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Abstract

In cryptography, there has been tremendous success in building various two-party proto-
cols with small communication complexity out of homomorphic semantically-secure encryption
schemes, using their homomorphic properties in a black-box way. A few notable examples of
such primitives include items like single database Private Information Retrieval (PIR) schemes
(introduced in [15]) and private database update with small communication (introduced in [5]).
In this paper, we illustrate a general methodology for determining what types of protocols can
and cannot be implemented with small communication by using homomorphic encryption in a
black-box way.

We hope that this work will provide a simple “litmus test” of feasibility for black-box use of
known homomorphic encryption schemes by other cryptographic researchers attempting to de-
velop new protocols with low communication. Additionally, a precise mathematical language for
reasoning about such problems is developed in this work, which may be of independent interest.
We stress that the class of algebraic structures for which we prove communication complex-
ity lower bounds is large, and covers practically all known semantically-secure homomorphic
cryptosystems (including those based upon bilinear maps).

Finally, we show the following equivalence which relates group homomorphic encryption and
a major open question of designing a so-called fully-homomorphic cryptosystem: a fully homo-
morphic encryption scheme (over a non-zero ring) exists if and only if there exists homomorphic
encryption over any finite non-abelian simple group. This result somewhat generalizes results
of Barrington [1] (to any group containing a finite non-abelian simple subgroup) and of Maurer
and Rhodes [18], and in fact gives a constructive proof of the 1974 result Werner [28]. (This
also answers an open question posed by Rappe in [23], who in 2004 proved a special case of this
result.

Keywords: homomorphic encryption, fully homomorphic encryption, private information re-
trieval, PIR writing, keyword search, communication complexity, algebraic lower bounds.

1 Introduction

One of the central problems in cryptography is that of finding a public key encryption scheme
that would allow “computation on encrypted data”. In its full generality the problem could
be simply stated as follows: to find a public key encryption scheme such that given encryp-
tions of arbitrary plaintexts E(x1), . . . , E(xn) it is possible without the decryption key to compute
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E(f(x1, . . . , xn)) for any polynomial-time computable function f . Naturally, if one can find a public-
key cryptosystem that is “fully homomorphic”, i.e. allows operations on ciphertext that preserve
the structure of a ring, and hence allows computation of the ubiquitous “NAND” operation on the
underlying plaintext, it would give a general solution to the above problem. Indeed, the reason this
is such a central problem is that it would create a powerful mechanism to arbitrarily manipulate
encrypted data without sacrificing privacy. This problem was posed nearly 30 years ago by Rivest,
Adelman and Dertouzos [24]. We do not know if such an encryption scheme exists in its full gener-
ality, though various partial answers are known: One partial answer is abelian group-homomorphic
encryption: given E(x) and E(y), where x and y come from some abelian group, there exist cryp-
tosystems that can compute E(x ∗ y), where ∗ is the group operation. Examples include ElGamal
[9], where the group operation is multiplication, Goldwasser and Micali [10] where the operation
is addition modulo 2, and Pallier [22] where the group operation is addition modulo a large com-
posite. Recent progress by Boneh, Goh and Nissim [3] has shown that more is possible: they
designed a cryptosystem that allows an arbitrary number of additions and a single multiplication
(of the underlying plaintext) by manipulating ciphertexts only. I.e., polynomials of total degree 2
can be computed on ciphertext. Another approach at building fully-homomorphic encryption was
considered by Sander, Young, and Yung [26], but only applied to Boolean operations that doubled
the ciphertext size at every step. As a result, one could only perform a few Boolean operations
before the ciphertext size became impractical. A partial negative result was given by Boneh and
Lipton [4].

Many useful protocols and primitives have been derived from such homomorphic schemes in a
“black box” way, essentially just manipulating the homomorphic properties to construct various
systems. Prominent examples include single-database private information retrieval (PIR), origi-
nally introduced by Kushilevitz and Ostrovsky [15] and collision-resistant hashing as shown by
Ishai, Kushilevitz, and Ostrovsky [14]. (For more details regarding this approach to PIR, see the
survey of Ostrovsky and Skeith [20].) In this work, we show a variety of communication complexity
lower bounds for natural tasks when constructed in a similar, but somewhat more restricted manner
(to further improve communication complexity, the aforementioned protocols often use repeated
encryption, destroying the algebraic value of the resulting ciphertext). More accurately we’ll il-
lustrate a single basic task that cannot be algebraically accomplished (with small communication)
in various structures (e.g., that of any abelian group). This result will give us a simple criterion
or “litmus test” for determining the feasibility of constructing communication-efficient protocols
in general, and a rule out the possibility for constructing many communication-efficient protocols
based on the black box use of homomorphic encryption. Along the way, we’ll also develop a math-
ematical language and technique for reasoning about such questions, which may be of independent
interest. A lot of effort has been put into designing new cryptosystems that allow the structure
to be as rich as possible, but our lower bounds capture an even larger class of algebraic structures
than what current homomorphic encryption schemes provide.

