
Secure Two-Party k-Means Clustering

Paul Bunn∗ Rafail Ostrovsky†

Abstract

The k-Means Clustering problem is one of the most-explored problems in data
mining to date. With the advent of protocols that have proven to be successful in
performing single database clustering, the focus has changed in recent years to the
question of how to extend the single database protocols to a multiple database setting.
To date there have been numerous attempts to create specific multiparty k-means
clustering protocols that protect the privacy of each database, but according to the
standard cryptographic definitions of “privacy-protection,” so far all such attempts
have fallen short of providing adequate privacy.

In this paper we describe a Two-Party k-Means Clustering Protocol that guarantees
privacy, and is more efficient than utilizing a general multiparty “compiler” to achieve
the same task. In particular, a main contribution of our result is a way to compute
efficiently multiple iterations of k-means clustering without revealing the intermediate
values. To achieve this, we use novel techniques to perform two-party division and
sample uniformly at random from an unknown domain size.

Our techniques are quite general and can be realized based on the existence of any
semantically secure homomorphic encryption scheme. For concreteness, we describe
our protocol based on Paillier Homomorphic Encryption scheme (see [23]). We will
also demonstrate that our protocol is efficient in terms of communication, remaining
competitive with existing protocols (such as [15]) that fail to protect privacy.

Keywords: Multiparty Computation, k-means clustering

∗Department of Mathematics, University of California, Los Angeles, CA 90095. Email:
paulbunn@math.ucla.edu. Research partially done while visiting IPAM, and supported in part by VIGRE
fellowship and NSF Cybertrust grant no. 0430254

†Computer Science Department and Department of Mathematics, University of California, Los Angeles,
CA 90095. Email: rafail@cs.ucla.edu. Research partially done while visiting IPAM, and supported in
part by IBM Faculty Award, Xerox Innovation Group Award, NSF Cybertrust grant no. 0430254, and U.C.
MICRO grant.

1

1 Introduction

1.1 Background on k-Means Clustering

The k-means clustering problem can be described as follows: A database D holds infor-
mation about n different objects, each object having d attributes. The information regarding
each object is viewed as a coordinate in Rd, and hence the objects are interpreted as data
points living in d-dimensional Euclidean space. Very informally, k-means clustering algo-
rithms are comprised of two steps. First, k initial centers are chosen in some manner, either
at random or using some other “seeding” procedure. The second step is iterative (known as
the “Lloyd Step”), and is described according to the following algorithm: Partition the n
data points into k clusters based on which current cluster center they are closest to. Then
reset the new cluster centers to be the center of mass (in Euclidean space) of each cluster.
This process is either iterated a fixed number of times or until the new cluster centers are
sufficiently close to the previous ones (based on a pre-determined measure of “sufficiently
close”). The k-means clustering method is enormously popular among practitioners as an
effective way to find a geometric partitioning of data points into k clusters, from which gen-
eral trends or tendencies can be observed. In particular, k-means clustering is widely used in
information retrieval, machine learning, and data mining research (see e.g. [21] for further
discussion about the enormous popularity of k-means clustering).

The question of finding efficient algorithms for solving the k-means clustering problem
has been greatly explored and is not investigated in this paper. Rather, we wish to extend an
existing algorithm (which solves the k-means problem for a single database) to an algorithm
that works in the two-database setting (in accordance with multiparty computation litera-
ture, we refer to the databases as “parties”). In particular, if two parties each hold partial
data describing the d attributes of n objects, then we would like to apply this k-means algo-
rithm to the aggregate data (which lives in some virtual database) in a way that protects the
privacy of each party member’s data. In this paper, we will work in the most general setting,
where we assume the data is arbitrarily partitioned between the two databases. This means
that there is no assumption on how the attributes of the data are distributed among the
parties (and in particular, this subsumes the case of vertically and horizontally partitioned
data).

1.2 Previous Work

The k-means clustering problem is one of the functions most studied in the more general
class of data-mining problems. Data-mining problems have received much attention in recent
years as advances in computer technology have allowed vast amounts of information to be
stored and examined. Due to the sheer volume of inputs that are often involved in data-
mining problems, generic multiparty computation (MPC) protocols become infeasible in
terms of communication cost. This has led to constructions of function-specific multiparty
protocols that attempt to handle a specific functionality in an efficient manner, while still
providing privacy to the parties (see e.g. [18], [1], [2]).

2

The problem of extending single database k-means clustering protocols to the multiparty
setting has been explored by numerous authors, whose approaches have varied widely. The
main challenge in designing such a protocol is to prevent intermediate values from being
leaked during the Lloyd Step. In particular, each iteration of the Lloyd Step requires k
new cluster centers to be found, a process that requires division (the new cluster centers
are calculated using a weighted average, which in turn requires dividing by the number
of data points in a given cluster). However, the divisors should remain unknown to the
parties, as leaking intermediate cluster sizes may reveal excessive information. Additionally,
many current protocols for solving the single database k-means clustering problem improve
efficiency by choosing data points according to a weighted distribution, which will then serve
as preliminary “guesses” to the cluster center (e.g. [21], [4]). Choosing data points in this
manner will also likely involve division.

A subtle issue that may not be obvious at first glance is how to perform these divisions
in light of current cryptographic tools. In particular, most encryption schemes describe a
message space that is a finite group (or field or ring). This means that an algorithm that
attempts to solve the multiparty k-means problem in the cryptographic setting (as opposed
to the information-theoretic setting) will view the data points not as elements of Euclidean
Space Rd, but rather as elements in Gd (for some ring G) in order to share encryptions of
these data points with the other party members. But this then complicates the notion of
“division,” which we wish to mean “division in R” as opposed to “multiplication by the
inverse.” (The latter interpretation not only fails to perform the desired task of finding
an average, but additionally may not even exist if not all elements in the ring G have a
multiplicative inverse).

Previous authors attempting to solve the multiparty k-means problem have incorporated
various ideas to combat this obstacle. The “data perturbation” technique (e.g. [1], [2],
[19]) avoids the issue altogether by addressing the multiparty k-means problem from an
information-theoretical standpoint. These algorithms attempt to protect party members’
privacy by having each member first “perturb” their data (in some regulated manner), and
then the perturbed data is made public to all members. Thus, the division (and all other
computations) can be performed locally by each party member (on the perturbed data), and
the division problem is completely avoided. Unfortunately, all current algorithms utilizing
this method do not protect the privacy of the party members in the cryptographic definition
of privacy protection. Indeed, these protocols provide some privacy guarantee in terms of
hiding the exact values of the database entries, but do not make the more general guarantee
that (with overwhelming probability) no information can be obtained about any party’s
inputs (other than what follows from the output of the function, i.e. the final cluster centers).

Another solution to the division problem (see e.g. [24]) is to have each party member
perform the division locally on their own data. The problem with this method is that it
requires each party to know all intermediate cluster assignments (in order to know what
they should divide by), which may leak additional information and thus not satisfy complete
privacy protection. A similar problem is encountered in [14], where they describe a way
to privately perform division, but their protocol relies on the fact that both parties will

3

learn the output value of the division. This means that the overall protocol is not secure,
since the parties receive more information (the values of the quotients corresponding to
intermediate divisions) than just the output of the function. One final approach, suggested
by Jagannathan and Wright [15] is to interpret division as multiplication by the inverse.
However, a simple example shows that this method does not satisfy correctness, i.e. does
not correctly implement a k-means algorithm. (Consider e.g. dividing 11 by 5 in Z21. One
would expect to round this to 2, but 11*5−1 = 11*17 = 19).

One final approach encountered in the literature (see e.g. [7], [8], [9]) protects against
leaking information about specific data in a different context. In this setting, the data is not
distributed among many parties, but rather exists in a single database that is maintained
by a trusted third party. The goal now is to have clients send requests to this third party
for k-means clustering information on the data, and to ensure that the response from the
server does not reveal too much information about the data. In the model we consider in
this paper, these techniques cannot be applied since there is no central database or trusted
third party.

To summarize, none of the existing “privacy-preserving” k-means clustering protocols
provide cryptographically- acceptable security against an “honest-but-curious” adversary.
We will present a formal notion of security in Section 2.3. Informally, the security of a
multiparty protocol is defined by comparing the real-life interaction between the parties to
an “ideal” scenario where a trusted third party exists. In this ideal setting, the trusted
third party receives the private inputs from each of the parties, runs a k-means clustering
algorithm on the aggregate data, and returns as output the final cluster centers to each
party. (Note: depending on a pre-determined arrangement between the parties, the third
party may also give each party the additional information of which cluster each data point
belongs to.) The goal of multiparty computation is to achieve in the “real” world (where no
trusted third party is assumed to exist) the same level of data privacy protection that can
be obtained in the “ideal” model.

