Cryptography in the Multi-string Model*

Jens Groth' Rafail Ostrovsky*
University College London University of California, Los Angeles
j.groth@ucl.ac.uk rafail@cs.ucla.edu

Preliminary version appeared in CRYPTO 2007: 323-341

Abstract

The common random string model introduced by Blum, Feldman and Micali permits the construction
of cryptographic protocols that are provably impossible to realize in the standard model. We can think
of this model as a trusted party generating a random string and giving it to all parties in the protocol.
However, the introduction of such a third party should set alarm bells going off: Who is this trusted
party? Why should we trust that the string is random? Even if the string is uniformly random, how do we
know it does not leak private information to the trusted party? The very point of doing cryptography in
the first place is to prevent us from trusting the wrong people with our secrets.

In this paper, we propose the more realistic multi-string model. Instead of having one trusted authority,
we have several authorities that generate random strings. We do not trust any single authority; we only
assume a majority of them generate random strings honestly. This security model is reasonable, yet at the
same time it is very easy to implement. We could for instance imagine random strings being provided on
the Internet, and any set of parties that want to execute a protocol just need to agree on which authorities’
strings they want to use.

We demonstrate the use of the multi-string model in several fundamental cryptographic tasks. We
define multi-string non-interactive zero-knowledge proofs and prove that they exist under general cryp-
tographic assumptions. Our multi-string NIZK proofs have very strong security properties such as
simulation-extractability and extraction zero-knowledge, which makes it possible to compose them with
arbitrary other protocols and to reuse the random strings. We also build efficient simulation-sound multi-
string NIZK proofs for circuit satisfiability based on groups with a bilinear map. The sizes of these proofs
match the best constructions in the single common random string model.

We suggest a universally composable commitment scheme in the multi-string model. It has been
proven that UC commitment does not exist in the plain model without setup assumptions. Prior to this
work, constructions were only known in the common reference string model and the registered public key
model. One of the applications of the UC commitment scheme is a coin-flipping protocol in the multi-
string model. Armed with the coin-flipping protocol, we show that any multi-party computation protocol
can be securely realized in the multi-string model.

Keywords: Common random string model, multi-string model, non-interactive zero-knowledge, univer-
sally composable commitment, multi-party computation.

*An extended abstract appeared in Advances in Cryptology - CRYPTO 2007, Lecture Notes in Computer Science, vol. 4622,
pages 323-341.

TWork partially done while at UCLA Computer Science Department and while visiting IPAM and supported in part by NSF
ITR/Cybertrust grant No. 0456717 and Cybertrust grant No. 0430254.

#Work partially done while visiting IPAM, and supported in part by IBM Faculty Award, Xerox Innovation Group Award, NSF
Cybertrust grant no. 0430254, and U.C. MICRO grant.

1 Introduction

THE PROBLEM. In the common random string model, the parties executing a protocol have access to a
uniformly random bit-string. A generalization of this model is the common reference string (CRS) model,
where the string may have a non-uniform distribution. Blum, Feldman and Micali [BFM88] introduced
the CRS model to construct non-interactive zero-knowledge (NIZK) proofs. Some setup assumption was
needed, since only languages in BPP can have non-interactive or two-round zero-knowledge proofs in the
plain model [GO94]. There are other examples of protocols that cannot be realized in the standard model
but are possible in the CRS model, for instance universally composable (UC) commitment [CFO1]. The
CRS-model has therefore found wide-spread use in the field of cryptology.

Using the CRS-model creates a problem: Where does the CRS come from? One option is to have a trusted
third party that generates the CRS, but this raises a trust issue. It is very possible that the parties cannot find a
party that they all trust. Would Apple trust a CRS generated by Microsoft? Would US government agencies
be willing to use a CRS generated by their Russian counterparts?

Alternatively, the parties could generate the CRS themselves at the beginning of the protocol. If a majority
is honest, they could for instance use multi-party computation to generate a CRS. However, this makes the
whole protocol more complicated and requires them to have an initial round of interaction. They could also
trust a group of parties to jointly generate a CRS; however, this leaves them with the task of finding a volunteer
group of authorities to run a multi-party computation protocol whenever a CRS is needed. There is also no
guarantee that different sets of parties can agree on trusting the same group of authorities, so potentially this
method will require authorities to participate in many generations of CRS’s.

Barak, Canetti, Nielsen and Pass [BCNP04] suggest the registered public key model as a relaxed setup
that makes multi-party computation possible. In the registered public key model, parties can only register
correctly generated keys. While there is no longer a common reference string in the registered public key
model, the underlying problem still persists: who is the trusted party that will check that the parties only
register correctly generated public keys?

THE MULTI-STRING MODEL. We propose the multi-string model as a solution to the above mentioned
problem. In this model, we have a number of authorities that assist the protocol execution by providing
random strings. If a majority of these authorities are honest the protocol will be secure.

There are two reasons that the multi-string model is attractive. First, the authorities play a minimal role in
the protocol. They simply publish random strings, they do not need to perform any computation, be aware of
each other or any other parties, or have any knowledge about the specifics of the protocol to be executed. This
permits easy implementation, the parties wishing to execute a protocol can for instance simply download a
set of random strings from agreed upon authorities on the internet. Second, the security of the protocols only
needs to rely on a majority of the authorities being honest at the time they created the strings. Even if they
are later corrupted, the random strings can still be used. Also, no matter how untrustworthy the other parties
in your protocol are, you can trust the protocol if a majority of the authorities is honest. In other words, the
honesty of a small group of parties can be magnified and used by any set of parties.

The multi-string model is a very reasonable setup assumption. The next question is whether there are
interesting protocols that can be securely realized in the multi-string model. We will answer this question af-
firmatively by constructing non-interactive zero-knowledge proofs, UC commitment and general UC-secure
multi-party computation in the multi-string model in the presence of adaptive adversaries.

1.1 Non-interactive Zero-Knowledge

A zero-knowledge proof [GMR89, GMWS&7] is a two-party protocol, where a prover tries to convince a
verifier about the truth of some statement, typically membership of an NP-language. The proof should have
the following three properties: completeness, soundness and zero-knowledge. Completeness means that a

prover who has an NP-witness for the truth of the statement can convince the verifier. Soundness means
that if the statement is false, then it is impossible to convince the verifier. Zero-knowledge means that
the verifier does not learn anything else from the proof than the fact that the statement is true. Interactive
zero-knowledge proofs are known to exist in the plain model without a CRS, however, non-interactive and
2-round zero-knowledge proofs only exist for trivial languages [GO94]. Instead, much research has gone into
constructing non-interactive zero-knowledge proofs in the CRS-model [BFMS88, BDMP91, FL.S99, Dam92,
DP92, DDP99, DDP02, KP98, Sah01, DDO'02, GOS06b, GOS06a].

MULTI-STRING NIZK. We define the notion of multi-string NIZK proofs in Section 2. In the definitions, we
let the adversary see many honestly generated strings and pick the ones it likes. We also allow the adversary
to generate some of the strings itself, possibly in a malicious and adaptive manner. Our definition of multi-
string NIZK proofs calls for completeness, soundness and zero-knowledge to hold in a threshold manner. If
t. out of n common reference strings are honest, then the prover holding an NP-witness for the truth of the
statement should be able to create a convincing proof. If 5 out of » common reference strings are honest,
then it should be infeasible to convince the verifier about a false statement. If ¢, out of n common reference
strings are honestly generated, then it should be possible to simulate the proof without knowing the witness.

It is desirable to minimize ¢, ts, .. As we shall see, t. = 0 is achievable, however, multi-string soundness
and multi-string zero-knowledge are complementary in the sense that there is a lower bound ¢5; + t, > n for
non-trivial languages, see Section 2.