1.1 Our Results

A few of the main results in this work are as follows, where n represents the database size in a
PIR-writing scheme:
Theorem 1 (informal) We prove Ω(n) bound for algebraic PIR-writing based on any abelian
group homomorphic encryption.
Theorem 2 (informal) We prove Ω(

√
n) bound for algebraic PIR-writing based on the cryptosys-
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tem of Boneh, Goh and Nissim [3]. We note that the work of Boneh, Kushilevitz, Ostrovsky and
Skeith [5] shows a matching upper bound for PIR-writing using [3] in a black-box way. Thus, we
prove a matching black-box lower bound for [5].
Theorem 3 (informal) We prove Ω( t

√
n) bound for algebraic PIR-writing based on homomorphic

encryption that allows evaluation of total degree t multivariate polynomials on ciphertext. (We
stress that cryptosystems for such structures are not known today beyond polynomials of total
degree 2.)
Theorem 4 (informal) We show a constructive proof of a 1974 theorem of Werner [28] demon-
strating the existence of a fully homomorphic encryption scheme (over a non-zero ring) if and only if
there exists homomorphic encryption over any finite non-abelian simple group. (In the full version
[21], we also show an explicit construction to implement a composable “NAND” gate from a group
formula in any non-abelian simple group.) This also generalizes the result of Barrington [1] to all
groups containing a finite non-abelian simple subgroup, as well as generalizing a result from Rappe
[23].

A central element of this paper, from which we will derive a number of results, is an algebraic
lower bound for a certain task- that of specifying “characteristic vectors” over a group. For a group
G, we call a vector (v1, ..., vn) ∈ Gn “characteristic” for a set S ⊂ [n] if vi 6= 0G if and only if i ∈ S,
where 0G is the identity of G. We’ll show that

Theorem (informal): For any abelian group, communication complexity Ω(n) is required
to “algebraically” specify characteristic vectors of arbitrary singleton subsets of [n].

A formal statement of this idea appears as Theorem 2.7.
We stress that this statement holds for all abelian groups. For intuition, one may consider the

case of linear algebra, in which the group G is of prime order, and has a field structure which could
be put in place. It is a relatively simple exercise to prove this special case of our theorem, just
arguing about the degree of vector spaces. However, note that this technique does not get very far.
As the reader will see from Example 2.6 below, these ideas don’t apply to general abelian groups
G, even in the special case of cyclic groups. (Note that there is not even a well-defined notion
of degree in this setting.) A “degree-based” argument could likely be carried out via free-module
analysis, but it will substantially complicate and obfuscate matters, and furthermore it will yield
a weaker version of the theorem. The abstract approach taken here will yield a strong algebraic
result which will be of great utility later on, when we generalize to other structures.

Additionally, we prove a smooth trade-off in communication complexity as the number of non-
identity elements in the characteristic vectors increases, and as mentioned, we also generalize to
other algebraic structures, which contain virtually all structures that are preserved by known homo-
morphic encryption schemes. In particular, we prove results for any abelian group as well as results
for arbitrary rings, in a setting restricted to polynomials of total degree t. (For an example of the
case t = 2, see the cryptosystem of Boneh, Goh, and Nissim [3].) Finally, we’ll show a number
of natural cryptographic protocols that would imply the functionality of generating characteristic
vectors, and hence derive algebraic lower bounds for the communication involved in these protocols
as well.

As one will see after an examination of our algebraic results, they are in fact quite general.
Since the results for abelian groups apply to all affine maps, this rules out many possibilities which
do not necessarily come from group formulas. (For example, arbitrary endomorphisms may now
be included in the class of “formulas” even though there is generally no way to compute all endo-
morphisms via an abelian group formula.) In particular, even if one changes their representation
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of data to be not just one group element, but many, and furthermore manipulates each of these
elements independently, our results still apply (this is a simple consequence of Corollary 2.15).

Finally, regarding the equivalence of ring and group homomorphic encryption, we demonstrate
that with any simple non-abelian group structure one can (constructively) compute all finite func-
tions via group formulas and thus, the existence of any cryptosystem homomorphic over a simple
non-abelian group implies a fully-homomorphic encryption scheme. This work can be found in the
later sections, and somewhat generalizes results of Barrington [1] and Rhodes [18], however it is
essentially a new and constructive version of the results of Werner [28] and may be of independent
interest. This also answers an open question posed by Rappe in [23], who in 2004 proved a special
case of this result.

1.2 Related Work

The lower bounds that we consider are most closely related to computational lower bounds on
number theoretic problems when algorithms are restricted only to underlying group operations.
For example, Boneh and Lipton [4] examine the computational difficulty breaking any algebraically
homomorphic (over a field) cryptosystem. In contrast, our lower bounds are on communication
complexity and apply to a wide variety of algebraic structures. Other related works are that of
Shoup [27] and Maurer and Wolf [17], which consider computational difficulty of the discrete loga-
rithm problem, and other number-theoretic problems in cyclic groups, provided that the algorithms
do not exploit any specific properties of the representation of group elements.

Again, our lower bounds are geared towards communication complexity and program size, rather
than computational complexity, but similar to these works, we focus only on algorithms that utilize
nothing other than the underlying algebraic structures. However, we consider a greater variety
of structures in our work (including arbitrary abelian groups and bounded degree multivariate
polynomials over rings).

