We review an EVCS similar to the ones found in [NS94, ABSS01] that
solves this problem. As stated before, the scheme will operate on individual pixels, so the input
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will be source pixels A1 and A2 and a target pixel B. The two shares S1 and S2 each consist of m
(the pixel expansion) subpixels and together can be represented by a 2×m Boolean matrix, called
a share matrix. We can then consider 8 collections C00

0 , C00
1 , C01

0 , . . . , C11
1 of 2×m matrices to be

defined below.
Let (s1

0, s
1
1, s

2
0, s

2
1, t0, t1) ∈ {1 . . .m}6 define how many black subpixels each source or target pixel

should be encoded into, e.g. s1
0 (resp. s1

1) is the number of black subpixels a white (resp. black)
pixel in the first source image will be encoded into. The collection Cxy

z will contain all permutations
of the columns of the matrix

Sxy
z =

[
1 1 1 . . . 1 . . . 1 0 . . . 0 0 0 . . . 0
0 0 . . . 0 1 . . . 1 1 . . . 1 1 0 . . . 0

]

where row 1 contains s1
x 1’s, row 2 contains s2

y 1’s and the OR of the two rows contain tz 1’s. The
Sxy

z ’s are well-defined as long as s1
a + s2

b ≥ tc (this ensures we have enough black subpixels) and
max(s1

a, s
2
b) ≤ tc (this ensures we do not have too many black subpixels).

Then, to generate the shares for source and target images A1, A2, B, the dealer will randomly
choose a matrix M ∈ Cxy

z where x is the color of A1, y is the color of A2, and z is the color of B,
and set S1 as the first row of the matrix and S2 as the second row.

2 Our Definitions

In this section, we consider the problem of generating shares for n participants organized in a graph
structure. We remind the reader that the graphs are interpreted differently than in Ateniese et.
al. [ABSS96b]. We interpret the graph to denote which pairs of participants may overlap their
shares to reconstruct the secret image dealt between them. For example, a complete graph would
mean any pair of participants may overlap their shares to get a secret image for that pair, resulting
in a total of

(
n
2

)
possible secret images. In this case, each vertex will have a source image Ai

attached to it, and each edge will have a secret target image Be attached to it. A (probabilistic)
polynomial-time computable algorithm that takes these as input and produces image shares Si

(each of length m, the pixel expansion) that satisfy the properties defined below will be referred to
as a Graph-based Extended Visual Cryptography Scheme or GEVCS. This choice of graph structure
is a practical one – indeed an interesting question would be to extend our constructions to general
multi-secret access structures.

As a reference, we summarize all the properties of a GEVCS:

• A graph G = (V, E) with n vertices and r edges.

• Source images Ai for each vertex i, each being a black (1) or white (0) pixel.

• Target images Be for each edge e, each being a black or white pixel.

• Source shares Si to be generated for each vertex i, each a vector of length m, the pixel
expansion. The share matrix M is an n×m matrix where row i is Si.

• Target shares Te, obtained by overlapping Si and Sj where e = (i, j). Algebraically, this may
be written as Te = Si ∨ Sj .

• Si encodes Ai by having at least si
1 black pixels if Ai = 1 and at most si

0 black pixels if Ai = 0.
The contrast is αi = si

1 − si
0.
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• Te encodes Be by having at least te1 black pixels if Be = 1 and at most te0 black pixels if
Be = 0. The contrast is αe = te1 − te0.

• A security property loosely defined as: Fix an edge e? = (i?, j?). A computationally un-
bounded adversary cannot distinguish between whether Be? is black or white even when
given every Ai, every Be for e 6= e?, and every Si for i 6= i?.

2.1 Contrast Correctness for GEVCS

When generating shares Si (and overlapped shares Te) given a graph G = (V, E) with n vertices
and r edges, we define the following contrast properties. Each Si should have at least si

1 1’s when
encoding a 1 and at most si

0 1’s when encoding a 0. We can similarly parameterize these thresholds
for the Te and obtain te1 and te0. Define the (absolute) contrast to be αi = si

1−si
0, αe = te1−te0. Define

the relative contrast to be α
m , the ratio between the absolute contrast and the pixel expansion. In

essence, it is the relative contrast that affects how clear the final images will appear to be to the
human eye.