A natural question is under which assumptions we can obtain multi-string NIZK proofs. We prove that
if hard on average languages exist in NP then single-string NIZK implies the existence of multi-string NIZK
and vice versa.

BEYOND VANILLA MULTI-STRING NIZK. It is undesirable to require a group of authorities to produce
random strings for each proof we want to make. We prefer it to be possible to use the same strings over
and over again, so each authority has to produce only one single random string. We must therefore consider
a setting, where multiple protocols may be running concurrently and of which some of them may require
the use of multi-string NIZK proofs. When the protocol designer has to prove security in such a setting,
it may very well be that some of the proofs are simulated, while we still need other proofs to be sound.
Moreover, in some cases we may want to extract the witness from a proof. To deal with this realistic setting,
where we have both simulations of some proofs and witness extraction of other proofs going on at the same
time, we introduce the notions of simulation-extractable multi-string NIZK and extraction zero-knowledge
multi-string NIZK.

In simulation-extractable multi-string NIZK, we require that it be possible to extract a witness from the
proof if ¢, strings are honestly generated, even if the adversary sees simulated proofs for arbitrary other state-
ments. In extraction zero-knowledge, we require that if there are ¢, honest strings, then even if the adversary
sees extractions of witnesses in some proofs, the other proofs remain zero-knowledge and reveal nothing.
We offer a multi-string NIZK proof based on general assumptions, which is both simulation-extractable and
extraction zero-knowledge.

MULTI-STRING NIZK PROOFS FROM BILINEAR GROUPS. Groth, Ostrovsky and Sahai [GOS06b, GOS06a]
constructed NIZK proofs from groups with a bilinear map. Their CRS contains a description of a bilinear
group and a set of group elements. The group elements can be chosen such that the CRS gives either per-
fect soundness or perfect zero-knowledge. Soundness strings and simulation strings are computationally
indistinguishable, so this gives a NIZK proof in the CRS model.

There is a major technical hurdle to overcome when trying to apply their techniques in the multi-string
model: the single-string NIZK proofs rely on the common reference string to contain a description of a
bilinear group. In the multi-string model, the authorities generate their random strings completely oblivious
of the other authorities. There is therefore no agreement on which bilinear group to use. One might try to let
the prover pick the bilinear group, however, this too causes problems since now we need to set up the random

strings such that they will work for many choices of bilinear groups.

We resolve these problems by inventing a novel technique to “translate” common reference strings in
one group to common reference strings in another group. Each authority picks its own bilinear group and
the prover also picks a bilinear group. Using our translation technique, we can translate simulation reference
strings chosen by the authorities to simulation reference strings in the prover’s bilinear group. Similarly,
we can translate soundness reference strings chosen by the authorities to soundness reference strings in the
prover’s bilinear group.

The resulting multi-string NIZK proofs for circuit satisfiability have size O(n + |C|)k, where n is the
number of random strings, |C'| is the size of the circuit, and & is a security parameter specifying the size of a
group element. Typically n will be much smaller than |C', so this matches the best single-string NIZK proofs
of [GOS06b, GOS06a] that have complexity O(|C|k).

1.2 Multi-party Computation

Canetti’s UC framework [Can01] defines secure execution of a protocol under concurrent execution of arbi-
trary protocols. Informally a protocol is UC secure if its execution is equivalent to handing protocol input
to an honest trusted party that computes everything securely and returns the resulting outputs. We refer the
reader to Section 6 for a sketch of the UC framework and to Canetti’s paper for details.

UC COMMITMENT. It is known that in the plain model, any (well-formed) ideal functionality can be securely
realized if a majority of the parties are honest. On the other hand, if a majority may be corrupt, there are
certain functionalities that are provably impossible to realize. An example of an unrealizable functionality
is UC commitment [CFO1]. We demonstrate that in the multi-string model UC commitment can be securely
realized. The key idea in this construction is to treat each common random string as the key for a com-
mitment scheme. By applying threshold secret-sharing techniques, we can spread the message out on the n
commitment scheme in a way such that we can tolerate a minority of fake common reference strings.

GENERAL MULTI-PARTY COMPUTATION. Canetti, Lindell, Ostrovsky and Sahai [CLOS02] showed that any
(well-formed) ideal functionality can be securely realized in the CRS-model, even against adversaries that
can adaptively corrupt arbitrary parties and where parties are not assumed to be able to securely erase any of
their data. However, it was an open question where this CRS should come from, since the parties provably
could not compute it themselves.

Armed with our UC commitment it is straightforward to solve this problem. We simply run a coin-
flipping protocol to create a CRS. This result points out a nice feature of the multi-string model; it scales
extremely well. We just require a majority of the authorities to be honest. Then no matter which group of
parties, even if it is a large group of mostly untrustworthy parties, we can magnify the authorities’ honesty to
enable this entire group to do secure computation.

REMARK. The multi-string model is described in the UC framework as an ideal functionality that provides
random strings and allows the adversary to inject a minority of malicious strings as well. This functionality is
of course easy to implement with a set of authorities that just provide random strings. It is important though
that these strings are local to the protocol, we do not guarantee security of other protocols that use the same
strings. Canetti, Dodis, Pass and Walfish [CDPWO07] have demonstrated that it is not possible to have one
fixed global common random string that is used for multiple arbitrary protocol executions and this result
extends to the multi-string model. Orthogonally to our work, they instead suggest the augmented common
reference string model where general UC secure multi-party computation is possible.

REMARK. Building on our multi-string NIZK, an alternative proof of our multiparty computation result was
shown by [PPS06].

2 Definitions

We model algorithms and adversaries as Turing machines. They get a security parameter k as input written
in unary, we will often not write this explicitly. The adversary may be an interactive Turing machine that
keeps state between different invocation and may have or not have bounded running time.

We say a function v : N — [0; 1] is negligible if for all constants ¢ > 0 there exists a K so forall £ > K,
we have v(k) < k~¢. For two functions f, g we write f(k) ~ g(k) if | f(k) — g(k)| is negligible.

Let R be an efficiently computable binary relation. For pairs (z,w) € R we call x the statement and w
the witness. Let L be the NP-language consisting of statements in K.

A multi-string proof system for a relation 12 consists of probabilistic polynomial time algorithms K, P, V,
which we will refer to as respectively the key generator, the prover and the verifier. The key generation
algorithm can be used to produce common reference strings o. In the present paper, we can implement our
protocols with a key generator that outputs a uniformly random string of polynomial length ¢(k), however,
for the sake of generality, we include a key generator in our definitions.

The prover takes as input (&,z,w), where & is a set of n different common reference strings and
(z,w) € R, and produces a proof 7. The verifier takes as input (&, ,7) and outputs 1 if the proof is ac-
ceptable and 0 if rejecting the proof. We call (K, P, V') a (tc, ts,t,,n)-NIZK proof system for R if it has the
completeness, soundness and zero-knowledge properties described below. We remark that (1, 1,1, 1)-NIZK
proofs correspond to the standard NIZK proofs in the CRS-model.

(teyts,t,,m)-COMPLETENESS. We will say that (K, P, V) is (¢, ts, t,, n)-complete if the prover can con-
vince the verifier of a true statement, when at least ¢, strings have been generated honestly.

Definition 1 (K, P, V) is (computationally) (tc,ts,t,,n)-complete if for all non-uniform polynomial time
adversaries A we have

Pr|(G,z,w) — AK(1%);7 — PG, z,w) : V(G,z,m)=1| = 1,

where K on query i outputs o; — K (1k) such that at least t. of the o;’s generated by K are included and A
outputs (x,w) € R.

As we will se later, our protocols have perfect (t.,ts,t.,n)-completeness for all 0 < ¢. < n. In other words,
even if the adversary chooses all common reference strings itself, we have probability exactly 1 of outputting
an acceptable proof when (z,w) € R.