1.3 Overview, Motivation and Intuition

Often times, novel cryptographic protocols are developed using homomorphic encryption as building
block (and often it is the only necessary ingredient). Many basic protocols can be constructed
in this way, for example, private information retrieval, oblivious transfer, and collision-resistant
hashing, to name a few. Indeed, such methods have accomplished much in the past, and continue
to prove themselves as fruitful techniques. However, the types of algebraic structures available
in homomorphic encryption schemes are limited. Not much beyond the structure of an abelian
group can be preserved under an encryption scheme. Quite clearly, abelian groups have limited
computing power. If one simply examines the number of distinct m-variable “formulas” in a finite
abelian group G of order k in comparison to the number of G-valued functions (as set maps) that
depend on m variables, one can’t help but notice a great discrepancy in cardinality, so indeed,
there is much that cannot be computed using only abelian group formulas. But what are these
functions? Furthermore, in what sense can they not be computed or represented?

Using a black box model for homomorphic encryption, one is limited to only computing such
formulas. However, there are a vast number of other types of “algebraic” maps which cannot
necessarily be derived from any such formula that we study as well. We’ll show that these maps
also do not suffice for our tasks. As a somewhat trivial example, consider the endomorphism on
G = Zp × Zp obtained by switching the coordinates. If one has only black box access to the
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group operation, then this endomorphism is not computable, however, if elements are represented
as coordinate pairs, then computing this map is trivial. This is by no means the most complex
example, but it does illustrate the benefits of an abstract approach (which will naturally cover all
endomorphisms).

As mentioned before, there have been many protocols of great utility derived from homomorphic
encryption over abelian groups (e.g. [15, 6, 14]). However, as the authors believe, for every such
useful protocol in the literature, there are many dead ends, lying at the bottom of stacks of paper
upon researchers’ desks. But until now, there has not been much formal proof that these dead
ends are actually just that. This work provides some basic proofs of lower bounds for a few simple
protocols, based on these algebraic assumptions. More importantly, any task that can be reduced
to our basic task is also immediately impossible to accomplish in an algebraic way with small
communication complexity. We illustrate the power of these reductions on a number of examples
below.

1.4 Implications of the Results

As we have mentioned, the applications of these results as lower bounds for cryptographic protocols
are limited to an algebraic setting and are not absolutes. However, in many situations the bounds
are quite practical. We’d like to take a moment to better illustrate and clarify where these results
apply and where they do not. Additionally, we’ll demonstrate the algebraic strength of the results,
which are quite complete in the algebraic context.

The practical cryptographic significance of the results primarily deals with building protocols
for computing on encrypted data. Let us consider single-database PIR, introduced by Kushilevitz
and Ostrovsky [15]. PIR schemes are often based upon homomorphic encryption (e.g., [15],[16]).
In the most efficient versions of these schemes, note that the answers to queries can be viewed as
encryptions of the appropriate database elements- however, due to the repeated segmentation and
application used to achieve better efficiency, these encryptions have no algebraic value after the
second iteration (i.e. recursive calls in [15] scheme.) Roughly what is meant is that there is no
way to combine two or more of these results (without the decryption key) to obtain an encryption
of some other meaningful combination of the original elements. Looking at PIR alone, in its own
context, this is not much of a problem. However, if PIR were to be used as a subroutine for some
larger computation on encrypted data, this lack of algebraic value of the PIR “answer” could be
very inconvenient. For example, the keyword search of [19] could be improved greatly if an efficient
algebraic PIR protocol existed (see Section 3 for more details). To summarize very briefly, these
results apply to situations where it is necessary to preserve (in the ciphertext) algebraic value of
the results of underlying computation on encrypted data. In situations where algebraic value can
safely be destroyed, there are often much more communication-efficient solutions.

We obtain results that hold for all abelian groups, as well as several other structures. We
believe that this level of generality is a necessity. Details can be found in [21] (the full version of
this work), but we summarize here. First of all, just using the simple structure of abelian groups,
and the general abundance of cryptosystems that are homomorphic over cyclic groups, it is not
hard to imagine constructing a homomorphic cryptosystem over virtually any abelian group. (For
a more formal approach to this idea, see [11].) So, to make the results have any significance at all,
a study at this level of generality is necessary, even though it requires additional machinery. In the
case say of prime order cyclic groups, linear algebra suffices to solve the problem. However, this
already breaks down for a general cyclic group (see Section 2). In addition to being insufficient
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from the start, a less general approach to the problem will also interfere the generalizations to
other structures (see 2.16), as well as weakening the basic applications. For example, in addition to
all algebraic formulas, the algebraic results as stated here cover the entire ring of endomorphisms
(which in general may have no algebraic formula at all, much less a linear one). This would greatly
complicate the set of functions to consider, and makes an elementary approach difficult. However,
the abstract approach eliminates these issues1.

2 Preliminaries and Basic Results

Most notations used are standard, and the algebraic notation used is typically consistent with [13].
However, a more comprehensive list of the notation used in this work can be found in [21], the full
version.

2.1 Equivalence of Homomorphic Encryption over Non-abelian Simple Groups
and Rings

We’ll begin by stating a positive result regarding the equivalence of homomorphic encryption over
non-abelian simple groups and rings. For more thorough formalizations, please see [21], the full
version of this work.