Definition 2.1. We say a GEVCS satisfies the contrast correctness property with parameters
(si

0, s
i
1, t

e
0, t

e
1) if for every possible set of source images Ai and target images Be, each share Si that

is generated is a valid encoding (under these parameters) of Ai, and overlapping two of them along
an edge e results in a valid encoding of Be.

2.2 Security for GEVCS

Visual cryptography schemes traditionally come with a guarantee of security by means of defining
perfect secrecy. Usually, a set of forbidden players is not allowed to learn any information about
the (one) secret image even under the possibility of collusion. In our scheme, participants share
different secrets with different people, thus we need to take this into account when defining security.

Take the example of a GEVCS scheme on a military chain-of-command, represented by a graph.
A general may have different secrets when overlapping with his different lieutenants. These secrets
may be highly sensitive, and one of the benefits of having a scheme with source images is that the
shares may be rather inconspicuous, e.g. printed as a picture of a common object, or may be used
to authenticate the carrier of the image, e.g. printed as a photograph of the soldier. While these
natural images may be used to mislead potential adversaries, we still demand a secrecy guarantee
for such schemes. We would like to guarantee that even if all of the lieutenants were captured and
their shares and source images were collected (along with all possible overlaps of their shares), the
general’s source image (but not his share), and all but one lieutenant revealed (under interrogation)
the secret target images they shared with the general, then still no information should be revealed
regarding the one honest remaining lieutenant’s secret image with the general.

To further illuminate this point, consider a graph G = (V, E) and the set of source images Ai,
the set of (secret) target images Be, the generated source images Si, and the overlapped source
images Te. Select an edge, e?, and a vertex on that edge, i?, and suppose all of the source images
on Ai were revealed, along with all of target images Be, on the edges E \ e?. Furthermore, reveal
all of the shares Si in V ′ \ i?. Perfect secrecy guarantees that the adversary should learn nothing
about the original target image Be? . We may once again view this as a game between the dealer
and an adversary with infinite computational power. As we operate on the image pixel by pixel,
security will be defined on a single pixel. The adversary starts with a graph G = (V,E) and selects
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a vertex i? and an edge e? and generates source images Ai for each i ∈ V and target images Be

for each e ∈ E \ {e?} and sends this to the dealer. Be? is randomly chosen to be black or white.
After applying the GEVCS to generate shares Si, the adversary obtains every share except Si? .
The adversary must then guess whether Be? is 0 or 1. Formally, we have the definition:

Definition 2.2. We say a GEVCS (a probabilistic polynomial-time algorithm named D) is secure
or perfectly secret for G if for any adversary A we have:

Pr
[
({Ai}, {Be}e 6=e? , i?, e?) ← A(G), Be?

R← {0, 1},

{Si} ← D(G, {Ai}, {Be}), B ← A({Si}i6=i?);B = Be?

]
=

1
2

In some of the constructions, the GEVCS will deal the shares by sampling from a collection of
matrices. On a graph G = (V, E) there will be collections C

{ai}
{be} , one for each possible assignment

of 0’s and 1’s to {ai}i∈V , {be}e∈E . We will also make use of a so-called basis matrix – this n×m (n
being the number of participants and m being the pixel expansion) matrix contains the m subpixels
to be assigned to player i in row i. The collections will arise as all matrices obtained by permuting
the columns of the basis matrices, thus we will have one basis matrix for each possible assignment
of the vertex and edge source images. We will parameterize the basis matrices for a graph G and
source images {ai}i∈V and target images {be}e∈E by S

{ai}
{be} . Our constructions will give an explicit

algebraic formula to compute the basis matrix from given values of {ai} and {be}.

2.3 Graph Theoretic Terminology

A star is a connected graph that has at most one vertex, known as the center, with degree greater
than 1. A star forest is a graph where each connected component is a star. If we let G = (V,E)
be a graph, given a set of subgraphs H1, . . . , Hk we say that they are a graph (resp. star, star
forest) cover of G if every edge in E is contained in at least one Hi and each subgraph is a graph
(resp. star, star forest). We let N(v) denote the neighbors of a vertex v, or in other contexts, the
neighborhood of v, i.e. the star centered at v with all its neighbors as points.

A subset I ⊂ V of vertices is called an independent set if every edge has at most one endpoint in
I. A maximal independent set (MIS) I ⊂ V is one such that adding any vertex v ∈ V \ I will result
in a non-independent set. Note this is different from the notion of a maximum independent set,
which is an independent set such that no other independent set has more elements than it. Finding
a maximal independent set is quite easy while finding a maximum independent set is NP-hard.