One final obstacle in designing a perfectly secure k-means clustering protocol comes from
the iterative nature of the Lloyd Step. In the ideal model, the individual parties do not learn
any information regarding the number of iterations that were necessary to reach the stopping
condition. In the body of this paper, our main protocol will reveal this information to the
parties (it is our belief that in practice, this privacy breach is unlikely to reveal meaningful
information about the other party’s database). However, we discuss more fully in Appendix
A alternative methods of controlling the number of iterations without revealing this extra
information.

1.3 Our Results

We describe in Section 3 of this paper the first protocol for two-party k-means clustering
that is secure against an honest-but-curious adversary (as mentioned above, general MPC
protocols could in theory be applied to k-means, but any such protocol is unfeasible to
use in practice). Moreover, we demonstrate that our protocol is competitive (in terms of
communication and computation costs) with other current protocols (which fail to protect

4

privacy against an honest-but-curious adversary). Exact efficiency bounds that we achieve
can be found in Section 4. We remark that our honest-but-curious solution can be augmented
using standard machinery (e.g., see [11, 13] and references therein) to the malicious adversary
model (with a substantial increase in communication cost).

Our protocol takes as a template the single-database protocol of [21], and extends it to the
two-party setting. We chose the particular protocol of [21] because it has two advantages over
conventional single-database protocols: Firstly, it provides a provable guarantee as to the
correctness of its output (assuming moderate conditions on the data); and secondly because
their protocol reduces the number of iterations necessary in the Lloyd Step. However, the
techniques we use to extend the single-database protocol of [21] can be readily applied to
any single-database protocol.

In order to apply current cryptographic techniques to a single-database protocol in an
attempt to create a secure two-party (multi-party) protocol, we are limited by the tools
available today. In particular, all semantically secure homomorphic encryption schemes
have a finite message space (e.g. ZN). This means that if we want to encrypt the data
points (or attributes of the data points), then we must restrict the possible data values to
a finite range. Therefore, instead of viewing the data points as living in Rd, we “discretize”
Euclidean space and approximate it via the lattice Zd

N , for some large N . All of the results
of this paper are consequently restricted to the model where the data points live in Zd

N ,
(both in the “real” and “ideal” setting) and any function performing k-means clustering in
this model is restricted to computations in ZN . Note that restricting to this “discretized”
model is completely natural; indeed due to memory constraints, calculations performed on
computers are handled in this manner. As a consequence of working in the discretized space
model, we also avoid privacy issues that arise from possible rounding errors (i.e. restricting
input to be in Zd

N avoids the necessity of approximating inputs in R by rounding up or
down).

In order to extend the single database protocol of [21] to a two-party protocol, we follow
the setup and some of the ideas discussed by Jagannathan and Wright in [15]. In that paper,
the authors attempt to perform secure two-party k-means clustering, but (as they remark)
fall short of perfect privacy due to leakage of information (including the number of data
points in each cluster) that arises from an insecure division algorithm.

To solve the multiparty division problem, we define division in the ring ZN in a natural
way, namely as the quotient Q from the Division Algorithm in the integers: P = QD + R.
From this definition, we demonstrate how two parties can perform multiparty division in
a secure manner. Additionally, we describe how two parties can select initial data points
according to a weighted distribution. To accomplish this, we introduce a new protocol, the
Random Value Protocol, which is described in Section 2.5. We note that the Random Value
Protocol may be of independent interest as a subprotocol for other protocols that require
random, oblivious sampling.

Our results utilize many existing tools and subprotocols developed in the multiparty
computation literature. As such, the security guarantee of our result relies on cryptographic
assumptions concerning the difficulty of inverting certain functions. In particular, we will

5

assume the existence of a semantically secure homomorphic encryption scheme, and for ease
of discussion, we use the homomorphic encryption scheme of Paillier [23].

1.4 Overview

In the next section, we briefly introduce the cryptographic tools and methods of proving
privacy that we will need to guarantee security in the malicious adversary model. We also
include in Section 2.2 a complete list of the subprotocols that will be used in this paper.
Because most of the subprotocols that we use are general and have been described in previous
MPC papers, we provide in Section 2.2 only a list of these protocols (possible implementations
are included in Appendix B for completeness). An exception to this is our new Random Value
Protocol, for which we provide a full implementation and proof of security in Section 2.5,
and a description of a two-party Division Protocol in Section 2.4. Finally, in Section 3, we
introduce the single database k-means clustering protocol of [21] which we then extend to a
secure two-party protocol in Section 3.3.

2 Achieving Privacy

In multiparty computation (MPC) literature, devious behavior is modeled by the exis-
tence of an adversary who can corrupt one or more of the parties. In this paper, we will
assume that the adversary is honest-but-curious, which means the adversary only learns the
inputs/outputs of all of the corrupted parties, but the corrupted parties must engage in the
protocol appropriately. We include in section 2.3 a formal definition of what it means for a
protocol to “protect privacy” in the honest-but-curious adversary model (see also e.g. [11]
for definitions of security against an honest-but-curious adversary).

In order to construct a private two-party k-means clustering protocol, we will utilize
numerous subprotocols which themselves preserve privacy against an honest-but-curious ad-
versary. We then use the fact that the composition of secure protocols remains secure (as
proven in [5]). The novel contributions of this paper are the Division Protocol and the Ran-
dom Value Protocol described in Sections 2.4 and 2.5, which are called as subprotocols in our
two-party k-means clustering protocol. All of the other subprotocols that we will use per-
form standard functionalities, and possible implementations of these that are secure against
an honest-but-curious adversary have been described by (multiple) other authors. For such
functionalities, we will utilize results of other authors (and their corresponding proofs of pri-
vacy and efficiency), citing possible references. A brief description of the subprotocols that
we will use can be found below in Section 2.2. Proving privacy for our two-party k-means
clustering protocol will therefore be reduced to proving privacy for our two protocols. In
Section 2.3 below, we classify protocols that have a specified generic form, and prove that
such protocols will be secure in the honest-but-curious adversary model. Privacy of our Di-
vision Protocol and Random Value Protocol will then follow because they have this generic
form. In Section 2.1 below, we first introduce the cryptographic tools we will need to guar-
antee privacy. The casual reader may wish to skip the description of the cryptographic tools

6

in Section 2.1 and read only the high-level arguments of security in the first paragraph of
Section 2.3, omitting the formal definitions and proofs of privacy in the rest of that section.

2.1 Cryptographic Tools

We will utilize standard cryptographic tools to maintain privacy in our two-party k-
means clustering algorithm. It will be convenient to name our two participating parties,
and we adopt the standard names of “Alice” and “Bob.” We will first utilize an additively
homomorphic encryption scheme, e.g. Paillier ([23]). Thus, for encryptions we assume a
message space ZN , where N = pq is the product of two K-bit primes and K is the security
parameter. In the protocols that follow, one of the parties will be responsible for choosing
the modulus N (we use the convention that Alice plays this role), and the opposite party
(Bob) will be responsible for performing the requisite computations on encrypted data. The
encryption scheme is a map E : ZN × H → G, where H represents some group from which
we obtain randomness, and G is some other group. For notational convenience, we will write
E(m) ∈ G rather than E(m, r). This encryption scheme is additively homomorphic, so that:
E(m1, r1) + E(m2, r2) = E(m1 + m2, r1 + r2), where each addition refers to the appropriate
group operation in G,ZN , or H. (For Paillier, G = Z×N2 and thus the group operation is
multiplication). Additionally, the encryption scheme allows a user to (efficiently) multiply
by a constant, i.e. for c ∈ ZN , anyone can compute: cE(m, r) = E(cm, r′). (For Paillier, if
(N, g) is the public key, then cE(m, r) := (gmrN)c = gmcrcN = gmc(rc)N = E(cm, r′), where
r′ = rc).

2.2 Privacy Protecting Protocols

We list here the generic sub-protocols that will be used by our two-party k-means clus-
tering protocol. All of the below protocols can be readily implemented using only the Scalar
Product Protocol, and we include possible implementations in Appendix B. The Scalar Prod-
uct Protocol is a standard protocol that has been explored much by other authors; we will not
include an implementation of this protocol in this paper, but refer the reader to a number
of possible references.

- Scalar Product Protocol (SPP). This protocol takes in x ∈ Zt
N and y ∈ Zt

N , and returns
(shares of) some pre-determined degree two function f(x,y) =

∑t
i=1 cixiyi, for public

constants ci. (See e.g. [10], where they describe such a protocol that achieves O(tK)
communication complexity, K the security parameter. Other implementations can be
found in [22], [25] and [27].)

- Bigger Than N Protocol (BTNP). Alice and Bob each hold a value in ZN . This protocol
determines if the sum of their values (considered as a sum in Z, not ZN) is bigger than
N .