Theorem 2.1 Let G be a finite non-abelian simple group. Then any function f : {0, 1}m −→
{0, 1}n can be represented solely in terms of the group operation of G.

First, we’ll prove a few elementary lemmas, and then the theorem (which again, uses only basic
techniques from algebra). To begin, recall that from the Feit-Thompson theorem and Cauchy’s
theorem, we have that every non-abelian simple group of finite order has an element of order 2.

Lemma 2.2 Let G be a finite group and suppose that S ⊂ G is conjugation invariant (i.e., ∀s ∈
S, g ∈ G we have gsg−1 ∈ S). Then 〈S〉 C G.

The proof is straightforward, but can be found in its entirety in the full version [21].
Consider for a moment, the conjugacy classes. For an element x ∈ G, we will denote the

conjugacy class by ClG(x). I.e.,

ClG(x) = {y ∈ G | y = gxg−1 some g ∈ G}

Recall that we can define a natural action of G on ClG(x) for any x ∈ G: for all s ∈ ClG(x),
simply define g · s = gsg−1. Now, let G be a non-abelian simple group of finite order. From
Cauchy’s theorem, we know that there exists x ∈ G such that x has order 2. Consider ClG(x). Let
|ClG(x)| = k. It must be the case that k > 1. If not, then every element of G conjugates x to itself,
and hence we have x ∈ Z(G), the center of G. But of course this is impossible since the center of a
group is always normal and we assumed that G is simple. So, the conjugacy class of x has at least

1Again, consider the simple example of G = Zp × Zp as a black box and as a direct product coordinate repre-
sentation. The endomorphism ϕ ∈ HomZ(G, G) by (a, b) 7→ (b, a) is not computable as a formula, but clearly is
computable if given a coordinate representation.
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two elements. Recall next, that whenever a group acts on a set S of size k, there is an induced
homomorphism,

ϕ : G −→ Sk

Since the action of G on ClG(x) is obviously transitive, and since the size k of the class of x is
greater than 1, we see that ϕ cannot be the trivial homomorphism which sends all elements to
the identity, and hence ker(ϕ) 6= G. But, since G is simple, we in fact know that ker(ϕ) must be
the trivial subgroup {e}, since the kernel is always normal. Therefore, every element of G acts
non-trivially on the set ClG(x).

We will extract the useful information into the following lemma which we have just now proved.

Lemma 2.3 Let G be a finite, non-abelian simple group, and let x ∈ G be an element of order 2.
Then there exists an element y ∈ ClG(x) such that yxy−1 6= x, and hence, such that [x, y] 6= e.

Using these facts, we can now prove Theorem 2.1.
Proof: We will simply show that the function NAND(a, b) is computable in this way, which
suffices to prove the theorem since any such function f : {0, 1}m −→ {0, 1}n can be written in terms
of compositions of NAND alone. More precisely, we will show that for an element x of order 2,
the set {e, x} can be identified with {0, 1} respectively, and the operation NAND can be computed
solely in terms of the group operation of G.

So, to begin, let x ∈ G be of order 2, which as we discussed exists by Cauchy’s theorem. Define
C = ClG(x). As discussed, |C| > 1. Consider S = [C, C], the set of commutators in C. Note that
the subset S is conjugation invariant since it is generated by C = ClG(x), which is quite clearly
conjugation-invariant. Hence by Lemma 2.2, the subgroup generated by these specific commutators,
is a normal subgroup: 〈S〉 = 〈[C,C]〉 C G However, by Lemma 2.3, we know that |S| > 1, as there
are at least 2 non-commuting elements. But, we assumed that G was simple. Therefore, we have
in fact that 〈S〉 = G. So, in particular, there exists some product, s1s2 · · · sk of commutators in C
such that s1s2 · · · sk = x So, each si = [ri, ti] where ri and ti are both conjugate to x. Therefore
we have sequences of group elements, {gi}k

i=1 and {hi}k
i=1 such that [gixg−1

i , hixh−1
i ] = si We are

now ready to define our NAND(a, b). First, define the function AND(a, b) as follows:

AND(a, b) =
k∏

i=1

[giag−1
i , hibh

−1
i ]

It is now easy to observe that it performs the appropriate function on our inputs from {e, x}2.
Whenever a or b is set to the identity, every commutator will of course be the identity since all
elements commute with e. However, if both a and b are set to the group element x, the by our
design, we will have AND(x, x) = x, exactly as desired. Now, since x has order 2, we can simply
define NAND(a, b) = AND(a, b)x. This completes the proof. ¥

Corollary 2.4 Constructing a fully homomorphic encryption scheme over a ring with identity
is equivalent to constructing a group homomorphic encryption over any finite non-abelian simple
group. In particular, it is equivalent to constructing a homomorphic encryption scheme over A5,
the smallest such group.

Proof: This is almost immediate, but see the full version [21], or [23] for more detail.
As mentioned, detailed examples and formalizations can be found in the full version [21] of this

work.
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2.2 Generating Encryptions of Characteristic Vectors: Motivation

This example provides a simple description of a protocol that can’t be non-trivially implemented
with abelian group algebra. Later, we’ll show a variety of problems (usually related to PIR or
PIR-writing) which would imply a protocol like this. Hence, these too cannot be implemented with
abelian group algebra.