(te,ts,t»,m)-SOUNDNESS. Soundness says that an adversary cannot forge a proof when at least ¢4 of the
common reference strings are honestly generated. The adversary gets to see possible choices of correctly
generated common reference strings and can adaptively choose n of them, it may also in these n common
reference strings include up to n — t; fake common reference strings chosen by itself.

Definition 2 We say (K, P, V) is (t¢, ts, t», n)-sound if for all adversaries A we have
Pr ((¢,z,7) — AK(1%) . V(& z,7) =1and z ¢ L| =0,

where K is an oracle that on query i outputs o; «— K (1¥) and the adversary outputs & such that at least t
of the o;’s generated by K are included.

The definition above refers to statistical soundness, where the adversary has unbounded time. We call it
perfect soundness, when the probability is exactly 0.

(te,ts,ts,m)-ZERO-KNOWLEDGE. Zero-knowledge informally means that if ¢, common reference strings are
correctly generated, then the adversary learns nothing from the proof. As is standard in the zero-knowledge
literature, we will say this is the case, when we can simulate the proof given only the statement x. Let there-
fore Sp be a probabilistic polynomial time algorithm that outputs (o, 7), respectively a simulation reference
string and a simulation trapdoor. Let furthermore, S be a probabilistic polynomial time algorithm that takes
input (&, 7, z, w) and simulates a proof 7 if 7 contains ¢, simulation trapdoors for common reference strings
ind.

We will strengthen the standard definition of zero-knowledge, by splitting the definition of zero-
knowledge into two parts. The first part simply says that the adversary cannot distinguish real common
reference strings from simulation reference strings. The second part, says that even with access to the simu-
lation trapdoors the adversary cannot distinguish the prover from the simulator on a set of simulated reference
strings.

Definition 3 We say (K, P,V, S1,S2) is (te, ts, t, n)-zero-knowledge if we have reference string indistin-
guishability and simulation indistinguishability as described below.

REFERENCE STRING INDISTINGUISHABILITY. For all non-uniform polynomial time adversaries A we have
Pr |:0' — K(1%): A(o) = 1] ~ Pr [(a, 7) — S1(1%) : A(0) = 1}.

(te,ts,tz,m)-SIMULATION INDISTINGUISHABILITY. For all non-uniform interactive polynomial time ad-
versaries A we have

Pr [(@,7, 2, w) — A5 (1F); 7 — P(F,0,w) : A(r) = 1]

~ Pr [(&', T, T, w) ASl(lk);W — 83(d, 7, x) : A(m) = 1}7

where Sy on query i outputs (c;,7;) < S1(1¥), the adversary outputs (x,w) € R and 3,7 so at least t, of
the o;’s generated by S1 are included and T contains t, simulation trapdoors T; corresponding to o;’s that
have been generated by the oracle S.

LOWER BOUNDS FOR MULTI-STRING NIZK PROOFS. Soundness and zero-knowledge are complementary.
The intuition is that if an adversary controls enough strings to simulate a proof, then she can prove anything
and we can no longer have soundness. We capture this formally in the following theorem.

Theorem 4 If L is a language with a proof system (K, P, V) that has (t.,ts,t,, n)-completeness, soundness
and zero-knowledge then L € P /poly orts +t, > n.

Proof. Assume we have a (t.,ts,t,,n)-NIZK proof system for R defining L and ¢s + t, < n. Given an
element x, we wish to decide whether 2z € L or not. We simulate ¢, common reference strings (o;, 7;) «—
S1(1%) and generate n — t, common reference strings o; < K (1¥) setting 7; = L. We then simulate the
proof m « Sy(&, 7,). Output V (&, x, 7).

Let us analyze this algorithm. If z € L, then by (., ts,t.,n)-completeness a prover with access to
a witness w would output a proof that the verifier accepts if all common reference strings are generated
correctly. By reference string indistinguishability, we will also accept the proof when some of the common
reference strings are simulated. By (¢, ts,t,, n)-simulation indistinguishability, where we give (x,w) as
non-uniform advice to A, the proof will also be accepted when we simulate it instead of proving it using w.
We will therefore output 1 with overwhelming probability on z € L.

On the other hand, if x ¢ L, then by the (t.,ts,t,,n)-soundness we output 0 with overwhelming
probability, since n — ¢, > t; common reference strings have been generated correctly. This shows that
L € BPP /poly. Adleman [AdI78] has shown P /poly = BPP/poly, which concludes the proof. O

In general, the verifier wishes to minimize s to make it more probable that the protocol is sound, and at the
same time the prover wishes to minimize ¢, to make it more probable that the protocol is zero-knowledge.
In many cases, choosing n odd, and setting t; = ¢, = "TH will be a reasonable compromise. However,
there are also cases where it is relevant to have an unbalanced setting. Consider for instance the case, where
Alice wants to e-mail a NIZK proof to Bob, but does not know Bob’s preferences with respect to common
reference strings. She may pick a set of common reference strings and make a multi-string proof. Bob did
not participate in deciding which common reference strings to use, however, if they belong to trustworthy
authorities he may be willing to believe that one of them is honest. On the other hand, Alice gets to choose
the authorities, so she may be wiling to believe that all of them are honest. The appropriate choice in this

situation, is a multi-string proof witht; = 1,¢, = n.

(te,ts,t»,n)-KNOWLEDGE. Extending the definition of soundness, we say (K, P, V) is a (t., ts, t,,n) proof
of knowledge for R if there are probabilistic polynomial time algorithms E;, F» that can extract a witness
from a valid proof.

Definition 5 We say (K, P,V, E1, Es) has (tc,ts,t.,n)-knowledge if for all non-uniform polynomial time
adversaries A we have

Pr [a — K(1%) : A(o) = 1} ~ Pr [(o,f) — E/(1%) : A(o) = 1]7
and for all non-uniform polynomial time adversaries A we have

Pr [(5,1;,@ — APL(1FY;w — Ey(G,€,2,1) : V(F,2,7) = 1 and (z,w) ¢ R} ~ 0,

where Ey is an oracle that returns (0;,&;) « E1(1F), and € contains at least ts &;’s corresponding to the
o;’s generated by F.

(te,ts,tz,n)-SIMULATION-SOUNDNESS. In security proofs, it is often useful to simulate a proof for a false
statement. However, seeing a simulated proof for a false statement might enable an adversary to generate
more proofs for false statements. We say an NIZK proof is (¢, ts, t,, n)-simulation-sound if an adversary
cannot prove any false statement even after seeing simulated proofs of arbitrary statements.

Definition 6 A (t.,ts,t,,n)-NIZK proof system (K, P,V,S1,S2) is (t¢, ts, t., n)-simulation-sound if for all
non-uniform polynomial time adversaries we have

Pr (&, z,7m) — A%20)(18) . (3, 2,7) ¢ Qandz ¢ Land V(&,z,7) = 1| ~ 0,

where Sy on query i returns (0;,7;) < S1(1%), and Sy on input (5}, ;) returns m « So(&;, 7j, x;) with 7
having simulation trapdoors for the o;’s generated by S1, and the adversary produces G containing at least
ts 0;’s generated by S1, and Q) is the list of statements and corresponding proofs (G, x;,m;) in the queries
to SQ.

(te,ts,tz,m)-SIMULATION-EXTRACTABILITY. Since we are working in the multi-string model, we assume
strings can be used by anybody who comes along. Knowledge extraction and zero-knowledge may both be
very desirable properties, however, we may also imagine security proofs where we at the same time need to
extract witnesses from some proofs and simulate other proofs. This joint simulation/extraction is for instance
often seen in security proofs in the UC framework [Can01].