Let H1, . . . ,Hk be subgraphs of G = (V, E) such that each Hi = (Vi, Ei) is a subgraph, each
v ∈ V belongs to at most one Hi, and there are no edges in G between any two vertices that are not
in the same subgraph, i.e. @i 6= j, vi ∈ Vi, vj ∈ Vj(vi, vj) ∈ E. There can still be edges in G between
vertices in the same Hi. In this case, we say that H1, . . . ,Hk form an independent subgraph set
and H =

⋃k
i=1 Hi is an independent subgraph of G. In addition, if each Hk is a star, we say H is

an independent star forest subgraph of G. In Figure 3 we decompose a graph (top) into a union of
star subgraphs. Notice that each edge is contained in at least one star.

The cube of G is a new graph G3 = (V,E′) where (v, w) ∈ E′ if v and w are connected by a
path of at most length 3. A coloring of a graph is an assignment of a color to each vertex so that
no edge has its two endpoints the same color. The chromatic number of a graph is the minimum
number of colors required to color the graph. The degree of a graph is the maximum of the degrees
of all its vertices and (d-)bounded degree graphs are those which have degree at most d.
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Figure 3: Star Forest Decomposition

3 Main Result

Our main result is stated as follows:

Theorem 3.1. Let G = (V, E) be a graph where no vertex has degree greater than d and let χ
be the chromatic number of G3. Then there exists a GEVCS on G with pixel expansion at most
m = χ(5d + 1), and absolute contrast 2 for each source image on a vertex and 4 for each target
image on an edge. Furthermore, we give an explicit construction for a GEVCS with pixel expansion
at most m = (d3 + 1)(5d + 1).

We will build up to this result in the remainder of the paper.

4 Warming Up: A Näıve Construction

For practical applications of GEVCSs, we wish to maximize the contrast and minimize the pixel
expansion for the encoded images. This involves selecting better contrast parameters so that the
contrast is increased. The question is whether or not we can construct a GEVCS to satisfy the
chosen parameters. We will instead construct a GEVCS for a given graph G, then evaluate the
contrast and pixel expansion necessitated by the construction. We begin by exploring a näıve
construction of a GEVCS for a complete graph that involves a pixel expansion of m = 2n2 − n
with relative source contrast 1

m and relative target contrast 2
m . Compare this to the optimal lower

bounds in the recent work of Blundo et. al. [BCS06]. They show a tight lower bound of m ≈ n2/4
with relative contrast 1

m for a (2, n)-VCS that has no source images (the shares are not required to
look like anything) and only a single secret image to recover.
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4.1 Satisfying Both Security and Contrast for General Graphs

We present a construction of a GEVCS on any graph satisfying certain contrast parameters. This
construction will turn out to be perfectly secret as well. For any complete graph G = (V, E) of
n vertices we give a construction with a pixel expansion of m = 2n2 − n and will determine the
parameters si

0, s
i
1, t

e
0, t

e
1 after the construction. For each possible assignment of {ai}, {be} we will

construct the basis matrix S
{ai}
{be} (we will write S for ease of reading). Each basis matrix will contain

a so-called “source-contrast” block, U , meant to allow the source subpixels to pass the threshold
for a black pixel, followed by n “target-contrast” blocks T1, . . . , Tn meant to control the number of
black subpixels of the target image. First define the n× n matrix U as:

U =




a1 1 1 . . . 1
1 a2 1 . . . 1
...

...
...

. . .
...

1 1 1 . . . an




If ai is black then row i will have one extra black subpixel. This will be used to differentiate
a black pixel from a white pixel of the source image. The remaining matrices, Ti, will be used to
control the darkness of the target image. We define each Ti to be the n× 2(n− 1) matrices:

Ti =




b(i,1) 0 0 . . . 1− b(i,1) 0 0 . . .

0 b(i,2) 0 . . . 0 1− b(i,2) 0 . . .
...

...
...

...
...

...
...

...
0 0 0 . . . 1 1 1 . . .
...

...
...

...
...

...
...