We could, at this point, formalize a cryptographic protocol about generating characteristic-type
vectors over a group, but it may be convenient to postpone such a definition and instead get right
to the main algebraic point. So for the moment, we’ll just explain in simple terms the algebraic
task we are trying to accomplish.

Consider the following problem: Let n,m ∈ Z+, and let G be an abelian group. Define the
following elements vi ∈ Gn:

vi = (0G, ...,0G, xi,0G, ...,0G)

where xi 6= 0G appears in the i-th position.2 Let {mi}n
i=1 ⊂ Gm and let f be an arbitrary affine

group map in m variables from Gm −→ Gn, i.e., f = fm + c where fm : Gm −→ Gn is linear and
c ∈ Gn. Note that these affine maps can express all possible abelian group formulas on a set of
variables (see the full version [21] for complete formalization and definitions). The question is

Question 2.5 (Informal) If f(mi) = vi for all i ∈ [n], what can be said about |Gm|? In particular,
how small can it be?

We will soon answer this question in a variety of contexts, but first we’ll give an example to help
motivate the question and our lower bound. The phrasing used regarding the size estimation was
deliberate: we don’t isolate or bound m alone, because we cannot bound m in a non-trivial way.
It is in fact possible to accomplish the above result with m = 1, even for a cyclic group. However,
as we’ll show in our lower bound, this comes at the cost of increasing the size of G.

Example 2.6 Let n ∈ Z+, and let N =
∏n

i=1 pi, where pi is the i-th prime number. Define
G = ZN . Define integers {zi}n

i=1 as follows:

zi =
∏

j 6=i

pj

Then, since all the primes were distinct, it is easy to verify that

(zizj 6= 0 mod N) ⇐⇒ (i = j)

So, we could define a linear function f = (f1, ..., fn) from G −→ Gn by fi(x) = zi ·x, and we would
have f(zi) = vi, for some elements vi ∈ Gn which fit the above description of a complete set of
characteristic vectors.

However, in the preceding example, notice that n different primes had to divide the order of
G. Hence, |G| > 2n is of exponential size in n. We will show that even using affine maps, this is
always the case: to generate n orthogonal-type characteristic vectors with m group elements always
requires a group G such that Gm has exponential size in n, although the statement we prove has a
more abstract setting.

2We give x an index i simply to show that it need not be uniform across all vectors.
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2.3 A Basic Algebraic Result

Here, we will make precise the relationship regarding n and the size of an abelian group that can
algebraically generate a complete set of n characteristic vectors over an abelian group G. Again,
to conserve space, we direct the reader to the full version [21] for most of the proofs.

Theorem 2.7 Let n ∈ Z+ and let G,A be abelian groups. Let V = {vi}n
i=1 ⊂ Gn be any collection

of elements so that the j-th position of vi is 0G if and only if i 6= j. Then if F = f + c is an
affine map from A −→ Gn such that V ⊂ F (A) then we have log(|A|) ∈ Ω(n). More specifically, if
A ⊂ Gm, we have that

log(|G|) ≥ n

m + 1

The proof of this theorem is given in the full version [21]. The pieces used are outlined below,
and their proofs can also be found in [21] as well. To begin, we’ll prove the following lemma which
will help us analyze affine maps and translated characteristic vectors.

Lemma 2.8 Let R be a finite ring with identity, and let M be a (unitary) R-module. Let Ω =
{ωi}k

i=1 ⊂ M be a finite collection of elements. Let Ω′ = {(ωi + c)}k
i=1 for some fixed element

c ∈ M . Then 〈Ω′〉, the module generated by Ω′, increases in size by at most a factor of |R| over the
size of 〈Ω〉. I.e.,

|〈Ω′〉|
|〈Ω〉| ≤ |R|

Proof: See the full version [21].
In light of Lemma 2.8, we need only to analyze “un-translated” characteristic-type vectors. If

they generate a large module, then so will the translated vectors. It is quite clear any such module
generated by elements like those in V will be exponential in size, however to be complete, we
provide a formal proof.

Observation 2.9 Let G be a finite abelian group. Let n ∈ Z+. Define elements vi ∈ Gn by
vij = δij · αi for some αi 6= 0 ∈ G, and δij ∈ Z with δii = 1 for all i and δij = 0 for i 6= j. Let
H = 〈{vi}n

i=1〉, the subgroup of Gn generated by the vi. Then |H| ≥ 2n.

Proof: See the full version [21].
We’ll also make use of a few very elementary observations from group theory. As elementary

as they may be, proofs can none the less be found in the full version [21].

Observation 2.10 Let G be an abelian group and let a, b ∈ G with x = ord(a), y = ord(b). Then
ord(ab) | lcm(x, y).

Observation 2.11 Let G,H be groups, and let f : G −→ H be a homomorphism. Then for all
g ∈ G, we have that ord(f(g)) | ord(g).

Observation 2.12 Let G be a group, and let (a, b) ∈ G×G. Then ord((a, b)) = lcm(ord(a), ord(b)).