Combining simulation-soundness and knowledge extraction, we may therefore require that even after
seeing many simulated proofs, whenever the adversary makes a new proof we are able to extract a witness. We
call this property simulation-extractability. Simulation-extractability implies simulation-soundness, because
if we can extract a witness from the adversary’s proof, then obviously the statement must belong to the
language in question.

Definition 7 We say (K, P,V,Sy,S2, F1,E2,SEy) is (te,ts,ts,n)-simulation-extractable if
(K,P,V,Ey, Es) has (tc,ts,t,,n)-knowledge, (K,P,V,5S1,52) is a (t.,ts,t.,n)-NIZK proof, SE is
a probabilistic polynomial time algorithm that outputs (o, T,&) such that it is identical to S, when restricted
to the first two parts (o,), and for all non-uniform polynomial time adversaries we have

Pr|(3,z,7) — ASFUS20) (18): w — By(3, €, x,7) :

(¢,z,7m) ¢ Qand (x,w) ¢ Rand V (5, z,m) = 1| =~ 0,

where SE} on query i outputs (c;,&;) from (04,75, &) « SE1(1¥), Sy outputs mj < So(d4,Tj, xj), where Tj
contains t, ;’s corresponding to o;’s generated by SE1, Q is a list of statements and corresponding proofs
(G, xj, ;) made by So, and & contains the first ts §;’s generated by SEy corresponding to o;’s in &.

(te,ts,tz,n)-EXTRACTION ZERO-KNOWLEDGE. Combining simulation soundness and knowledge extrac-
tion, we may also require that even after seeing many extractions, it should still be hard to distinguish real
proofs and simulated proofs from one another. This definition resembles the definition of chosen ciphertext
attack secure public key encryption.

Definition 8 Consider a (t.,ts,t,,n)-NIZK proof of knowledge (K, P,V, Sy, S, E1, E2). Let SE, be a
probabilistic polynomial time algorithm that outputs (o, T,§) such that it is identical to S1 when restricted to
the first two parts (o, 7). We say (K, P,V, Sy, So, E1, E2, SE\) is (tc, ts, t,, n)-extraction zero-knowledge if
for all non-uniform interactive polynomial time adversaries we have

Pr [(E,x,w) ASELE(o) (1R): o P(6, 2, w) « AP20) (1) = 1 and (2, w) € R}

~ Pr [(Ew,w) — ASELE (o) (1Y, o §0(G, 7, @)+ AP20) () = 1 and (z,w) € R],

where SE' on query i outputs (0;,7;) from (0, 7:,&) « SE1(1F), Ey outputs w Eg(c_fj,g;-,xj), when
the query contains ts o;’s generated by SFE1 and w is not the challenge proof.

3 Multi-string NIZK Proofs based on General Assumptions

MULTI-STRING NIZK PROOFS. As a warm-up, we will start out with a simple construction of a multi-string
NIZK proof that works for t. = 0 and all choices of ¢4,t,,n where t; + t, > n. We use two tools in the
construction, a pseudorandom generator PRG and a zap ({,ap, Pyap, Vzap). Zaps, introduced by Dwork and
Naor [DNQ2], are two-round public coin witness-indistinguishable proofs, where the verifier’s first message
is a random string that can be fixed once and for all and be reused in subsequent zaps.

A common random string in our multi-string NIZK proof will consist of a random value r and an initial
message o for the zap. Given a statement x € L, the prover makes n zaps using respectively initial messages
o1,...,0p for the statement

x € L or therearet, common reference strings where r; is a pseudorandom value.

In the simulation, we create simulation reference strings as 7 := PRG(7) enabling the simulator to make
zaps without knowing a witness w for « € L if instead the simulator knows the seeds of ¢, pseudorandom
values r;.

Common reference string: Generate r — {0,1}%*; 0 « {0,1}%=»(*)_ Output ¥ := (r, 0).

Proof: Given input (3q,...,%,), a statement x and a witness w so (z,w) € R, we wish to prove = € L.
Using NP-reductions, we create a polynomial size circuit C' that is satisfiable if and only if

xe€L or |{ri3n : ri =PRG(m)}| >t..

Chosen appropriately, NP-reductions are witness preserving, so we also reduce w to a witness W for
C being satisfiable. For all n common reference strings, generate m; «— P,ap (05, C, W). Return the
proof IT := (my, ..., mp).

Verification: Given n common reference strings (X1, ..., Y,), a statement x and a proof II = (7y,...,m,)
return 1 if and only if all of them satisfy V., (03, C, ;) = 1, where C is generated as in the proof.

Simulated reference string: Select 7 < {0, 1}¥;r := PRG(7) and o « {0, 1}%=»(*)_ OQutput ((r, o), 7).

Simulated proof: Given input ¢,,(31,...,%,),(71,...,7,),z such that for ¢, reference strings r; =
PRG(7;) we wish to simulate a proof II. As in a proof, use NP-reductions to get a circuit C' that

is satisfiable if and only if z € L or ‘{riEITi : r; = PRG(7;)}| > t,. Pick the first £, common

reference string ¥;, where ; = PRG(7;), and reduce this to a witness W for the satisfiability of
C. For all n common reference strings, generate m; < P,,,(0;, C, W). Return the simulated proof
IT:=(m1,...,m).

This construction will be used to prove the following theorem connecting single-string NIZK proofs and
multi-string NIZK proofs.

Theorem 9 Assuming hard on average languages exist in NP, the existence of NIZK proofs for all NP-
languages in the common random string model is equivalent to the existence of multi-string NIZK proofs for
all NP-languages in the common random strings model. The equivalence preserves perfect completeness.

Proof. We first show that (n,ts,t,,n)-NIZK proofs implies the existence of standard NIZK proofs. We
simply generate n common reference strings and concatenate them to get a single common reference string.
To make an NIZK proof, we run the multi-string prover on this reference string. Completeness, soundness
and zero-knowledge follow directly. If the multi-string NIZK proof uses random strings, then obviously we
get a random string NIZK proof. If the multi-string NIZK proof has perfect completeness, then we get perfect
completeness.

To go the other way, we use the fact that the existence of hard on average languages in NP and NIZK
proofs imply the existence of one-way functions [Ost91, OW93]. One-way functions imply pseudorandom
generators [HILL99]. NIZK proofs in the common random string model also imply the existence of zaps
[DNO2]. If we use an NIZK proof with perfect completeness, then we also get a zap with perfect complete-
ness. There is one detail worth mentioning. At the time of generating the common reference string, we
do not know the size of the circuit we will be proving. We therefore need an NIZK proof that works for
arbitrarily large circuits, so we can build zaps that work for large circuits. Using the one-way function and
the non-interactive version of Naor’s statistically binding commitment scheme based on one-way functions
[Nao91, DIO98] we can chop the circuit up into manageable pieces. We can commit to each wire-value in
the circuit and make NIZK proofs for each wire that it contains 0 or 1 and make NIZK proofs for each gate

that the committed values respect the gate. It is therefore straightforward to get NIZK proofs where the size
of the circuit can be arbitrarily large.

Direct verification of our construction reveals that we have completeness, even for ¢, = 0. If the NIZK
proof has perfect completeness, then we get perfect completeness. Let us prove that we have (0, t5,t.,n)-
soundness. Any honestly generated common reference string has negligible probability of containing a pseu-
dorandom value r. With ¢, honestly generated strings and ¢, > n — t5, there is negligible probability that
(31,...,%5) have t, or more pseudorandom values. If = ¢ L, the resulting circuit C' is unsatisfiable.
Also, at least one of the common reference strings has a correctly generated initial message for the zap. By
the statistical soundness of this zap there is negligible probability that there exists a valid zap for C' being
satisfiable.