- To Binary Protocol (TBP). Alice and Bob have shares of some value X ∈ ZN . If
X = xK . . . x1 is the binary expansion of X, then this protocol returns shares of xi for
each 1 ≤ i ≤ K. In other words, xi = xA

i + xB
i (Mod N).

7

- Find Minimum of 2 Numbers Protocol (FM2NP). Alice and Bob share two numbers.
This protocol returns shares of the location of the smaller number (0 or 1).

- Find Minimum of k Numbers Protocol (FMkNP). An extension of the above protocol,
where this time as output they receive shares of the vector (0, . . . , 1, . . . , 0), where the
‘1’ appears in the mth coordinate if the mth number is smallest.

- Distance Protocol (DistP). Computes the distance between two (shared) data points in
Zd

N . An implementation of this protocol can be found in [15], which involves running
the SPP four times on vectors of length d. Their protocol thus has communication
complexity O(dK).

- Division Protocol (DivP). Computes the quotient (as defined below in Section 2.4) of
a shared dividend by a shared divisor.

- Computing δ∗Protocol and Choosing µ1 Protocol. These will be discussed when they
arise in Sections 2.5 and 3.3.1.

2.3 Proof of Privacy

We present first the high-level argument for how our protocols will protect each party’s
data. We have one of the parties (Alice) choose the encryption key, and encrypt all of her
data using this key before sending it to the other party (Bob). Thus, Alice’s privacy will be
guaranteed by the semantic security assumption of the encryption scheme. Meanwhile, Bob
will also encrypt his data using Alice’s key, but he will blind all of the outputs he sends to
Alice with randomness of his choosing, ensuring that Alice can learn nothing about his data.

We now make these notions precise by first providing a formal definition of privacy
protection in the honest-but-curious adversary model, and a formal proof of privacy for the
class of protocols that attempt to protect privacy in the above described manner.

Definition 1. Suppose that protocol X has Alice compute (and output) the function
fA(x,y), and has Bob compute (and output) fB(x,y), where (x,y) denotes the inputs
for Alice and Bob (respectively). Let VIEWA(x,y) (resp. VIEWB(x,y)) represent Alice’s
(resp. Bob’s) view of the transcript. In other words, if (x, rA) (resp. (y, rB)) denotes Alice’s
(resp. Bob’s) input and randomness, then:

VIEWA(x,y) = (x, rA, m1, . . . ,mt), and

VIEWB(x,y) = (y, rB,m1, . . . , mt),

where the {mi} denote the messages passed between the parties. Also let OA(x,y) and
OB(x,y) denote Alice’s (resp. Bob’s) output. Then we say that protocol X protects
privacy (or is secure) against an honest-but-curious adversary if there exist probabilistic
polynomial time simulators S1 and S2 such that:

{(S1(x, fA(x,y)), fB(x,y))} c≡ {(VIEWA(x,y), OB(x,y))} (1)

{(fA(x,y), S2(y, fB(x,y)))} c≡ {(OA(x,y), VIEWB(x,y))}, (2)

where
c≡ denotes computational indistinguishability.

8

With the above definition of privacy protection, we now prove the key lemma that will
allow us to argue that our two-party k-means clustering protocol is secure against an honest-
but-curious adversary.

Lemma 1. Suppose that Alice has run the key generation algorithm for a semantically
secure homomorphic public-key encryption scheme, and has given her public-key to Bob.
Further suppose that Alice and Bob run Protocol X, for which all messages passed from
Alice to Bob are encrypted using this scheme, and all messages passed from Bob to Alice are
uniformly distributed (in the range of the ciphertext) and are independent of Bob’s inputs.
Then Protocol X is secure in the honest-but-curious adversary model.

Proof. We prove the privacy protecting nature of Protocol X in two separate cases, depend-
ing on which party the adversary corrupts. To prove privacy, we show that for all PPT
Adversaries, the view of the adversary based on Alice and Bob’s interaction is indistinguish-
able to the adversary’s view when the corrupted party interacts instead with a simulator. In
other words, we show that there exist simulators S1 and S2 that satisfy conditions (1) and
(2).

Case 1: Bob is Corrupted by Adversary. We simulate Alice’s messages sent to Bob.
For each encryption that Alice is supposed to send to Bob, we let the simulator S2

pick a random element from ZN , and send an encryption of this. Any adversary who
can distinguish between interaction with Alice verses interaction with S2 can be used to
break the security assumptions of E. Thus, no such PPT adversary exists, which means
(2) holds.

Case 2: Alice is Corrupted by Adversary. We simulate Bob’s messages sent to Alice. To
do this, every time Bob is to send an encryption to Alice, the simulator picks a random
element of ZN and returns an encryption of this. Again, equation (1) holds due to the
fact that Alice cannot distinguish the simulator’s encryption of a random number from
Bob’s encryption of the correct computation that has been shifted by randomness of
Bob’s choice.

¥

2.4 Two-Party Division

As mentioned in Section 1.2, performing two-party division has been an obstacle to
obtaining a secure two-party k-means clustering protocol. In this section and the next, we
discuss our methods for overcoming this obstacle. In particular, we make precise what we
mean by division in the ring ZN , and show that this definition not only matches our intuition
as to what division should be, but also allows us to perform division in a secure way. Then
in the following section, we discuss how two parties can choose a value R ∈ ZQ uniformly at
random, where Q ∈ ZN is not known by either party, but is shared between them.

Let P,D ∈ ZN . Then viewing P and D as integers, we may apply the Division Algorithm
to find unique integers Q < N and 0 ≤ R < D such that P = QD + R. Viewing Q ∈ ZN ,

9

we then define division (of P by D) to be the quotient Q. Note that this definition is the
natural restriction of division in R to the integers, in that Q represents the actual quotient
in R that has been rounded down to the nearest integer. Thus this definition coincides much
more closely to real division (e.g. for purposes of finding averages) than other alternatives,
such as defining division to be multiplication by the inverse.

In defining what it means for a protocol to be secure (see Section 2.3), one compares the
information that could be obtained in an ideal model (where a trusted third party exists)
verses what could be obtained in the real world (where no such third party exists, and the
proposed protocol is employed). In terms of defining the function that is to be evaluated
(which performs the k-means clustering), we force the definition of division to match the
above definition. In other words, when the functions fA(x,y) and fB(x,y) (see notation of
Section 2.3) call for division to be performed, these divisions are defined to mean division in
the ring ZN as defined above. This way, when our protocol is run and division is performed
in this way, it matches the computations that the functions fA and fB are performing.

With these definitions in place, it remains to implement a secure division subprotocol
that computes Q and returns shares to Alice and Bob. We describe below a possible imple-
mentation, which has been reduced to the Scalar Product Protocol combined with the Find
Minimum of 2 Numbers Protocol, and consequently its security follows from the security of
those subprotocols.

2.4.1 Possible Implementation of the Division Protocol

Input. Alice and Bob share P = PA + PB and D = DA + DB and have commitments to
the other party’s shares.
Output. If P = QD+R for 0 ≤ R < D is the unique expression guaranteed by the Division
Algorithm, then this protocol outputs shares of Q, and commitments to these shares.
Cost. This protocol adds O(Kξ) + O(K3), where O(ξ) is the communication cost of a
secure Find Minimum of K Numbers Protocol. Note that each time the FMKNP is called
below, the numbers are in decreasing order. As noted in Appendix B, in this case we have
O(ξ) ≤ O(K2 log K).

1. Define the vector D = DA + DB, where DA := {DA, 2DA, 22DA, . . . , 2KDA} is com-
puted by Alice and DB is analogously computed by Bob. Note that each product
involves only a single multiplication, namely by doubling the previous product.

2. Alice sets PA
0 := PA and Bob sets PB

0 := PB. They then run the Find Minimum of
k Numbers Protocol (FMkNP) on the set (P0, P0 −D, P0 − 2D, . . . , P0 − 2KD). This
returns shares of δ1= δA

1 + δB
1 ∈ ZK+1

2 , which is the characteristic vector representing
a1 ∈ [0..K], where a1 is the largest value such that 2a1D ≤ P0. Define P1 = P0− 2a1D,
and notice that Alice and Bob can share P1 = PA + PB, since P1 = P0− δ1 · D (they
run SPP to obtain shares of P1).

3. Alice and Bob repeat the above step for 2 ≤ i ≤ K. Namely, on the ith iteration
they run the FMkNP on (Pi−1, Pi−1−D, Pi−1−2D, . . . , Pi−1−2KD). This outputs δi,
representing the characteristic vector of ai, where ai is the largest value in [0..K] such

10

that 2aiD < Pi−1. They then obtain shares of PA
i by running the SPP as in the above

step.

4. Notice that Q = (δ1+δ2+ · · ·+δi) · (1, 2, . . . , 2K), so Alice and Bob can run the SPP
on the appropriate function, which will output shares of Q.