...
0 0 . . . b(i,n) 0 0 . . . 1− b(i,n)




The form of these matrices is to start with an (n − 1) × (n − 1) matrix with diagonal entries
b(i,j) (there is no b(i,i)), then concatenate a matrix with diagonal entries 1− b(i,j), then insert a new
row i which consists of n− 1 zeroes followed by n− 1 ones. Notice when any row j is overlapped
with row i, the result will contain all 1’s in the right half, and all zeroes except b(i,j) in the left half.
On the other hand, when any row j is overlapped with row k 6= i, the result will contain exactly
two 1’s.

Finally we let S = U ||T1|| · · · ||Tn (where || denotes horizontal matrix augmentation), a matrix
with 2n2−n columns and n rows. We now count how many 1’s there are in each row i corresponding
to a white (resp. black) source pixel. There will be n − 1 (resp. n) 1’s in the U block, there will
be a single 1 in each Tj block with j 6= i, and there will be n − 1 1’s in the Ti block. Thus we
can set si

0 = 3(n − 1) and si
1 = 3(n − 1) + 1. We may similarly count how many 1’s there are in

the overlap of two rows i and j with a white (resp. black) corresponding target pixel: n in the U
block, n (resp. n + 2) in the Ti and Tj blocks, and 2 in each Tk block for k 6= i, j. Thus we can
set te0 = 4n − 4 and te1 = 4n − 2. Then our construction satisfies contrast for these parameters on
a complete graph.

To ensure security, we randomly permute the columns of the matrix S before setting share Si as
the ith row. We now prove the construction satisfies the security definition in the previous section.
Proof.

Let A be an adversary with infinite computational power which will play against an honest
dealer D as defined in Definition 2.2. Let {ai}, {be}e6=e? be the images generated by A and without
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loss of generality take i? = 1, e? = (1, 2). Using the construction above, let S (resp. S′) be the
basis matrix associated with b(1,2) = 0 (resp. 1). Let C (resp. C ′) be the collection of matrices
obtained by taking all permutations of S (resp. S′). A j? is randomly chosen and the construction
calls for the dealer to randomly sample a matrix from C if j? = 0 and from C ′ otherwise. Because
the adversary does not receive S1 (the first row), it appears as if the dealer were sampling from C
or C ′ restricted to the (n− 1)×m submatrix obtained by removing the first row. To complete the
proof, we exhibit an identification between the matrices in C restricted to (n− 1)×m submatrices
and the restricted matrices in C ′ thereby showing the adversary has no information as to what j?

is. As only b(1,2) differs between the two, the only difference between S and S′ is between the first
two rows of T1, T2 and T ′1, T

′
2. As an example, we write down the first two rows for comparison of

each of the matrices when n = 4:

T1 =
[

0 0 0 1 1 1
0 0 0 1 0 0

]
T2 =

[
0 0 0 1 0 0
0 0 0 1 1 1

]

T ′1 =
[

0 0 0 1 1 1
1 0 0 0 0 0

]
T ′2 =

[
1 0 0 0 0 0
0 0 0 1 1 1

]

Then, by the permutation τ which swaps columns 1 and n of T1, we see that τ(S) is indis-
tinguishable from S′ when restricted. Any matrix in C ′ can be written as σ(S′) for some column
permutation σ, and σ(S′) is identical to στ(S) ∈ C when restricted. This shows the collections C
and C ′ are identical when restricted, and therefore this scheme preserves perfect secrecy. ¤

This construction extends to any graph by deleting every column j and n− 1 + j (the columns
containing entries b(i,j)) from Ti if (i, j) is not an edge. This results in a pixel expansion of
n +

∑n
i=1 2di = n + 4e where di is the degree of vertex i and e is the number of edges. The

contrast parameters will be si
0 = (n − 1) + 2di (there are n − 1 black pixels in U , one black pixel

in each Tj where (i, j) is an edge, and di black pixels in Ti), si
1 = n + 2di, and if e = (i, j) we have

te0 = n + (di − 1) + (dj − 1) + di + dj (there are n black pixels in U , one black pixel in Tk for each
(i, k) ∈ E and each (j, k) ∈ E, di in Ti, and dj in Tj), and te1 = n+(di−1)+(dj−1)+(di+1)+(dj+1).