Observation 2.13 Let G be an abelian group, and suppose that there exists N ∈ Z+ such that
N · g = 0G for all g ∈ G, where · denotes Z-module action. Then, G is a ZN -module, where the
action is inherited from that of Z.

These basic observations and lemmas are enough for the proof of Theorem 2.7 (which again,
can be found in the full version [21]).
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2.4 Functions that Change Multiple Values

We can also generalize this algebraic result to include other types of vectors, where F (mi) has the
i-th component non-identity, but possibly some other number of positions are non-identity elements
as well. If the function F has the ability to change arbitrary subsets of c elements for a constant
c, then our original results clearly apply, as you could re-organize Gn as a product Gc × · · · × Gc

with n/c components. (Without loss of generality, we assume c|n.) However, the bounds still apply
for less powerful classes of functions. We will show that any function that produces vectors with
c(n) or fewer non-identity positions at a time has communication complexity Ω(n/c(n)), provided
only that it is complete- i.e., for every position, it has the ability to produce a vector that is non-
identity in that position. Here, c(n) is any positive function of n, and note also that the number of
non-identity positions per mi need not be uniform- we only ask that it is bounded by c(n). We’ll
prove this by showing that we can always re-organize Gn into a product of larger components (of
size c(n)) so that the original function F produces orthogonal characteristic-type vectors in the
original sense, only over (Gc(n))n/c(n). Then, the proof follows immediately from the original result.
Consider the following lemma.

Lemma 2.14 Let c ∈ Z+. Let {Sk}k∈Γ be a collection of sets such that Sk ⊆ [n], |Sk| ≤ c for
all k ∈ [n] and such that the {Sk} form a cover of [n], i.e.,

⋃
k∈Γ Sk = [n]. Then there exists

X ⊆ [n] and a sub-collection of sets {Skj}kj∈Λ⊆Γ such that Skj ∩ Skj′ ∩X = ∅ whenever j 6= j′ yet
Skj ∩X 6= ∅ for at least dn/ce of the sets Skj .

Proof: See the full version [21].

Corollary 2.15 Let n ∈ Z+ and let G,A be abelian groups. Let w(x) be a positive valued function
and let V = {vi}n

i=1 ⊂ Gn be any collection of elements so that the i-th position of vi is not equal
to 0G, and at most w(n) total positions of vi are non-identity for all i ∈ [n]. Then if F = f + c is
an affine map from A −→ Gn such that V ⊂ F (A) then we have log(|A|) ∈ Ω(n/w(n)).

Proof: See the full version [21].

2.5 Polynomials of Bounded Total Degree

Recently, new cryptosystems have been developed with additional homomorphic properties (see
[3]), which provide the ability to compute on ciphertext, polynomials of total degree at most 2.
Here, we will generalize our original algebraic result to apply to algebraic functions of the form
of any polynomial of total degree t, over a ring R. Although the following result will apply to
the ring of polynomials over any ring R (it need not have an identity or be commutative), this
result has the most meaning in the case of commutative rings with identity, since in this case the
ring of multivariate polynomials coincides precisely with our notion of “algebraic formula”, which
is formalized in [21], the full version of this work. (For a non-commutative ring, there’s a more
general structure that serves as the set of all formulas.)

Corollary 2.16 Let n ∈ Z+ and let R be any ring. Let V = {vi}n
i=1 ⊂ Rn be any collection of

elements so that the j-th position of vi is not equal to 0R precisely when j = i, for all i, j ∈ [n].
Then if F : Rm −→ Rn is such that F = (F1, ..., Fn) with each Fi ∈ R[X1, ..., Xm] of total degree
less than or equal to t (a constant) and has V ⊂ F (Rm) then we have

(
t
√

log(|R|)
)

m ∈ Ω( t
√

n). In

particular, if |R| is independent of n, then m ∈ Ω( t
√

n).
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Proof: See the full version [21].

3 Applications of Algebraic Results

We will discuss here a number of protocols which are both easy to state, and would provide desirable
functionalities, yet under algebraic assumptions, they cannot be very well implemented with existing
technology.

3.1 Private Database Modification (PIR Writing)

As seen in [5], the ability to privately modify an encrypted database in a communication efficient
way could provide a valuable tool for private computation. One very natural approach to such
a problem, is to proceed in a manner analogous to many PIR protocols, and use homomorphic
encryption as a building block (as was done in [5]).

The protocol would then communicate encrypted values which encode the modification to take
place, and then the database owner would execute some algebraic operations on the encrypted
database and the description given by the user to update the database contents. Since all of
the communication consisted only of encrypted values, CPA-type security comes easily from a
hybrid type argument. Unfortunately, we have very limited structures available to homomorphic
encryption schemes. Almost always, what is preserved is the operation of an abelian group. At
best, the ability to evaluate polynomials of total degree 2 is provided (see [3]). It will follow
from our preliminary algebraic results, that these types of algebraic protocols cannot be very well
implemented with existing encryption schemes. We’ll often speak of “algebraic” maps, which will
usually mean functions that are obtainable from some type of formula involving only the operations
of the algebraic structure. A precise, formal, and detailed exposition of this idea is given in [21],
the full version of this work. Also, we’ve omitted some of the formal protocol-type definitions to
improve readability, since there isn’t much surprising about them, and most readers of this paper
could likely re-invent them in a few minutes. We’ll instead give an informal description of the
protocol here. For precise statements, again we direct the reader to the full version [21].