2.5 The Random Value Protocol (RVP)

We describe here how two parties (Alice and Bob) can choose a value R ∈ ZQ uniformly
at random, where Q ∈ ZN is not known by either party, but is shared between them. Before
we describe the protocol, we provide motivation for why the problem is interesting. After all,
with a division protocol in hand, one could simply have Alice and Bob choose an arbitrary
R′ ∈ ZN (which is trivial to accomplish), and then use the division protocol to find its
modulus in ZQ, and set this to be R. The problem with this approach is that if the modulus
of Q in ZN is Q̄ ∈ [0..N − 1], then R will NOT be distributed uniformly in [0..Q − 1], as
R will be slightly more likely to lie in [0..Q̄] than in [Q̄ + 1..Q − 1]. Since the functions
fA and fB will be drawing R uniformly from ZQ, having our protocol draw R in the above
way (which as noted is not uniformly distributed if Q - N) will make it impossible to find
simulators as in (1) and (2). We therefore need to find a way to sample uniformly from ZQ

without revealing any information about Q to either party.
Recall that N is a K-bit integer, so let Q = qK . . . q1 denote the binary expansion of Q.

We would like for Alice and Bob to not have any knowledge about the random value R they
pick, a notion made more precise in the following definition:

Definition 2. Let VIEWA (respectively VIEWB) denote Alice’s (resp. Bob’s) view of an
execution of the RVP. We say that Alice and Bob have chosen R obliviously if:
∀Q ∈ ZN , ∀α ∈ ZQ,

Pr[R = α|VIEWA] = Pr[R = α|VIEWB] =
1

Q
. (3)

Additionally, we would like Q to remain unknown to both parties throughout the execution
of the protocol. That Q remains unknown to both parties will follow from the fact that
the below protocol is secure (as in definition 1), and obliviousness of R will be proved in
Theorem 1 below. The protocol proceeds by first describing how Alice and Bob make S ∈ ZQ

which is chosen uniformly at random, but Alice may have partial knowledge of its value (Bob
however is oblivious to the value of S). This is followed by the two parties forming T ∈ ZQ

in an analogous manner but with their roles reversed, so that it is Bob who may have partial
knowledge about T , and Alice who is oblivious. From these they will set R = S + T (Mod
Q).

We present first a brief high-level description of how they make S ∈ ZQ. We imagine
the numbers 0 through Q − 1 to be partitioned into groups that each have size a power of
2, as determined by the binary expansion of Q. For example, if Q = 37 = 100101, then we
partition [0..36] into the sets of size 1, 4, and 32: {0}, [1..4], [5..36]. We then choose a value
from each of these sets uniformly at random, so that if there are m sets, then we choose m

11

random values {S1, . . . , Sm}. Finally, we set S to be one of these m values, according to a
probability that depends on the size of each set. More specifically, if the ith set has size 2j,
then we set S to be Si with probability 2j

Q
.

2.5.1 Description of the Protocol

Input. Alice has QA ∈ ZN and Bob has QB ∈ ZN , and they have commitments to the other
party’s share of Q.
Output. Alice and Bob share R ∈ ZQ, where R has been chosen obliviously (as in Definition
2) and uniformly at random. More specifically, Alice has RA ∈ ZN and Bob has RB such
that:

R = RA + RB (Mod N) ∈ [0..Q− 1].

Cost. This protocol will add O(K2) to communication.
Note. This protocol first requires that Bob knows the decryption key for some homomorphic
encryption scheme with security parameter K, so that Alice can perform computations on
their joint inputs without being able to decrypt. The protocol then flips the roles of Alice
and Bob, so it is Alice who will need to hold a decryption key, and Bob who is unable
to decrypt. This situation is trivial to produce, since Bob (resp. Alice) can choose their
own RSA modulus NB (resp. NA) of K-bits, which will be used during the appropriate
half of the protocol. Initially, Q is shared with respect to Alice’s encryption scheme, i.e.
Q = QA +QB (Mod NA). Therefore, before running the first half of this protocol, Alice and
Bob convert their shares of Q (with respect to NA) to shares of Q (with respect to NB).
Steps 1-6 describe the first half of the protocol, where Bob’s encryption key (with respect to
NB) is used, and then Step 7 (which repeats Steps 1-6 with the roles reversed) is done using
Alice’s encryption key (w.r.t. NA). For ease of notation, we will drop the superscripts on
N , remembering which modulus we are working in (which flips for Step 7).

1. Alice and Bob run the To Binary Protocol (TBP) on Q to get shares of the bits of
Q = qK . . . q1.

2. Alice and Bob can now obtain shares of Qi = Q (Mod 2i−1) for each 1 ≤ i ≤ K by
performing the appropriate computation on their shares of the bits of Q. For instance,
Alice will set:

QA
i =

i−1∑
j=1

qA
j 2j−1,

where QA
1 is initialized to zero. Bob does similarly to compute QB

i . Notice that
Qi = QA

i + QB
i (Mod N).

3. Alice picks U ∈ [0..2K − 1] randomly and computes Ui for each 1 ≤ i ≤ K. Alice and
Bob now share Si = Ui + Qi = (Ui + QA

i) + QB
i (Mod N). It remains to explain how

Alice will pick Si from {S1, . . . , SK} with appropriate probability.

4. This step produces a reordering of [1..K] such that i appears before j with probability
2i−j. Label this reordering {x1, . . . , xK}, where each xi ∈ [1..K] appears exactly once.

12

Initialize V = 2K − 2 and define Vi := V + 1 (Mod 2i−1) for each 1 ≤ i ≤ K. Alice
repeats the following for each 1 ≤ l ≤ K:

(a) Alice chooses a random number Xl ∈ [0..V], and sets xl to be m ∈ [1..K] if
Xl ∈ [Vm..Vm+1 − 1].

(b) Alice updates V = V − 2xl−1 and re-calculates each Vi.

5. This step will choose (with correct probability) the S∗ (for some index S∗ ∈ {S1, . . . , SK}),
for which Alice will set S = S∗ = U∗ + Q∗. Namely, it will produce shares of the char-
acteristic vector δ∗ that has a ‘1’ in the ∗th coordinate and zeroes elsewhere. Letting
ei denote the characteristic vector with a ‘1’ in the ith position, we use the following
equation to define δ∗ (we leave it to the reader to verify that δ∗ will choose S∗ from
{S1, . . . , SK} with correct probability):

δ∗ = (qx1)ex1 + (1− qx1)(qx2)ex2 + · · ·+
(1− qx1)(1− qx2) . . . (1− qxK−1

)(qxK
)exK

.

For brevity, we have Alice compute δ∗ by running the sub-protocol Compute δ∗ Pro-
tocol, which can be found in Appendix B with the other sub-protocols.

6. Alice and Bob can now share S = S∗ by running the SPP on the function:
f(x,y) = δ∗ · (S1, . . . , SK).

7. Alice and Bob repeat steps 1-6 with their roles reversed, so that Alice and Bob share
T . Now S and T are elements of ZQ, and we would like to perform the sum S + T
(Mod Q). However, Alice and Bob cannot simply add their own shares of S and T
because these shares correspond to two different moduli NA and NB. (Recall that S
was created using Bob’s encryption key, and is therefore shared between Alice and Bob
modulo NB, while T is shared between them modulo NA.) A little work must be done
to convert the shares of S (which are w.r.t. NB) to shares of T (now w.r.t NA), and
then compute S + T (Mod Q). We leave the details to the reader.

2.5.2 Proof of Obliviousness and Security

Notice that the only communication between Alice and Bob in the above protocol takes
place in the form of the sub-protocols TBP, Compute δ∗ Protocol, and SPP. The protocol
is therefore secure if each of those sub-protocols are secure, by the composition theorem of
[5]. Since we are using a secure Scalar Product Protocol (e.g. of [10] or [25]) and the TBP
and Compute δ∗ Protocol (see Appendix B) are both secure, it follows that our Random
Value Protocol is secure against an honest-but-curious adversary. It remains to show that
the output R ∈ ZQ is oblivious to both parties.

Theorem 1. The above described Random Value Protocol outputs shares of R ∈ ZQ such
that R has been chosen obliviously (as in definition 2).

Proof. The fact that R is chosen obliviously follows from three simple claims:

13

Claim 1. During Alice’s portion of the protocol (Steps 1-6), the distribution of choices for
S is uniform in ZQ. Conversely for T during Bob’s portion of the protocol (Step 7).

Claim 2. If β is any fixed number in ZQ and X represents a random variable uniformly
distributed in ZQ, then the random variable Y := β +X (Mod Q) is uniformly distributed in
ZQ.

Claim 3. If a party’s view includes knowledge of β but no knowledge of X, then Y is oblivious
to that party.