We mention an additional property, known as smoothness, that will be important in a later
section: overlapping two shares that do not have an edge between them will result in the same
number of 1’s regardless of the source and target images. To see why the smoothness property
holds, let i and j be vertices such that (i, j) is not an edge in G. The overlap of Si and Sj will
have n black pixels in U block. In a Tk block where k 6= i, j there will be black pixels depending
on whether or not (i, k) and (j, k) are edges. In Ti and Tj , since the columns for b(i,j) are deleted
their overlap will be some constant number of 1’s equal to the number of columns in Ti or Tj that
are not deleted: this is exactly the degree of vertices i and j, respectively. Thus, regardless of the
images, there will always be n + 2di + 2dj black pixels in their overlap.

5 GEVCS for a General Graph

With examples of secure schemes shown to exist in the previous section, we now move to give
constructions with better bounds on the pixel expansion and contrast. The idea is that we can
view the act of overlapping a transparency with your neighbors as a local process so that we may
seek to decompose our graphs into sufficiently independent local pieces, build a GEVCS for each
piece, then patch them together in a meaningful way.
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5.1 Building Blocks

Our construction idea is to construct GEVCSs for building blocks, then somehow combine them to
form any graph. We apply the näıve construction for a small subgraph, then describe how these
subgraphs may be patched together. Indeed, the idea of “patching together” several schemes has
also been investigated by Droste[Dro96]. We now present two different ways the GEVCSs described
above may be patched together to form a GEVCS on a graph G. We take a graph cover of G and
first show how to generate shares for an independent subgraph set in parallel. Then we will show
how to take these sets of subgraphs and combine their shares sequentially. An example of how
these are used is given in Section 6.

Construction 5.1 (Parallel Sharing on Independent Subgraphs). Let H be an independent sub-
graph of G. We can write H =

⋃k
i=1 Hi, where the Hi are the independent pieces (recall this

means that each Hi has no edges connecting to an Hj). Obtain a GEVCS for each subgraph using
the näıve construction above. Let m be the maximum pixel expansion over all the subgraphs.
Construct a new distribution of share matrices for H =

⋃k
i=1 Hi by first sampling a share matrix

from each GEVCS on Hj . The new matrix will have one row for each vertex in H, and because
each vertex is uniquely contained in some Hj we may assign to it the corresponding row from the
GEVCS on Hj (also, pad them with 0’s at the end so that each row is of length m).

By observing that this is simply sampling multiple GEVCSs on independent subgraphs, we
obtain the following lemma:

Lemma 5.2. By sampling the share matrix according to the distribution in Construction 5.1, we
obtain a secure GEVCS on H. The pixel expansion is equal to the maximum pixel expansion of the
GEVCSs on the individual subgraphs and maintains the same contrast parameters for each vertex
and edge. Also, this scheme satisfies the smoothness property.

The smoothness property mentioned above is used to maintain perfect secrecy. In addition to
this construction, we have a second construction to patch together all of the independent subgraphs
of G.

Construction 5.3 (Sequential Sharing on Dependent Subgraphs). Let K1, . . . , K` be a graph
cover of G = (V, E) where each Kk is an independent subgraph. Use Construction 5.1 on the Ki

to obtain GEVCS schemes on each of these. For each Ki, first pad the shares in its GEVCS with
rows i ∈ V \ Vi by filling the all these rows with 1’s. Each of these matrices will have n rows, and
we can then concatenate them horizontally. This completes the construction of a new distribution
of shares on G.

Lemma 5.4. By sampling the share matrix according to the distribution in Construction 5.3, we
obtain a secure GEVCS on G. The pixel expansion is equal to the sum of the pixel expansions of
the GEVCS on each of the subgraphs. The contrast parameters are dependent on how many times
a vertex or edge appears in the decomposition; in terms of absolute contrast, a source image has
absolute contrast equal to the number of times its vertex appears in the covering, and a target image
has absolute contrast equal to twice the number of times its edge appears in the covering.