We now turn to the question of (0, s, t,,n)-zero-knowledge. Computational reference string indistin-
guishability follows from the pseudorandomness of PRG. With at least ¢, simulated reference strings the
only difference between proofs using the witness of x € L and simulated proofs using the simulation trap-
doors is the witnesses we are using in the zaps. Computational simulation indistinguishability therefore
follows from a standard hybrid argument using the witness indistinguishability of the zaps. U

4 Multi-string Simulation-Extractable NIZK Proofs

We will now construct more advanced multi-string NIZK proofs of knowledge that are (0,ts,t.,n)-
simulation-extractable and (0, ¢, ¢, n)-extraction zero-knowledge.

To permit the extraction of witnesses, we include a public key for a cryptosystem secure against adaptive
chosen ciphertext attacks in each common reference string. In a proof, the prover will make a (s, n)-
threshold secret sharing of the witness and encrypt the shares under the n public keys. To extract the witness,
we will decrypt t, of these ciphertexts and combine the shares to get the witness.

To avoid tampering with the proof, we will use a strong one-time signature. The prover generates a key
(Vksots, Sksots) < Ksots(1%) that she will use to sign the proof. The implication is that the adversary, who
sees simulated proofs, must use a different vkgos in her forged proof, because she cannot forge the strong
one-time signature.

The common reference string will contain a value, which in a simulation string will be a pseudorandom
2k-bit value. The prover will prove that she encrypted a (ts,n)-threshold secret sharing of the witness,
or that she knows how to evaluate ¢, pseudorandom functions on vkg.ts using the seeds of the respective
common reference strings. On a real common reference string, this seed is not known and therefore she
cannot make such a proof. On the other hand, in the simulation the simulator does know these seeds and can
therefore simulate without knowing the witness. Simulation soundness follows from the adversary’s inability
to guess the pseudorandom functions’ evaluations on vkgts, €ven if she knew the evaluations on many other
verification keys.

Zero-knowledge under extraction attack follows from the CCA2-security of the cryptosystem. Even after
having seen many extractions, the ciphertexts reveal nothing about the witness, or even whether the trapdoor
has been used to simulate a proof.

Common reference string/simulation string: Generate (pki,dk:), (pke,dks) KCCAz(lk);T -
{0, 1}216; o «— {0, 1}@@("3). Return ¥ := (pk1, pka, 7, 0).

The simulators and extractors Sy, F'1, SE; will generate the simulated reference strings in the same
way, except for choosing 7 « {0,1}* and r := PRF,(0). We use the simulation trapdoor 7 and the
extraction key & := dk;.

Proof: P((31,...,%,),x,w) where (z,w) € R runs as follows: First, generate a key pair for a strong
one-time signature scheme (vksots, Sksots) < Ksots(1%). Use (ts,n)-threshold secret sharing to get

10

shares wy, ..., w, of w. Encrypt the shares as cj; := pkli(wi,vksots; r1;). Also encrypt dummy
values co; < Epp,, (0). Consider the statement:

“All ¢1; encrypt (w;, vksots), Where wy, . . ., wy, is a (ts, n)-secret sharing of a witness w so (z,w) € R
or there exist at least ¢, seeds 7; so 7; = PRF,(0) and cg; encrypts PRF . (vksots).”

We can reduce this statement to a polynomial size circuit C' and a satisfiability witness W. For all ¢’s
we create a zap m; < Pyap(0, C, W) for C being satisfiable. Finally, we sign everything using the
strong one-time signature sig < Signg, (vksots, T, 21, €11, C21, T1, - - -, X, Clns C2n, T)-

The proof is IT := (vkgots, C11, €21, T1, - - -, Cln, C2n, Tn, S1G).

Verification: To verify II on the form described above, verify the strong one-time signature and verify the n
Zaps Ty, ..., Ty,

Extraction: To extract a witness check that the proof is valid. Next, use the first ¢, extraction keys in é’ to
decrypt the corresponding ¢ ciphertexts. We combine the ¢4 secret shares to recover the witness w.

Simulated proof: To simulate a proof, pick the first ¢, simulation trapdoors in 7. These are 7; so r; =
PRF,,(0). As in the proof generate (vksots, Sksots) < Ksots(1¥). Create ¢, pseudorandom values
v; := PRF, (vksots). Encrypt the values as cz; < Epp,,(v;). For the other reference strings, just
let co; «— Epk,, (0). Let wy, ..., wy be a (ts,n)-threshold secret sharing of 0. We encrypt also these
values as c1; < Epp,, (Wi, vksots). Let again C be the circuit corresponding to the statement

“All c1; encrypt (w;, vksots), where wy, ..., wy, is a (ts, n)-secret sharing of a witness w or there
exist at least ¢, seeds 7; so ; = PRF,(0) and cg; encrypts PRF . (vksots).”

From the creation of the ciphertexts co; we have a witness W for C' being satisfiable. Create zaps
7 — Pyap(0i, C,W) for C being satisfiable. Finally, make a strong one-time signature on ev-
erything sig «— Signg,_ . (vksots, Z, X1, €11, 21, T1, - - -, X, Clns C2n, Tn). The simulated proof is
IT := (vksots, C11, €21, M1y - - - 5 Clns C2n, Ty SEG).

Theorem 10 The construction given above is a (0,ts,t,,n)-NIZK proof for all choices of ts +t, > n. It
has (0,ts,t,,n)-simulation-soundness, (0,ts,t,,n)-extraction zero-knowledge and statistical (0,ts,t,,n)-
knowledge. It can be securely implemented if enhanced trapdoor permutations' exist, and it can be imple-
mented with random strings if dense cryptosystems [DP92] and enhanced trapdoor permutations exist.

Proof. Let us start with the latter part. Enhanced trapdoor permutations, imply the existence of NIZK proofs
with perfect completeness in the random string model, which in turn imply the existence of zaps with perfect
completeness. Enhanced trapdoor permutations also imply the existence of pseudorandom functions, strong
one-time signatures and CCA2-secure public key encryption with errorless decryption. In case dense public
key cryptosystems and enhanced trapdoor permutations exist, CCA2-secure encryption with random strings
as public keys exists.

Perfect completeness follows by direct verification. Common reference strings and simulated reference
strings are indistinguishable by the pseudorandomness of the pseudorandom function PRF.

Let us consider (0, ts,t,, n)-extraction zero-knowledge. The adversary knows the simulation trapdoors
7;, and has access to an extraction oracle. She selects a statement = and a witness w and has to distinguish a
proof on a simulated reference string using respectively the witness or the simulator. We consider a series of
hybrid experiments.

Hybrid 1: This is the experiment, where we run the adversary on a simulated reference string and make
proofs using the witness w.

"Enhanced trapdoor permutations are trapdoor permutations that are hard to invert on a random element even when the random
coins used to select that element are known to the adversary

11

Hybrid 2: We modify hybrid 1 by encrypting ¢, pseudorandom values in ca1, . . ., c2,. We know ¢, seeds 7;
such that ; = PRF,(0). Instead of setting co; < E,,(0), we encrypt co; «— Ep, (PRF 7, (vksots)-

By the semantic security of the cryptosystem, hybrid 1 and hybrid 2 are computationally indistinguish-
able.

Hybrid 3: We modify hybrid 2, by reducing the pseudorandom values and the randomness used in forming
the ciphertexts ca1, . . ., cop, to form a witness W for C being satisfiable. We use this witness in the
zaps, instead of the witness w.

By the witness-indistinguishability of the zaps, hybrid experiments 2 and 3 are indistinguishable.

Hybrid 4: We modify hybrid 3 such that if the adversary ever recycles one of the ciphertext cy; from the
challenge proof in one of the encryption queries and this is a valid proof, then we abort.