We leave the proofs of these claims to the reader, but note that all three claims result from
straightforward combinatorial arguments. The fact that R = S + T (Mod Q) is a random
variable follows from the fact that both S and T are chosen uniformly at random in ZQ,
and then letting e.g. X = S and β = T in Claim 2 above, we have by Claim 2 that R is
uniformly distributed in ZQ. The fact that R is oblivious follows from Claim 3. ¥

As an aside, we note that Claim 2 actually guarantees that this protocol chooses R
obliviously even if one of the parties is corrupted maliciously. The Random Value Protocol
can therefore be used as a sub-protocol in models allowing a malicious adversary, provided
that the TBP, Compute δ∗ Protocol, and SPP utilized by the RVP are all secure against a
malicious adversary.

3 Two-Party k-Means Clustering Protocol

3.1 Notation and Preliminaries

Following the setup of [15], we assume that two parties, “Alice” and “Bob,” each hold
(partial) data describing the d attributes of n objects (we assume Alice and Bob both know
d and n). Their aggregate data comprises the (virtual) database D, holding the complete
information of each of the n objects. The goal is to design an efficient algorithm that allows
Alice and Bob to perform k-means clustering on their aggregate data in a manner that
protects their private data.

As mentioned in the Introduction, we are working in the model where our data points
are viewed as living in Zd

N for some large RSA modulus N chosen by Alice. Note that if
Alice and Bob desire a lattice width of W and M denotes the maximum Euclidean distance
between points, then Alice will pick N sufficiently large to guarantee that N ≥ n2M2

W 2 (this
inequality guarantees that the sum of all data points does not exceed N).

We allow the data points to be arbitrarily partitioned between Alice and Bob (see [15]).
This means that there is no assumed pattern to how Alice and Bob hold attributes of different
data points (in particular, this subsumes the cases of vertically and horizontally partitioned
data). We only demand that between them, each of the d attributes of all n data points
is known by either Alice or Bob, but not both. For a given data point Di ∈ D, we denote
Alice’s share of its attributes by DA

i , and Bob’s share by DB
i .

14

3.2 Single Database k-Means Algorithms

The single database k-means clustering algorithm that we extend to the two-party setting
was introduced by [21] and is summarized below. We chose this algorithm because under
appropriate conditions on the distribution of the data, the algorithm is provably correct (as
opposed to most other algorithms that are used in practice which have no such provable
guarantee of correctness). Additionally, the Initialization Phase (or “seeding process”) is
done in an optimized manner, reducing the number of iterations required in the Lloyd Step.
The algorithm is as follows (see [21] for details):

Step I: Initialization. This procedure chooses the cluster centers µ1, . . . ,µk according to
(an equivalent version of) the protocol described in [21]:

A. Center of Gravity. Compute the center of gravity of the n data points and denote this
by C:

C =

∑n
i=1 Di

n
(4)

B. Distance to Center of Gravity. For each 1 ≤ i ≤ n, compute the distance (squared)

between C and Di. Denote this as C̃0
i = C̃0

i = Dist2(C,Di).

C. Average Squared Distance. Compute the average squared distance C̄ :=
∑n

i=1 C̃0
i

n
.

D. Pick First Cluster Center. Pick µ1 = Di with probability:

Pr[µ1 = Di] =
C̄ + C̃0

i

2nC̄
. (5)

E. Iterate to Pick the Remaining Cluster Centers. Pick µ2, . . . , µk as follows: Suppose
µ1, . . . , µj−1 have already been chosen (initially j=2), then we pick µj by:

1. For each 1 ≤ i ≤ n, calculate C̃j−1
i , the distance (squared) between Di and µj−1.

2. For each 1 ≤ i ≤ n, let C̃i denote the minimum of {C̃ l
i}j−1

l=0 .

3. Update C̄ to be the average of C̃i (over all 1 ≤ i ≤ n).

4. Set µj = Di with probability:

Pr[µj = Di] =
C̃i

nC̄
.

Step II: Lloyd Step. Repeat the following until ν1, . . . , νk is sufficiently close to µ1, . . . ,
µk:

A. Finding the Closest Cluster Centers. For each data point Di ∈ D, find the closest
cluster center µj ∈ {µ1, . . . , µk}, and assign data point Di to cluster j.

B. Calculating the New Cluster Centers. For each cluster j, calculate the new cluster
center νj by finding the average position of all data points in cluster j. Share these
new centers between Alice and Bob as νA

1 , . . . , νA
k and νB

1 , . . . , νB
k , respectively.

C. Checking the Stopping Criterion. Compare the old cluster centers to the new ones. If
they are “close enough,” then the algorithm returns the final cluster centers to Alice
and Bob. Otherwise, Step II is repeated after reassigning the cluster centers.

15

D. Reassigning New Cluster Centers. To reassign new cluster centers, set:

µA
1 , . . . , µA

k = νA
1 , . . . , νA

k , and

µB
1 , . . . , µB

k = νB
1 , . . . , νB

k .

3.3 Our Two-Party k-Means Clustering Protocol

We now extend the k-means algorithm of [21] to a two-party setting. Section 3.3.1
below discusses how to implement Step I of the above algorithm (the Initialization), and
section 3.3.2 discusses how to implement Step II of the algorithm (the Lloyd Step). We
discuss in Appendix A alternative approaches in the number of iterations allowed in the
Lloyd Step, and why this question is an issue in terms of protecting privacy.

3.3.1 Step I: Initialization

We now describe how to extend Step I of the above algorithm to the two-party setting.
In particular, we need to explain how to perform the computations from Step I in a secure
way. As output, Alice should have shares of the cluster centers µA

1 , . . . , µA
k , and Bob should

have µB
1 , . . . , µB

k , such that µA
i + µB

i = µi. Below we follow Step I of the algorithm from
Section 3.3.1 and describe how to privately implement each step.

A. Center of Gravity. To implement Step A of our algorithm, we need Alice and Bob to
compute and share:

C =
1

n

n∑
i=1

Di =
1

n

n∑
i=1

DA
i +

1

n

n∑
i=1

DB
i . (4)

Note that the division by n in (4) should be performed in R (as opposed to ZN), which is
handled by the Division Protocol (DivP).

1. For each 1 ≤ j ≤ d, Alice and Bob run the SPP on inputs x = {DA
i,j}n

i=1 and y =
{DB

i,j}n
i=1, and the function f(x,y) =

∑n
i=1 DA

i,j +
∑n

i=1 DB
i,j. As output to this call,

Alice gets OA
j and Bob gets OB

j , where:

OA
j + OB

j = Oj :=
n∑

i=1

DA
i,j +

n∑
i=1

DB
i,j.

2. For each 1 ≤ j ≤ d, Alice and Bob run the DivP on inputs XA = OA
j , XB

j = OB
j , and

D := n. Note that as output of the DivP, Alice and Bob share Cj = 1
n

∑n
i=1 Di,j = (jth

coordinate of C) as desired.

B. Distance to Center of Gravity.

1. For each 1 ≤ i ≤ n, Alice and Bob run the Distance Protocol (DistP) on (DA
i ,CA) and

(DB
i ,CB) to share C̃0

i = C̃A,0
i + C̃B,0

i .

16

C. Average Squared Distance. Define the following sums:

P :=
n∑

i=1

C̃A,0
i and P ′ :=

n∑

i=1

C̃B,0
i

1. Alice and Bob run the SPP on inputs x = {C̃A,0
i }n

i=1, y = {C̃B,0
i }n

i=1, and function

f(x,y) =
∑n

i=1 C̃A,0
i +

∑n
i=1 C̃B,0

i . As output to this function, Alice and Bob share:

XA + XB = P + P ′ =
n∑

i=1

C̃A,0
i +

n∑
i=1

C̃B,0
i .

2. Alice and Bob next run the DivP on the inputs XA and XB, and D := n. As output,
Alice and Bob will be sharing C̄0 as desired.

D. Pick First Cluster Center. Notice that picking a data point Di with probability
C̄+C̃0

i

2nC̄

is equivalent to picking a random number R ∈ [0..2nC̄ − 1] and finding the first i such

that R ≤ ∑i
j=1 C̄ + C̃0

j . We use this observation to pick data points according to weighted
probabilities as follows:

1. Picking a Random R. In this step, Alice and Bob pick a random number in [0..2nC̄−1],
where 2nC̄ = 2nC̄A+2nC̄B. Alice and Bob run the Random Value Protocol (RVP) with
Q := 2nC̄ = 2nC̄A + 2nC̄B to generate and share a random number R = RA + RB ∈
Z2nC̄ .

2. Alice and Bob will next compare their random number R with the sum
∑i

j=1 C̄ + C̃0
j ,

and find the first i such that R ≤ ∑i
j=1 C̄ + C̃0

j . They will then set µ1 = Di. This
essentially boils down to running the FM2NP n times, and looking for the first place
it returns a 1. The actual implementation of this can be found in the Choosing µ1

Protocol in Appendix B.