Proof Sketch:
(Contrast Correctness) We consider the contrast on an edge eij in G. The overlap of share i
and share j will contain a number of 1’s equal to the sum of the overlap of share i and share j in
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each K1, . . . ,K`. Thus we may consider three cases: if eij ∈ Kk, if eij /∈ Kk but both nodes i and
j are in Kk, and if at least one node is not in Kk. In the first case, the contrast property of the
GEVCS on Hk will contribute to the overlap being darker if the secret pixel on eij is black. In the
second case, by the special property of the GEVCS, we have that there will always be a constant
number of 1’s, thus not affecting the darkness either way. In the last case, the share of the node not
in Hk will be all 1’s, hence the overlap will always be completely black. Thus each block satisfies
the contrast property, and after summing over all the 1, . . . , ` blocks, we still satisfy the contrast
property.
(Perfect Secrecy) To show this construction is secure, let e? be the edge the adversary wishes
to attack. Without loss of generality, assume e? ∈ K1, . . . , K`. We construct a series of hybrid
matrices where the ith matrix is sampled from a distribution where e? is white in K1, . . . , Ki but
black in Ki+1, . . . ,K`. By the perfect secrecy property on each Ki, the view of the adversary
remains the same between any two consecutive steps in the hybrid. After completion of the entire
hybrid, we have changed the color of e? of our construction from white to black and shown the
view of the adversary does not change. This shows perfect secrecy for Construction 5.3. ¤

5.2 Construction of a GEVCS for a General Graph

Given a graph G with an independent subgraph cover K1, . . . , K` we can construct a GEVCS for
G by applying the two previous constructions 5.1 and 5.3. First construct a GEVCS for each
component of Ki using the näıve GEVCS construction described above. Then combine the shares
in parallel by construction 5.1 to obtain GEVCSs for each independent subgraph Ki. This will be
followed by combining the shares sequentially by construction 5.3 to finally obtain a GEVCS on G.

The final pixel expansion and contrast can be counted as follows. If each Ki is written as a
union of its independent pieces Ki =

⋃ki
j=1 Hij then the pixel expansion of the parallel sharing will

be the maximum of the pixel expansions of the näıve construction on all of the Hij . We write nij

and eij for the number of vertices and edges in Hij , respectively, and obtain the pixel expansion for
the GEVCS on Ki to be mi = maxj{nij + 4eij}. The sequential sharing will then give us the final
pixel expansion m =

∑
i mi. Similarly, we know the absolute contrast of the näıve construction

is 1 for each source image on a vertex and 2 for each target image on an edge. Thus overall, the
absolute contrast of a vertex is the number of subgraphs Hij which contain it, and for an edge it is
twice the number of subgraphs which contain it.

We make the observation that if one takes a coloring of the cube of a graph G, one can make an
independent star forest cover of G by taking Ki to be the union of all stars around centers of color
i. If it uses χ colors, then there will be χ of the Ki’s. This is explained in further detail in Section
7. By combining the constructions above with the independent star forest cover in the following
section, we obtain the main theorem: Theorem 3.1.

6 Example Construction of a GEVCS on a Graph

We construct a GEVCS for the graph seen in Figure 4. Label the vertices 1..6 top to bottom,
left to right. As an example, we will use the source and target images as seen on the left of the
figure. We will decompose the graph as K1 ∪ K2 where K1 (center of the figure) is the union of
two independent pieces H11 (top bold portion) and H12 (bottom bold portion) and K2 (right of
the figure) is just H21 (bold). The basic construction for a share matrix for each of the H’s are as
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follows (the vertical line separates the U and Ti blocks as in the näıve construction):

Share Matrix for H11 =
[

1 1 0 1 0 1
1 1 0 1 0 1

]

Share Matrix for H12 =




1 1 1 0 1 0 0 0 0 1 0
1 0 1 0 0 0 1 0 0 0 1
1 1 0 0 1 0 1 0 0 1 1




Share Matrix for H21 =




1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0
1 0 1 1 1 0 0 0 0 1 1 1 1 0 0 1
1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0
1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1




When treated as subgraphs in G the rows correspond to the vertex number as follows:

Share Matrix for H11 =




1 1 0 1 0 1
− − − − − −
1 1 0 1 0 1
− − − − − −
− − − − − −
− − − − − −




Share Matrix for H12 =




− − − − − − − − − − −
− − − − − − − − − − −
− − − − − − − − − − −
1 1 1 0 1 0 0 0 0 1 0
1 0 1 0 0 0 1 0 0 0 1
1 1 0 0 1 0 1 0 0 1 1




Share Matrix for H21 =




1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0
1 0 1 1 1 0 0 0 0 1 1 1 1 0 0 1
− − − − − − − − − − − − − − − −
1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0
1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1
− − − − − − − − − − − − − − − −




In the actual construction, we would sample a random permutation of the columns of these
matrices. We then apply parallel sharing on the matrices for H11 and H12 to obtain a share matrix
for K1. We pad H11 with 1’s at the end to make it align with H12. The share matrix for K2 is just
that of H21.