Let U be a user that wishes to update the database, and denote by DB the database owner.
We’ll summarize a protocol for algebraic database modification between U and DB via the following
steps, in which we assume that G is an abelian group. Below, we’ll just describe the algebra involved.
In an actual privacy preserving protocol, everything will of course be computed on ciphertext in
some homomorphic encryption scheme over G.

1. U selects mi = (g1, ..., gm) to modify position i and sends mi to DB.

2. DB computes an algebraic function F (X, mi,H) of the database X ∈ Gn, the modification
description mi, and other inputs of his own, H ∈ Gε.

3. DB replaces X by X ′ = F (X,mi,H)

Clearly the algebra involved in this protocol implies the ability to algebraically generate com-
plete sets of characteristic vectors:

Claim 3.1 An algebraic protocol for database modification over an abelian group implies an alge-
braic function (affine map) with a complete set of characteristic vectors in the image.

11



Proof sketch: Define a database X = {0G}n
i=1, which is the identity in all positions. Apply

DB’s function to obtain X ′ = F (X, mi,H) where mi describes a modification for position i. Then
clearly X ′ = vi, a characteristic vector in Gn, non-identity at position i. ¥

Therefore, by Theorem 2.7, if we build such a protocol based on a homomorphic cryptosystem
over any abelian group, it will necessarily have linear communication complexity. Note the strong
sense in which this is true: abelian group formulas always correspond to affine maps, but certainly
not every affine map comes from such a formula.3 So, we’ve shown that even if we allow DB
to somehow compute arbitrary affine maps on the ciphertext values, it still does not suffice to
accomplish this task. Furthermore, Theorem 2.7 did not even assume that the groups were the same.
So, even if the database elements are encrypted in some other cryptosystem which is homomorphic
over a group different than that of the descriptions, and even if we were provided the ability to
compute all algebraic maps from one to the other on ciphertext, we still couldn’t produce a non-
trivial protocol over abelian groups. We’ll summarize these ideas as

Corollary 3.2 There are no non-trivial Algebraic Oblivious Database Modifiers over an abelian
group. I.e., any oblivious database modifier based on the operations of an abelian group has com-
munication complexity Ω(n).

3.2 Algebraic and Homomorphic Protocols for PIR

As a second corollary, we consider “algebraic”, or “homomorphic” protocols for private information
retrieval. One may have observed, as the authors have, that the query results for PIR protocols
usually fall into one of two categories: either (a) they have no (or very limited) algebraic value4

or homomorphic properties, or (b) the server side communication is non-constant, i.e., the results
of a query return many items, not just an encryption of one value in the database5. A protocol
for private information retrieval that returns encryptions of single values which retain algebraic
and homomorphic properties could be a very useful tool in private computation6, especially in
non-interactive settings. In what follows, we present evidence that the absence of such protocols is
perhaps to be expected.

We’ll try to establish a basic definition that captures the properties that we desire, and encap-
sulates most existing work possessing these properties. Suppose that the values in a database have
some algebraic structure. For now, say that of an abelian group which we’ll denote (G, ·). We will
denote the return value of a PIR query for the i-th position of a database by PIR(i), which consists
of one or more encrypted database elements. Let Si = {sj}k

j=1 denote the set of values from the
database that are returned by a PIR query for position i.

Suppose for a moment that the domain from which PIR query returns reside has the algebraic
structure of a group as well, say (G′, ?)7. To name just a few examples, one can see that the PIR
protocols of [15], [6], [7] all fit this description. We could then make the following definition:

3Again, consider G = Zp × Zp and ϕ ∈ HomZ(G, G) by (a, b) 7→ (b, a).
4See the work of [7] for an example of such a PIR protocol having “limited” algebraic value.
5See [15] for such an example, but many PIR protocols based on homomorphic encryption (over an abelian group)

have this property.
6For example, in the keyword search of [19], the dictionary size could be reduced.
7There is no assumption that the group representing the query returns are the same as the database elements, or

even that they are encryptions of database elements, exactly. It could be the case that as a part of the encryption,
the group that the database elements come from is first homomorphically transformed, and then transformed back
as a part of decryption. The general way that we’ve stated our algebraic results will be useful for such a definition.
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Definition 3.3 Using the notation established above, we say that a PIR protocol is homomorphic
if for a given database X ∈ Gn, we have that D(PIR(i) ? PIR(j)) = Si · Sj where D is the function
from the PIR protocol that decrypts the query results.

Note also that for such a PIR protocol to be of much utility as a subroutine in some non-
interactive private computation, it is almost essential to have |Si| = 1, or at least bounded by a
small constant. If not, then the party which is to perform a computation on the return values of
a homomorphic PIR query will likely not have any information about where the relevant element
is in the query results. Hence, if such a party wishes to perform a computation on t variables
obtained via homomorphic PIR queries, it would in general require repeatedly performing the
computation on all |Si|t possible sequences to ensure that the right variables were involved at least
once. Furthermore, it may not be possible for any party to distinguish which of the resulting
outputs in fact corresponds to the desired computation, even after decryption.