E. Iterate to Pick the Remaining Cluster Centers.

1. This step is done analogously to Step I.B.

2. This step is supposed to calculate the minimum of {C̃ l
i}j−1

l=0 . However, they don’t have
to take the minimum over all j numbers, since from the previous iteration of this step,
they already have C̃i = Min{C̃ l

i}j−2
l=0 . Thus, they really only need to take a minimum

of two numbers, that is reset C̃i to be:
C̃i = Min{C̃i, C̃

j−1
i }.

Therefore, Alice and Bob run the FM2NP on inputs (C̃A
i , C̃A,j−1

i) and (C̃B
i , C̃B,j−1

i) so

that they share the location of (the new) C̃i (let L = LA + LB denote this location).

They can then share the new C̃i = Min{C̃i, C̃
j−1
i } by running the SPP on inputs x =

(C̃A
i , C̃A,j−1

i , LA) and y = (C̃B
i , C̃B,j−1

i , LB) and function f(x,y) = LC̃j−1
i + (1−L)C̃i.

3. This step is done analogously to Step I.C.

4. This step is done analogously to Step I.D.

17

3.3.2 Step II: Lloyd Step

In this section, we discuss how to implement the Lloyd Step while maintaining privacy
protection.

A. Finding the Closest Cluster Centers. We repeat the following procedure for each Di ∈ D:

1. Find the Distance (squared) to Each Cluster Center. Note that because finding the
minimum of all distances is equivalent to finding the minimum of the distances squared,
we will calculate the latter. Alice and Bob run the Distance Protocol (DistP) k times
(once for each cluster j) to generate:

XA
i := (XA

i,1, . . . ,X
A
i,k) and XB

i := (XB
i,1, . . . ,X

B
i,k),

where
XA

i,j + XB
i,j = DistP(Di,µj).

2. Alice and Bob run the Find Minimum of k Numbers Protocol (FMkNP) on XA
i and

XB
i to obtain a share of (a vector representation of) the location of the closest cluster

center to Di:
Ci := (0, . . . , 0, 1, 0, . . . , 0), (6)

where the 1 appears in the jth coordinate if cluster center µj is closest to Di. Note
that in actuality, Ci is shared between Alice and Bob:

Ci = CA
i + CB

i .

B. Calculating the New Cluster Centers. The following will be done for each cluster 1 ≤ j ≤
k. We break the calculation into three steps: In Step 1, Alice and Bob will compute and
share the sum of data points in cluster j, in Step 2 they will compute and share the total
number of points in cluster j, and in Step 3 they will divide the result of Step 1 by the result
of Step 2. To simplify the notation, by E(Di) we will mean (E(Di,1), . . . , E(Di,d)).

1. Sum of Data Points in Cluster j. In this step, Alice and Bob compute and share the
sum of all data points in cluster j. We denote this sum as:

Sj ∈ Zd
N =

n∑
i=1

{
Di, if Di ∈ cluster j

0, O.W.

At the end of this step, Alice and Bob will share Sj = SA
j +SB

j (here the addition is in
Zd

N). Recall from Step A above that for each data point Di, Alice and Bob have CA
i

and CB
i (respectively) such that:

CA
i + CB

i = Ci = (0, . . . , 0, 1, 0, . . . , 0),
where the 1 appears in the mth cluster if Di is closest to cluster m. Therefore, for
cluster j we would like to sum:

Sj =
n∑

i=1

Ci,jDi.

(a) Alice and Bob will run the SPP n times, where on the ith time they set x =
(CA

i,j,D
A
i ,CA

i,jD
A
i) and y = (CB

i,j,D
B
i ,CB

i,jD
B
i) and function f(x,y) = Ci,jDi =

18

(CA
i,j + CB

i,j)(D
A
i + DB

i). (In order to do this, they first pre-compute CB
i,jD

B
i and

CB
i,jD

B
i).

(b) Notice that SA
j is the sum of all of Alice’s shares from each step of the n calls to

SPP above (and similarly for Bob and SB
j). They can therefore add all of their

individual shares of the above sums to obtain shares of Sj.

2. Number of Data Points in Cluster j. Now Alice and Bob wish to compute and share
the total number of points in cluster j, denoted by Tj. To do this, for each 1 ≤ i ≤ n,
Alice views CA

i ∈ Zk
N , and analogously for Bob. They then run the SPP on inputs

x = {CA
i },y = {CB

i } and function f(x,y) =
∑n

i=1 CA
i,j +

∑n
i=1 CB

i,j. (Note: since each
term in the sum is in Zk

N , they actually run the SPP k times, once for each coordinate.)

3. Centroid of Data Points in Cluster j. In this step Alice and Bob would like to divide
SA

j +SB
j (from Step 1) by the total number of data points Tj in cluster j to obtain the

new cluster center νj:

νj =
SA

j + SB
j

TA
j + TB

j

(7)

Alice and Bob run the DivP k times (once for each cluster j) on inputs P = SA
j + SB

j

and divisor D = TA
j + TB

j , where they know D ∈ [0..n].

C. Checking the Stopping Criterion. Alice and Bob run the DistP k times, on the ith time
it outputs shares of ‖µi − νi‖2. They can then run the SPP to add their shares together
and run the FM2NP to compare these sums with ε, some agreed upon predetermined value.
They can open then compare their outputs from the FM2NP to determine if the stopping
criterion has been met.

D. Reassigning New Cluster Centers. The final step of our algorithm, replacing the old
cluster centers with the new ones, is easily accomplished:

Alice sets: (µA
1 , . . . , µA

k) = (νA
1 , . . . , νA

k), and

Bob sets: (µB
1 , . . . , µB

k) = (νB
1 , . . . , νB

k).

4 Conclusion

As mentioned in Section 2.3, the proof of security of the two-party k-means clustering
protocol presented above follows from the fact that each of the subprotocols are secure. The
only exception to this is in step C of the Lloyd Step, where Alice and Bob must decide if their
protocol has reached the termination condition. Although Alice and Bob remain oblivious to
any actual values at this stage, they will gain the information of exactly how many iterations
were required in the Lloyd Step. There are various ways of defining the model to handle this
potential information leak and thus maintain perfect privacy protection (see Appendix A).

Analyzing the communication between Alice and Bob in the two-party k-means clustering
protocol presented in Section 3.3 demonstrates that our protocol achieves communication

19

complexity:
O(kK2) + O(mndkK) + O(mnkξ) + O((d + m)kζ).

Recall that k is the number of clusters, K is the security parameter, n is the number of
data points, d is the number of attributes of each data point, m is the number of iterations
in the Lloyd Step, O(ζ) is the communication cost of performing two-party secure division
(where division is defined as in Section 2.4), and O(ξ) is the communication cost of (securely)
finding the minimum of two numbers. In this paper, we showed that O(ζ) ≤ O(Kξ)+O(K3)
and that O(ξ) ≤ O(K2 log K), which means our protocol has communication complexity
bounded by O(mndkK) + O(mnkK2) + O((m + d)kK3 log K). Notice that the cost of
performing the single database k-means clustering protocol of [21] is at least O(mndk) +
O(mnkK)+O(mdkζ): The first term is necessary e.g. to add together all the data points in
each cluster during each iteration of the Lloyd Step, the second term is necessary to e.g. find
the minimum of k numbers for each data point (when deciding which cluster the data point
belongs to), and the third term is necessary for performing a division for each dimension of
each cluster center. Therefore, the difference in communication complexities between our
secure two-party protocol and a non-secure single database protocol is at most a factor of the
security parameter K. The communication cost of our protocol matches the communication
complexity of [15] while simultaneously enjoying the extra guarantee of security against an
honest-but-curious adversary.

The communication complexity of our k-means protocol is bounded by the cost of per-
forming secure division. In this paper, we defined a notion of division in the ring ZN that
matches the intuition of what division “should” mean (e.g. when taking an average), and we
included a possible implementation of a secure division. It is our belief that improvement of
our result (in terms of communication complexity) will likely be restricted to the possibility
of implementing a more efficient division protocol, which is an interesting open problem.

References

[1] D. Agrawal and C. Aggarwal. “On the Design and Quantification of Privacy Preserving
Data Mining Algorithms.” Proc. of the 20th ACM SIGMOD-SIGACT-SIGART Symp.
on Principles of Database Systems, pp. 247-255. 2001.

[2] R. Agrawal and R. Srikant. “Privacy-Preserving Data Mining.” Proc. of the 2000 ACM
SIGMOD Int. Conf. on Management of Data, pp. 439-450. 2000.

[3] D. Beaver. “Foundations of Secure Interactive Computing.” CRYPTO ’91, LNCS 576,
pp. 377-391. 1992.