There is negligible probability of aborting. To make a valid proof, the adversary has to sign the proof
using her chosen verification key vkgots. By the existential unforgeability of the strong one-time sig-
nature scheme, this verification key has to differ from the verification key vk, . used in the challenge.
In other words, c1; contains the wrong verification key. However, in the zaps, of which at least one is
made using a correctly generated initial message, the adversary proves that ¢1; does contain vk, ., or
alternatively co; contain ¢, pseudorandom evaluations of vkg.ts. By decrypting we could therefore get
out such pseudorandom function evaluations on vkgets. However, since vkgots is different from vkl

used in the challenge, this implies a breach of the pseudorandomness of the pseudorandom function.

Hybrid 5: We modify hybrid 4 by making a (s, n)-threshold secret sharing wy, ..., w, of 0 instead of
secret sharing w. We encrypt these shares in c1; < FEpy,, (w;, vksots). This hybrid is identical to the
simulation process.

Hybrid 4 and hybrid 5 are indistinguishable. We have ruled out that the adversary ever makes an extrac-
tion query, recycling a cy; from the challenge. Using a hybrid argument on the chosen ciphertext attack
security of the cryptosystems, the adversary cannot distinguish encryptions of shares of a threshold
secret sharing of w from shares of a threshold secret sharing of 0. The remaining n — ¢, < 5 shares
do not reveal anything.

Next, let us consider simulation-sound extractability. Here the adversary sees extraction keys, but not
the simulation trapdoors of the common reference strings generated by SFE;. It has access to a simulation
oracle, and in the end it outputs a statement and a proof. By the unforgeability of the strong one-time signature
scheme, she cannot reuse a strong verification key vkgots used in a simulated proof. Let us look at a simulated
reference string generated by SFE; . Since the adversary does not know the seed for the pseudorandom
function, she cannot encrypt a pseudorandom function evaluation of vkgots. The zaps, of which at least one
uses a correctly generated initial message, then tells us that ¢11,. .., 1, contain a (ts, n)-threshold secret
sharing of w. Decrypting ¢ of these ciphertexts, permits us to reconstruct the witness w.

A similar proof, shows that we have statistical (0, ts,t,, n)-knowledge extraction. The point in this proof
is that with overwhelming probability a random string does not contain a pseudorandom value r, so therefore
11, - - -, C1p, must encrypt a (¢, n)-threshold secret sharing of a witness for z € L. g

S Multi-string NIZK Proofs from Bilinear Groups

We will use bilinear groups to construct a (0, s, ¢, n)-simulation-sound NIZK proof for circuit satisfiability
consisting of O((n+|C|)k) bits, where |C| is the number of gates in the circuit and & is the security parameter
specifying the size of the bilinear group elements. Typically, n is much smaller than |C/|, so the complexity

12

matches the best known NIZK proofs for circuit satisfiability in the single common reference string model
[GOS06b, GOS06a] that have proofs of size O(|C|k).

SETUP. We will use bilinear groups generated by (p, G, G, e, g) « G(1*) such that:
e pis a k-bit prime.
e G, Gr are cyclic groups of order p.
e g is a generator of G.

e ¢ : G x G — Gr is a bilinear map such that e(g, g) generates G and for all a,b € Z, we have:
e(g.9") = e(g.9)".

e Group operations, group membership, and the bilinear map are efficiently computable.

e Given a description (p, G, G, e, g) it is verifiable that indeed it is a bilinear group and that g generates

G.

e There is a decoding algorithm that given a random string of (n + 1)k bits interprets it as n random
group elements. The decoding algorithm is reversible, such that given n group elements we can pick
at random one of the (n + 1)k-bit strings that decode to the n group elements.

e The length of the description of (p, G, G, e, g) is at most 4k bits.?

e When working in the random multi-string model, we will assume G simply outputs a uniformly random
4k-bit string, from which (p, G, Gr, e, g) can be sampled.

We use the decisional linear assumption introduced by Boneh, Boyen and Shacham [BBS04], which says
that given group elements (f, g, h, f", g%, ht) it is hard to tell whether ¢ = 7 + s or ¢ is random. Throughout
the paper, we use bilinear groups (p, G, Gr, e, g) « G(1*) generated such that the DLIN assumption holds
for G.

Example. We will offer a class of candidates for DLIN groups as described above. Consider the elliptic
curve y? = 23 + 1 mod g, where ¢ = 2 mod 3 is a prime. It is straightforward to check that a point (z,)
is on the curve. Furthermore, picking y € Z, at random and computing x = (y? — l)qsi1 mod ¢ gives us a
random point on the curve. The curve has a total of ¢ + 1 points, where we include also the point at infinity.
When generating bilinear groups, we will pick p as a k-bit prime. We then let ¢ be the smallest prime® so
p|lg + 1 and define G to be the order p subgroup of the curve. The target group is the order p subgroup of
F?, and the bilinear map is the modified Weyl-pairing [BF03]. Verification of (p,G,Gr, e, g) being a group
with bilinear maps is straightforward, since it corresponds to checking that p, ¢ are primes so p|g + 1 and
¢ = 2mod 3 and g is an order p element on the curve. A random point in the group G can be sampled

by picking a random point (z,y) on the curve and raising it to q%l. Reverse sampling is possible, since
multiplying a group element with a random point of order %} gives a random (x, y) on the curve that would
generate the group element.

PSEUDORANDOM GENERATORS IN DLIN GROUPS Before proceeding, let us demonstrate that the DLIN

assumption permits the construction of a pseudorandom number generator. Consider a DLIN group
(p,G,Gr,e,g). Choose z,y «— Z,, at random and set f = g*, h = g¥. Given random elements u,v < G,

’It is easy to modify the protocol to work whenever the description of the bilinear group is O(k) bits.
31n other words, ¢ is the smallest prime in the arithmetic progression 3p—1,6p—1,9p—1, Granville and Pomerance [GP90]
conjectured that it requires O (k?) steps in this progression to encounter a prime q.

13

we can compute w = u'/*v'/¥. The DLIN assumption says that (f, h,u,v,w) is indistinguishable from
(f, h,u,v,r), where r is a random group element from G. In other words, we can create a pseudorandom
generator (z,y,u,v) — (g%, g%, u, v, ul/Tyt/ Y) that stretches our randomness with an extra group element.
We will need a bigger stretch, so let us generalize the construction above using the idea of synthesizers
from Naor and Reingold [NR99]. We pick m pairs (z;,y;) < Z, X Z, and create corresponding f; =

g*i, h; = g¥. We can now stretch 2n group elements u1, vy, . . ., un, v, With mn extra group elements by
computing w;; = u;/mivjl-/yi.

If the n pairs of group elements (uj,v;) are chosen at random, then
(f1,P1, s fons Bmy U1, 01,5« oy Upy Upy W1, - -+ Wiy) loOks like a random 2m + 2n + mn-tuple of

group elements. To see this, consider the following hybrid experiment E;;, where we pick w;; at random for
pairs (i, j) where i < IV (i = IAj < J) and compute the rest of the w;;’s according to the method described
above. We need to prove that the w;;’s generated in respectively 71 and E,,, 5,41 are indistinguishable.

Consider first experiments Ey j, By 41 forl <1 <m,1 < J < n. In case there is a non-uniform poly-
nomial time adversary A that can distinguish these two experiments, then we can break the DLIN assumption
as follows. We have a challenge (f, h, u, v, w) and wish to know whether w = w1V or w is random. We
let f; := f,h; := h and generate all the other f;, h;’s according to the protocol. We set uy := u,vy := v
and wyy := w. For ¢ < I we pick w;; at random. Also, for¢ = I,j < J we pick w;; at random. For
i = 1,j > J we pick r;, s; at random and set (u;,vj, wr;) = (f"7,h%,¢"7%). For j < J we select
(uj,v;) at random. Finally, for ¢ > I we compute all w;; according to the protocol. If (u, v, w) is a linear
tuple, we have the distribution from experiment E; ;, whereas if (u, v, w) is a random tuple we have the
distribution from experiment E7 ;1. An adversary distinguishing these two experiments, therefore permits
us to distinguish linear tuples from random tuples. We conclude the proof by observing E 111 = Ef p41.