Finally note that from the definition of homomorphic PIR, we see that the results of queries
are in fact encryptions of elements in some homomorphic cryptosystem. To create such a PIR pro-
tocol, a very natural approach is to manipulate the algebraic structure of some such homomorphic
cryptosystem. This motivates the following definition.

Definition 3.4 We say that a PIR protocol is algebraic if the following hold:

1. A query consists of an ordered sequence of ciphertexts in some cryptosystem where the plain-
text set A has some algebraic structure.

2. To process a query, the database owner computes on ciphertext some algebraic function of
the query’s array, this function being determined by the contents of the database to obtain an
array of ciphertext which will be the results of the query.

For precise definitions of the term “algebraic function”, we again direct the reader to [21], the
full version of this work. In the case of abelian groups, these definitions yield affine maps as our
model of algebraic functions.

Corollary 3.5 Consider an abelian group algebraic PIR protocol with sender-side communication
complexity g(n) and server-side communication complexity h(n). Then g(n)h(n) = Ω(n). More
specifically, if k(n) is any positive integer-valued function and if the server’s response consists of
k(n) encrypted values, then the sender-side communication complexity is Ω(n/k(n)).

Proof: See the full version [21].
Using Corollary 2.16, we can generalize this result to cryptosystems that may have additional

homomorphic properties (see [3]), showing Ω( t
√

n) bounds if total degree t polynomials over a ring
R can be computed on ciphertext.

For example, if given a cryptosystem that allows polynomials of fixed total degree t to be
computed on ciphertext over some ring R, we can easily construct an algebraic PIR protocol with
sender-side communication Θ( t

√
n) and server-side complexity Θ(1) (see [3], or [21] for details of a

simple example). However, this is in fact meets a lower bound: In general, if such a protocol has
sender-side complexity g(n) and server-side complexity h(n), then we can show that g(n)h(n) =
Ω( t
√

n), which is a simple consequence of Corollary 2.16.
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3.3 Private Keyword Searching [19]

As another relatively simple corollary, we resolve (under our algebraic assumptions) an open prob-
lem posed by Ostrovsky and Skeith [19] regarding extending the query semantics for private search-
ing on streaming data. We show that without new homomorphic encryption schemes with additional
properties, their methods cannot be extended to perform conjunctive queries.

Corollary 3.6 The problem of private keyword search on streaming data as proposed in [19], has
no non-trivial algebraic solution for a conjunctive query of two or more terms if the underlying
cryptosystem is only group homomorphic over an abelian group.

Remark: We will assume the same basic framework as developed in [19] for a solution and show
that there is no such solution that performs conjunctive queries. Specifically, we assume that a
dictionary with an associated array of ciphertexts is used to conditionally encrypt documents as in
[19].
Proof: First note that the protocol inherently gives rise to an algebraic method for generating
complete sets of characteristic vectors: Suppose that the dictionary D has size m. Each word has
its role in the query encoded via an encrypted group element, say in some group G. Look at the
encoded dictionary (un-encrypted) as the set Gm. Suppose we have a protocol as described in [19]
for some query that involves k variables. Running this protocol on mk documents which run over
all unique k-tuples from the dictionary gives us a set of characteristic vectors inside of G(mk). So,
we can think of this as an algebraic map from Gm −→ G(mk), which (unless the query is somewhat
trivial) contains a complete set of characteristic vectors in the image. But, now the question is how
many positions are non-identity in each vector? This of course depends on the query. Suppose that
the query is a disjunction of terms. Each vector in G(mk) will have at least mk−1k positions that
are non-identity, since k − 1 entries could be arbitrary as long as one contains a keyword. So, the
ratio of total positions to non-identity positions is less than m and our algebraic lower bounds give
no contradiction (which of course should be the case since [19] gives such a construction). But now
consider a conjunctive query, just of two terms. In the same way as described above, this gives rise
to an algebraic function for characteristic vectors from Gm −→ G(m2), however this time we have
O(1) positions of each vector are non-identity. So, applying Corollary 2.15, we see that no such
protocol can exist based on an abelian group. More generally, from Corollary 2.16, we see that if
given the ability to compute total degree t polynomials, we can construct a protocol that executes
a conjunction of at most t terms. ¥

We believe that this example illustrates particularly well a situation in which the bounds proved
in this work are especially useful. The entire method of [19] critically depends on the ability to
generate these types of characteristic vectors so that the final representation is an encryption in
a homomorphic scheme. This is the case since the functionality of characteristic vectors is used
as a subroutine for the larger procedure, and so to continue the computation (i.e., writing to the
buffer, etc.) it is necessary that the output have algebraic value. So, since we have proven that this
subroutine is impossible to implement in the required manner, it seems that improving the work of
[19] would require either a completely new approach, or new designs of homomorphic encryption
schemes, such as fully-homomorphic encryption.

It is this type of information that we hope will save researchers time and effort in the future.
Applying these bounds may not give an absolute impossibility, but it can quickly eliminate a very
large space of what might otherwise seem to be feasible approaches to the problem.
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