[4] P. Bradley and U. Fayyad. “Refining Initial Points for K-Means Clustering.” Proc. of
the 15th International Conference on Machine Learning, pp. 91-99. 1998.

[5] R. Canetti. “Security and Composition of Multiparty Cryptographic Protocols.” Journal
of Cryptology, vol. 13 no. 1 pp. 143-202. 2000.

20

[6] D. Chaum, C. Crépeau and I. Damgard. “Multiparty Unconditionally Secure Protocols.”
Proc. of the 20th Annual ACM Symp. on the Theory of Computing, pp. 11-19. 1988.

[7] C. Dwork, F. McSherry, K. Nissim, and A. Smith. “Calibrating Noise to Sensitivity
Private Data Analysis.” Proc. of the 3rd Theory of Cryptography Conference, pp. 265-
284. 2006.

[8] I. Dinur and K. Nissim. “Revealing Information While Preserving Privacy.” Proc. of the
22nd ACM SIGMOD-SIGACT-SIGART Symp. on Principles of Database Systems, pp.
202-210. 2003.

[9] C. Dwork and K. Nissim. “Privacy-Preserving Datamining on Vertically Partitioned
Data- bases.” CRYPTO ’04, LNCS 3152, pp. 528-544. 2004.

[10] B. Goethals, S. Laur, H. Lipmaa and T. Mielikäinen. “On Private Scalar Product Com-
putation for Privacy-Preserving Data Mining.” ICISC, LNCS 3506, pp. 104-120. 2004.

[11] O. Goldreich. “The Foundations of Cryptography, Basic Applications.” Cambridge Uni-
versity Press. 2004.

[12] O. Goldreich, S. Micali and A. Wigderson. “How to Play Any Mental Game.” Proc. of
the 19th STOC, ACM, pp. 218-229. 1987.

[13] Y. Isahi, E. Kushilevitz, R. Ostrovsky, and A. Sahai. “Zero-Knowledge from Secure
Multiparty Computation.” ACM Symposium on Theory of Computing. 2007

[14] S. Jha, L. Kruger and P. McDaniel. “Privacy Preserving Clustering.” 10th European
Symp. on Research in Computer Security, pp. 397-417. 2005.

[15] G. Jagannathan and R. Wright. “Privacy-Preserving Distributed k-Means Clustering
over Arbitrarily Partitioned Data.” KDD ’05, pp. 593-599. 2005.

[16] J. Katz and R. Ostrovsky. “Round-Optimal Secure Two-Party Computation.” CRYPTO
’04, LNCS 3152, pp. 335-354. 2004.

[17] E. Kiltz, G. Leander and J. Malone-Lee. “Secure Computation of the Mean and Related
Statistics.” TCC ’05, LNCS 3378, pp. 283-302. 2005.

[18] Y. Lindell and B. Pinkas. “Privacy Preserving Data Mining.” CRYPTO ’00, LNCS
1880, pp. 36-54. 2000.

[19] S. Oliveira and O.R. Zäıane. “Privacy Preserving Clustering by Data Transformation.”
Proc. 18th Brazilian Symposium on Databases, pp. 304-318. 2003.

[20] M. Ben-Or, S. Goldwasser, and A. Wigderson. “Completeness Theorems for Non-
Crypto- graphic Fault-Tolerant Distributed Computation.” Proc. 20th Annual ACM
Symp. on Theory of Computing, pp. 1-10. 1988.

[21] R. Ostrovsky, Y. Rabani, L. Schulman, and C. Swamy. “The Effectiveness of Lloyd-Type
Methods for the k-Means Problem.” FOCS. 2006.

[22] M. Naor and B. Pinkas. “Oblivious Polynomial Evaluation.” SIAM Journal of Comput-
ing, Vol. 35, No. 5, pp. 1254-1281. 2006.

21

[23] P. Paillier. “Public Key Cryptosystems Based on Composite Degree Residuosity
Classes.” Advances in Cryptology, EUROCRYPT ’99 Proceedings, LNCS 1592, pp. 223-
238. 1999.

[24] J. Vaidya and C. Clifton. “Privacy-Preserving k-Means Clustering over Vertically Par-
titioned Data.” Proc. 9th ACM SIGDD Inter. Conf. on Knowledge Discovery and Data
Mining, 206-215. 2003.

[25] R. Wright and Z. Yang. “Privacy-Preserving Bayesian Network Structure Computation
on Distributed Heterogeneous Data.” Proc. of the 10th ACM SIGKDD International
Conf. on Knowledge Discovery and Data Mining, pp. 713-718. 2004.

[26] A.C.C. Yao. “How to Generate and Exchange Secrets.” Proc. of the 27th IEEE Symp.
on Foundations of Computer Science, pp. 162-167. 1986.

[27] H. Zhu and F. Bao. “Oblivious Scalar-Product Protocols.” 11th Australasian Conference
on Information Security and Privacy, LNCS 4058, pp. 313-323. 2006.

A Alternative Computation of the k-Means Cluster

Centers

It is possible that the iterative nature of the Lloyd Step may reveal undesirable infor-
mation to the two parties, in particular the number of iterations that are performed in the
Lloyd Step. We suggest three different approaches to handle this privacy concern:

• Approach 1: Reveal Number of Iterations. If Alice and Bob agree beforehand that
this minor leak of information will not compromise the privacy of their data, they can
choose to run our algorithm so that this is the only privacy leak.

• Approach 2: Set the Number of Iterations to be Proportional to n. In general, the more
data points, the more iterations are necessary to reach the stopping condition. Based
on n, one could therefore approximate the expected number of iterations that should
be necessary, and fix our algorithm to perform this many iterations.

• Approach 3: Fix the Number of Iterations to be Constant. In [21], it is argued that
if the data points enjoy certain “nice” properties, then the number of iterations is
extremely small (i.e. with high probability, only 2 iterations are necessary). Thus,
fixing the number of iterations to be some (small) constant will (with high probability)
not result in a premature termination of the Lloyd Step (i.e. the stopping condition
will likely have been reached).

Each approach has its pros and cons. Approach 1 guarantees the accuracy of the final
output (as the stopping criterion has been met) in the minimal number of steps, but leaks
information about how many iterations were performed. Approach 2 succeeds with high
probability, but may unnecessarily affect communication complexity if the fixed number of

22

iterations is higher than necessary. Approach 3 keeps communication minimal, but runs a
higher risk of losing accuracy of the final output (i.e. if the stopping criterion hasn’t been
reached after the fixed number of iterations have been completed). In the body of our paper,
we assumed Approach 1, although it is trivial to modify our algorithm to implement instead
Approach 2 or 3.

B Implementations of Protocols from Section 2.2

We describe here possible implementations of each of the protocols listed in Section 2.2.
We provide these implementations solely for the purpose of completion, and make no claim
concerning their efficiency in relation to other existing protocols that perform the same tasks.
Since we need each of these protocols to be secure against an honest-but-curious adversary,
we need the communication in each sub-protocol to be in the generic form of Lemma 1 or
to utilize other protocols that are already known to be secure; and indeed this will be the
case in each of the following.

B.1 Description of the Find Minimum of 2 Numbers Protocol

Input. As input to this protocol, Alice has (XA, Y A) ∈ Z2
N and Bob has (XB, Y B) ∈ Z2

N

Output. As output, Alice and Bob should share:

L = (loc. of min. of (X, Y)) :=

{
0, if X ≤ Y

1, if X ≥ Y

where if X = Y , then L should be 0 half of the time and 1 half of the time. (Sometimes we would
instead like this protocol to output 0 always if X = Y . This modification is easily accounted for
by setting r in (8) below to be 0).
Cost. Total cost of this protocol is O(K2).
Note. This protocol will be completed by performing a standard minimum comparison on the
binary representations of these numbers. Let X = c1c2 . . . cM and Y = d1d2 . . . dM be the binary
representations of X and Y (recall that M = dlog Ne). In general, note that the following formula
will return the location of the minimum of (X, Y), where the formula returns 0 if X < Y , a 1 if
X > Y , and a random r ∈ {0, 1} if X = Y :

L = (c1 ⊕ d1)c1 + (c1 ⊕ d1 ⊕ 1)(c2 ⊕ d2)c2+
(c1 ⊕ d1 ⊕ 1)(c2 ⊕ d2 ⊕ 1)(c3 ⊕ d3)c3 + · · ·+
(c1 ⊕ d1 ⊕ 1) . . . (cM−1 ⊕ dM−1 ⊕ 1)(cM ⊕ dM)cM+
(c1 ⊕ d1 ⊕ 1) . . . (cM ⊕ dM ⊕ 1)r (8)

where ⊕ signifies XOR, and the other operations are performed in ZN . Shares of L can than be
obtained by running the SPP many times, utilizing the general fact that:

c⊕ d = c + d− 2cd, (9)
where addition on the left hand side is in Z2 and on the right hand side is in ZN . We omit the
specific details due to space consideration.