Observe, it is straightforward to provide a witness for (u, v, w) being a linear tuple. The witness consists
of 1 = u¥/*. (u,v,w) is a linear tuple if and only if e(u, h) = e(f,n) and e(g,7v) = e(w,h). In other
words, we can provide n? proofs m;j for w;; being correct. Furthermore, all these proofs consist of group
elements and can be verified by checking a set of pairing product equations. It follows from Groth [Gro06]
that there exists a simulation-sound NIZK proof of size O(mn) group elements for the w;;’s having been
computed correctly.

MULTI-STRING NIZK PROOFS FROM DLIN GROUPS. One could hope that the construction from Section 3
could be implemented efficiently using groups with a bilinear map. This strategy does not work because each
common reference string is generated at random and independently of the others. This means that even if the
common reference strings contain descriptions of groups with bilinear maps, most likely they are different
and incompatible groups.

In our construction, we instead let all the common reference strings describe different groups and we also
let the prover pick a group with a bilinear map. Our solution to the problem described above, is to translate
simulation reference strings created by the authorities into simulation reference strings in the prover’s group.
This translation will require the use of a pseudorandom generator that we constructed earlier. As mentioned
earlier this pseudorandom generator is constructed in such a way that there exist linear size simulation-sound
NIZK proofs for a value being pseudorandom [Gro06].

Consider a common reference string with group G; and the prover’s group G. We will let the common
reference string contain a random string ;. The prover will choose a string s;. Consider the pair of strings
(r;®si, s;). Since strings can be interpreted as group elements, we have corresponding sets of group elements
in respectively G; and G. However, since r; is chosen at random it is unlikely that both r; & s; corresponds
to a pseudorandom value in G; and at the same time s; corresponds to a pseudorandom value in G. Of
course, the prover has some degree of freedom in choosing the group G, but if one is careful and chooses
a pseudorandom generator that stretches the input sufficiently then one can use an entropy argument for it
being unlikely that both strings are pseudorandom values.

Now we use non-interactive zaps and NIZK proofs to bridge the two groups. The prover will select s; so

14

r; @ s; is a pseudorandom value in G; specified by the common reference string and give an NIZK proof for
this using that common reference string. In her own group, she gets n values s1, ..., s, and proves that ¢,
of those are pseudorandom or C' is satisfiable. In the simulation, she knows the simulation trapdoors for ¢,
reference strings and she can therefore simulate NIZK proofs of r; & s; being pseudorandom. This means,
she can select the corresponding s;’s as pseudorandom values and use this to prove that there are at least ¢,
pseudorandom values in her own group, so she does not need to know the satisfiability witness w for C' being
satisfiable to carry out the proof in her own bilinear group.

There is another technical detail to consider. We want the construction to be efficient in n. Therefore, in-
stead of proving directly that there are ¢, pseudorandom values or C' is satisfiable, we use a homomorphically
encrypted counter. In the simulation, we set the counter to 1 for each pseudorandom value and to O for the
rest of the values in the prover’s group. The homomorphic property enables us to multiply these ciphertexts
and get an encrypted count of ¢,. It is straightforward to prove that the count is ¢, or C' is satisfiable.

These ideas describe how to get soundness. We can set up the common reference strings such that they
enable us to make simulation-sound NIZK proofs in their bilinear groups. With a few extra ideas, we then
geta (0, ts,t,,n)-simulation-sound NIZK proof for circuit satisfiability when t5 + ¢, > n.

Common reference string/simulation reference string: Generate a DLIN group (p,G,Gr,e,g9) <«
G(1¥). Generate a common reference string for a simulation-sound NIZK proof on basis of this group
Y — Ksm-sound(Ps G, Gr, e, g) as in [Gro06]. Also, pick a random string r « {0, 1}61'“. Output
¥ :=(p,G,Grp,e,g,0,r).

Provided one can sample groups from random strings, this can all be set up in the random multi-string
model.

When generating a simulation reference string, use the simulator for the simulation-sound NIZK proof
to generate (0, 7) < Ssim—sound (P, G, G, €, g). Output X as described above and simulation trapdoor
T.

Proof: Given (X1,...,%,),C,w so C(w) = 1 do the following. Pick a group (p, G, Gr,e,g) «— G(1¥).
Pick also keys for a strong one-time signature scheme (vksots, Sksots) < Sots(lk). Encode vkgots as
a tuple of O(1) group elements from G.

For each common reference string >3; do the following. Pick a pseudorandom value with 6 key pairs, 6
input pairs and 36 structured elements. This gives us a total of 60 group elements from G;. Concatenate
the tuple of 60 group elements with vksos to get O(1) group elements from G;. Make a simulation-
sound NIZK proof, using o;, for these O(1) group elements being of a form such that the first 60 of
them constitute a pseudorandom value. From [Gro06] we know that the size of this proof is O(1)
group elements from G;. Define s; € {0, 1}5'% to be a random string such that 7; ® s; parses to the 60
elements from the pseudorandom value.

From now on we will work in the group (p, G, Gr, e, g) chosen by the prover. Pick pk := (f,h) as
two random group elements. This gives us a CPA-secure cryptosystem [BBS04], encrypting a message
m € G with randomness r, s € Z, as Ep,(m;r,s) :== (f",h*,¢g""™*m). Foreachi = 1,...,n we
encrypt 1 = g% as ¢; « ok (1). Also, we take s; and parse it as 60 group elements. Call this tuple z;.

Make a non-interactive zap 7 using the group (p, G, Gr, e, g) and combining techniques of [GOS06a]
and [Gro06] for the following statement:

n
C satisfiable V (H c; encrypts g'=

=1

A Vi : ¢ encrypts ¢ or g1 A (zi is a pseudorandom value V c; encrypts go))

15

The zap consists of O(n + |C|) group elements and has perfect soundness.
Sign everything sig < Sign,;, (vksots, C, X1, 81, 71,1, - .., X, Spy T,y €y 0, G, Gy e, g, f, by).
The proof is IT := (vkgots, S1, M1, Cls - - - Sns Ty Cns 0, G, Gy €, g, f, by, sig).

Verification: Given common reference strings 1, . . . , 2, a circuit C' and a proof as described above, do the
following. For all ¢ check the simulation-sound NIZK proofs 7; for r; & s; encoding a pseudorandom
value in G; using common reference string o;. Verify (p, G, Gr, e, g) is a group with a bilinear map.
Verify the zap 7. Verify the strong one-time signature on everything. Output 1 if all checks are ok.

Simulated proof: We are given reference strings X1, ..., %,. ¢, of them are simulation strings, where we
know the simulation trapdoors 7; for the simulation-sound NIZK proofs. We wish to simulate a proof
for a circuit C' being satisfiable.

We start by choosing a group (p, G, Gr, e, g) < G(1¥) and public key f, h < G. We create ciphertexts
ci — by (gl) for the ¢, simulation reference strings, where we know the trapdoor 7;, and set ¢; «—
Epk(go) for the rest. We also choose a strong one-time signature key pair (vkgots, Sksots) < Ksots(1%).