Share Matrix for K1 =




1 1 0 1 0 1 1 1 1 1 1
− − − − − − − − − − −
1 1 0 1 0 1 1 1 1 1 1
1 1 1 0 1 0 0 0 0 1 0
1 0 1 0 0 0 1 0 0 0 1
1 1 0 0 1 0 1 0 0 1 1



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Figure 4: GEVCS Construction

Finally, we apply sequential sharing between K1 and K2 to obtain a share matrix for G, com-
pleting the construction. We accomplish this by concatenating the two matrices horizontally and
fill the remaining blanks with 1’s (the vertical line separates K1 and K2):

Share Matrix for G =



1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 1 1 1 1 0 0 1
1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0
1 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1
1 1 0 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1




7 Independent Star Forest Covers

In this section we describe how to find independent star forest covers for graphs to supply as input
to our algorithm in the previous section. We describe the general construction of independent star
forests for any graph G, and mention this construction leads to parameters depending only on the
maximum degree of vertices of the graph.

First we give an example of an independent star forest decomposition on a tree.

Example Using Trees. Given a graph G that is a tree, we can decompose G into four indepen-
dent star forests. Define Vj for j = 1, 2, 3, 4 to be the set of vertices whose distance from the root is
j mod 4, then define Ki =

⋃
v∈Vi

N(v). Then K1,K2,K3,K4 is an independent star forest cover of
G. Indeed, the edge e = (v, w) (where v is the parent of w) is covered by Hi where i is the distance
of v from the root mod4.
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7.1 Algorithm for Finding Independent Star Forest Cover

We begin by making the observation that given a k-coloring of G3, we can decompose G as follows:
Let Ki =

⋃
v has color i N(v). Note this is an independent star forest cover as an edge between N(v)

and N(w) implies there is a path of at most length 3 between v and w which translates to an edge
(v, w) in G3, hence they cannot be of the same color. Each edge is covered exactly twice.

Our construction in the previous section can therefore theoretically be made with pixel expan-
sion and contrast parameters dependent only on the chromatic number of G3 and the degree of G.
However, it is NP-hard to find the chromatic number, so instead we apply a less optimal solution to
color the graph. We remodel the algorithm found in Luby [Lub86] into the algorithm in presented
in Figure 5.

i ← 0
Construct G3 = (V, E)
while (V,E) is not empty do

i ← i + 1
Find a Maximal Independent Set S
Color all the vertices in S by color i
V ← V \S

end while

Figure 5: Coloring G3

This algorithm will use at most d3 + 1 colors (cf. [Lub86] Section 7) if G is of degree d. This is
because at each stage if the node itself is not colored then at least one neighbor is colored (by the
property of a maximal independent set). Thus at the next stage, its degree will drop by at least 1,
and since each vertex in G3 has at most degree d3, we arrive at the conclusion of at most d3 + 1
colors.

Combining this algorithm with the construction from the previous section gives rise to a con-
struction of a GEVCS on any graph, and for d-bounded degree graphs a constant-factor (on the
order of d4) pixel expansion and contrast as stated in our main theorem. Unlike the näıve con-
struction, this construction is independent of the number of participants.

8 Conclusion and Open Problems

In this paper we presented a Graph-based Extended Visual Cryptography Scheme. We provided a
new security definition for such schemes and proved such schemes can always be constructed with
sufficient parameters. We then considered a construction of a GEVCS on a star graph, then showed
how to combine these into a GEVCS for any arbitrary graph. Finally, we described a complete
construction (via an explicit independent star cover) of a GEVCS on any d-bounded degree graph
with parameters depending only on d, thus giving an upper bound on the parameters for the scheme.

Because GEVCS is an extension of EVCS, certain theoretical bounds on pixel expansion contrast
are carried over from previous works. One question to ask is whether or not these bounds can be
tightened in this new setting. Further investigation into different types of graph decompositions
and coverings may lead to better parameters.
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A Visual Example

Figures 6 and 7 show an example in the case of 3 users with secrets between each of the three
possible pairs.
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Figure 6: Player 1 holds a triangle, Player 2 holds a square, Player 3 holds a cross
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Figure 7: Player 1 and 3 overlap to recover L, Player 1 and 3 overlap to recover M, Player 2 and 3
overlap to recover O
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