23

B.2 Description of the Find Minimum of k Numbers Protocol

This subprotocol is a simple extension of the above. If the communication cost of the FM2NP
is O(ξ), then this protocol will have communication complexity O(kξ). Furthermore, every
time this protocol is called by our k-means clustering protocol the numbers are essentially
already in sorted order. We can take advantage of this and reduce the cost of this subprotocol
to O(ξ log k).

B.3 Description of the To Binary Protocol

Input. As input to this protocol, Alice and Bob share X = XA + XB < N/2.
Output. If X = x1x2 . . . xM is the binary representation for X, then as output Alice and Bob
should share each bit xi = xA

i + xB
i (Mod N).

Cost. Total cost of this protocol is O(K2).
Note. This protocol is made slightly more difficult due to the two possibilities:

XA + XB =

{
XA + XB, if γ = 0
XA + XB −N, if γ = 1

where

γ =

{
0, if XA AND XB < N/2
1, if XA OR XB ≥ N/2

In particular, if XA := a1a2 . . . aM , XB := b1b2 . . . bM , 2M −N = d1d2 . . . dM , then:

a1a2 . . . aM

b1b2 . . . bM

+ γ ∗ (d1d2 . . . dM)

BIN(X) = x1x2 . . . xM , (10)

where addition above is standard addition in Z2M (performed base 2, with carry-over). We perform
addition (base 2) in the usual way: start on the right and add the bits via XOR, keeping track of
carry-over. Again we omit the details, but note that addition modulo 2 can be handled by using
the SPP together with (9).

B.4 Description of the Bigger Than N Protocol

Input. As input to this protocol, Alice and Bob share X = XA + XB, where X < N/2.
Output. This protocol should output shares of 0 if XA+XB ≥ N (in Z), and shares of 1 otherwise.
Cost. Total cost of this protocol is O(K) in communication.
Note. Define:

α :=

{
0, if XA < N/2
1, if XA ≥ N/2

β :=

{
0, if XB < N/2
1, if XB ≥ N/2

(11)

24

Then due to the hypothesis that X < N/2, it is immediate that if O = OA +OB denotes the output
of this protocol, then:

O :=

{
0, if XA + XB (Mod N) = XA + XB

1, if XA + XB (Mod N) = XA + XB −N

=

{
0, if α⊕ β = 0
1, if α⊕ β = 1

(12)

Thus, viewing the left and right hand sides of the below equation as arithmetic in ZN , and the
middle as arithmetic in Z2, we have that:

OA + OB = α⊕ β = α + β − 2αβ. (13)

1. Alice set α and Bob sets β according to (11).
2. Alice and Bob run the SPP according to (13) to obtain shares of O.

B.5 Choosing µ1 Protocol

Input. Alice and Bob have run the RVP, which has returned to them shares of a random R ∈ Z2nC̄ .
They also share C̄ and for each 1 ≤ i ≤ n, they share C̃0

i .
Output. Alice and Bob share µ1 = Di, where Di has been chosen with the correct probability.
Cost. This protocol costs O(ndK) + O(nK2) in terms of communication.

1. For each 1 ≤ i ≤ n, Alice and Bob run the SPP on inputs x = (C̄A, C̃A,0
i) and y = (C̄B, C̃B,0

i)
and the function:

f(x,y) = C̄ + C̃0
i = C̄A + C̃A,0

i + C̄B + C̃B,0
i .

Let Oi = C̄A + C̃A,0
i + C̄B + C̃B,0

i = C̄ + C̃0
i denote the function output value on the ith

call, so that Alice and Bob share this as Oi = OA
i + OB

i . Let zA = (OA
1 , . . . , OA

n), and
zB = (OB

1 , . . . , OB
n) so that z = zA + zB = (C̄ + C̃0

1 , . . . , C̄ + C̃0
n).

2. Alice and Bob next run the SPP n times to compute and share:

Z : = ZA + ZB = (z1, (z1 + z2), . . . , (z1 + · · ·+ zn))
= ((C̄ + C̃0

1), . . . , (nC̄ + C̃0
1 + · · ·+ C̃0

n)). (14)

Notice that on any call i to SPP, the function involves only 3 additions- the sum of their
shares from the i− 1 call plus the sum of their shares of zi.

3. Alice and Bob run the Find Minimum of 2 Numbers Protocol (FM2NP) n different times.
(Actually, they run the modified version so that in the case of equality, the protocol always
returns a 0). On the ith try they run it on (ZA

i , RA) and (ZB
i , RB), i.e. they are comparing

the ith coordinate of Z with R (recall that R is an input value). This generates the vectors
LA := (LA

1 , . . . , LA
n) and LB := (LB

1 , . . . , LB
n), where LA

m + LB
m are the values returned by the

FM2NP on the mth call to it. Thus,

LA
m + LB

m =

{
0, if R ≤ Zm

1, if R ≥ Zm

Note that if L := LA + LB, then it has the form: L = (0, . . . , 0, 1, 1, . . . , 1), where the first 1
appears in the mth coordinate if m is the first time R ≤ Zm.

25

4. Alice and Bob modify LA in the following way (LB is modified similarly):
L′A := (LA

1 , (LA
2 − LA

1), (LA
3 − LA

2), . . . , (LA
n − LA

n−1))
so that L′ = L′A + L′B has the form:

L′ = (0, . . . , 0, 1, 0, . . . , 0),

where the 1 appears in the mth coordinate if m is the first time that R ≤ Zm.
5. Now Alice and Bob simply need to take the scalar product of L′ with (D1, . . . ,Dn) to correctly

select µ1. More specifically, they do this for each dimension. Define Dm = (D1,m, . . . ,Dn,m).
Then Dm ∈ Zn

N represents the mth coordinates of the n data points. Let DA
m represent Alice’s

share of Dm, and DB
m denote Bob’s share. Alice and Bob would like to take d scalar products

(once for each dimension), where on the mth time they set:
(µA

1,m, µB
1,m) = Scalar Product(LA + LB, DA

m + DB
m).

To accomplish this, Alice first computes LA · DA
m, and similarly Bob computes LB · DB

m.
6. Alice and Bob compute the desired scalar product by running SPP on inputs x = (LA, DA

m,LA · DA
m)

and y = (LB, DB
m,LB · DB

m) and function f(x,y) = L · Dm. This yields as output shares of
µ1,m = µA

1,m + µB
1,m as desired.

7. Lastly, Alice and Bob set µA
1 = (µA

1,1, . . . , µ
A
1,d) and µB

1 = (µB
1,1, . . . , µ

B
1,d). Notice that

µ1 =µA
1 +µB

1 is exactly as it should be, that is, µ1 = Di with the correct probability.

B.6 Compute δ∗ Protocol

Input. Alice and Bob share Q = QA +QB, and if Q = qK . . . q1, then for each 1 ≤ i ≤ K, they also
share qi = qA

i + qB
i (Mod N). Alice also has a reordering of the integers [1..M], which is denoted

{x1, . . . , xM}.
Output. The vector δ∗ = (0, . . . , 1, . . . , 0), a unit vector with a ‘1’ in the appropriate coordinate,
has been chosen correctly (see RVP for precise definition of this), and is shared between Alice and
Bob.
Cost. This protocol costs O(K2) in terms of communication.
Note. In this protocol, the roles of Alice and Bob will be reversed, so that Ê will represent a
homomorphic encryption function that Bob can decrypt but Alice cannot.

1. Bob sends Alice (Ê(qB
1), . . . , Ê(qB

K)).
2. Alice picks K values at random {Z1, . . . , ZK} ∈ ZN and (utilizing the homomorphic properties

of Ê) returns to Bob (Ê(qB
x1
− Z1), . . . , Ê(qB

xK
− ZK)). Notice that Alice has rearranged the

order in which she returns things to Bob (reflecting her choices of the xi from the above step),
but Bob doesn’t know the new order because Alice has blinded each term with randomness
Zi.

3. Bob decrypts each term, and multiplies them in the following indicated manner, returning
to Alice:

(Ê(qB
x1
− Z1), Ê((qB

x1
− Z1)(qB

x2
− Z2)), . . . ,

Ê((qB
x1
− Z1)(qB

x2
− Z2) . . . (qB

xK
− ZK))).

26

4. Recall that δ∗ is defined by the equation:

δ∗ =(qx1)ex1 + (1− qx1)(qx2)ex2 + · · ·+
(1− qx1)(1− qx2) . . . (1− qxK−1)(qxK)exK . (15)

Alice now utilizes the homomorphic properties of Ê to calculate (an encryption of) δ∗.
5. Alice chooses new randomness and blinds δ∗ with this, returning the result to Bob who can

decrypt so that Alice and Bob now share δ∗.

27