For t, of the common reference strings, we know the simulation key 7;. This permits us to choose
an arbitrary string s; and simulate a proof m; that r; & s; encodes a 60 element pseudorandom value.
This means, we are free to choose s; so it encodes a pseudorandom value z; in G°. For the remaining
n — t, < ts reference strings, we select s; so r; & s; does encode a pseudorandom value in G; and
carry out a real simulation-sound NIZK proof 7; for it being a pseudorandom value concatenated with
Vksots-

For all i we have ¢; encrypting g, where b € {0,1}. We have [T ¢; encrypting g*=. We also have
for the ¢, simulation strings, where we know 7; that s; encodes a pseudorandom value, whereas for the
other common reference strings we have ¢; encrypts ¢°. This means we can create the non-interactive
zap 7 without knowing C’s satisfiability witness.

Sign everything sig < Signg,_ . (vksots, C, X1, 81,71, €1, -+ ., Xy S, Ty €y 0, G, Gy e, g, f, by).

The simulated proof is IT := (vksots, S1, 71, C1, - - - s Sny Tny Cny D, G, Gy €, g, f, b, T, s1g).

Theorem 11 Assuming we have a DLIN group as described above, then the construction above gives us a
(0, s, t,, n)-simulation-sound NIZK proof for circuit satisfiability, where the proofs have size O((n+ |C|)k)
bits. The proof has statistical (0,ts,t,,n)-soundness. The scheme can be set up in the random multi-string
model if we can sample groups with bilinear maps from random strings.

Proof. We have already argued in the construction that if we can sample groups and group elements from
random strings and vice versa given groups and group elements sample random strings that yield these group
elements, then the common reference strings can be set up in the random strings model. Perfect completeness
follows by straightforward verification.

Let us prove that we have statistical (0,¢s,t,,n)-soundness. Consider first an arbitrary group
(p,G,Grp,e,g) chosen by the prover. By assumption, it can be verified that this describes a group with
a bilinear map.

We will now bound the probability of both r; & s; and s; specifying pseudorandom values in their re-
spective groups for a random choice of r;. Consider first the probability that a random string s; specifies a
pseudorandom value in G%. There are at most 224* pseudorandom strings, since the 12 pairs (f;, h;) and
the 12 pairs (u;, v;) fully define the pseudorandom value. 60 random group elements have at least 59k bits
of entropy, so we get a probability of at most 224%=59% — 935 of 5. specifying a pseudorandom value in
GO, Similarly, for a random choice of r; we have at most probability 273 that r; @ s; is a pseudorandom
value in the group specified by the common reference string. With 7;, s; both chosen at random, we have a

16

combined maximal probability of 2~ 7°% of both r; @ s; and s; specifying pseudorandom values. The prover
can choose the group freely, giving her at most 2% different choices for describing the group G and g. She
can also choose s; freely, giving her 26'% possibilities. Since ; is chosen at random, there is at most proba-
bility 24++61k=70k — 9=5k of jt being possible to choose s; and the group G so both r; @ s; and s; specify
pseudorandom values. With overwhelming probability, we can therefore assume that no honestly generated
common reference string exists such that both r; & s; and s; specify pseudorandom values in respectively G;
and G.

Any common reference string >; that is honestly generated has overwhelming probability of having a
common reference string o; for the simulation-sound NIZK with perfect soundness. Whenever the prover
makes a proof using this string,she must therefore pick s; so r; & s; is pseudorandom. Consequently, s;
does not specify a pseudorandom value in the group G. The zap has perfect soundness, so it shows that C' is
satisfiable or c; contains ¢°. Similarly, for any string ¥; that is not honestly generated, the zap demonstrates
that C is satisfiable or ¢; contains ¢° or g'. Since at least t, > n — t, strings are honestly generated, we see
that if C'is unsatisfiable, then []?" ; ¢; contains one of the values g%, ..., g"*71. The zap therefore shows us
that C' must be satisfiable.

To argue computational (0, s, ¢, n)-simulation-soundness, observe that simulated proofs are signed with
a strong one-time signature. Since the signature scheme has existential unforgeability, the adversary must
choose a different vkgots that it has not seen in a simulation. Recall, whenever we make a simulation-sound
NIZK using a particular common reference string ¥;, we concatenate vksois to 7; P s; to get the statement
we wish to prove. By the simulation-soundness of the NIZK proofs on honestly generated strings, we can
not forge such a proof even though we have already seen simulated proofs. Therefore, r; & s; must be a
pseudorandom string. We can now argue (0, t, ¢, n)-simulation-soundness just as we argued (0, ¢5,t,,n)-
soundness.

It remains to prove computational (0, ¢, ., n)-zero-knowledge. Reference string indistinguishability
follows from the reference string indistinguishability of the simulation-sound NIZK proofs. We will now
consider simulation indistinguishability, so consider a case where the adversary sees simulated reference
strings and gets the simulation trapdoors that allow the simulation of proofs for the reference strings. The
adversary, chooses a set of common reference strings and receives a proof generated with the satisfiability
witness for C' or alternatively a simulated proof and wants to distinguish between the two possibilities.

Let us start with a simulated proof and compare it with a hybrid experiment, where we use the satisfiability
witness for C' in the non-interactive zap. By the computational witness-indistinguishability of the zap, the
adversary cannot tell these two experiments apart. Next, let us choose all ¢;’s as encryptions of ¢. By
the semantic security of the cryptosystem, the adversary cannot detect this change. We already select s; so
r; @ s; specifies a pseudorandom value for the reference strings not generated by S;. Let us switch to also
selecting s; so 1; @ s; specify a pseudorandom value in the common reference strings where we do know the
simulation trapdoor. By the pseudorandomness of the strings, the adversary cannot detect this change either.
Finally, instead of simulating the proofs for r; @ s; specifying a pseudorandom value in G;, let us make
a real proof. By the zero-knowledge property of the simulated reference strings for the simulation-sound
NIZK proofs, the adversary cannot distinguish here either. With this last modification, we have actually
ended up constructing proofs exactly as a real prover with access to a satisfiability witness does, so we have
(0, ts,t,,n)-zero-knowledge. O

6 The UC Framework

In the rest of the paper, we will work in Canetti’s UC framework. The universal composability (UC) frame-
work, see [Can01] for a detailed description, is a strong security model capturing security of a protocol under
concurrent execution of arbitrary protocols. We model everything not directly related to the protocol through
an environment Z. The environment can at its own choosing give inputs to the parties running the protocol,

17

and according to the protocol specification, the parties can give outputs to the environment. In addition,
there is an adversary .A that attacks the protocol. .4 can communicate freely with the environment. It can
adaptively corrupt parties, in which case it learns the entire history of that party and gains complete control
over the actions of this party. The environment learns whenever a party is corrupted.

To model security we use a simulation paradigm. We specify the functionality F that the protocol should
realize. The functionality F can be seen as a trusted party that handles the entire protocol execution and tells
the parties what they would output if they executed the protocol correctly. In the ideal process, the parties
simply pass on inputs from the environment to F and whenever receiving a message from J they output it to
the environment. In the ideal process, we have an ideal process adversary S. S does not learn the content of
messages sent from F to the parties, but is in control of when, if ever, a message from F is delivered to the
designated party. S can corrupt parties, at the time of corruption it will learn all inputs the party has received
and all outputs it has sent to the environment. As the real world adversary, S can freely communicate with
the environment.

We now compare these two models and say that the protocol securely realizes F if no environment can
distinguish between the two worlds. This means, the protocol is secure, if for any polynomial time .4 running
in the real world, there exists a polynomial time S running in the ideal process with F, so no non-uniform
polynomial time environment can distinguish between the two worlds.

One of our goals is to show that any well-formed functionality can be securely realized in the multi-string
model. By well-formed functionality, we mean a functionality that is oblivious of corruptions of parties, runs
in polynomial time, and in case all parties are corrupted it reveals the internal randomness used by the
functionality to the ideal process adversary. This class contains all functionalities that we can reasonably
expect to implement with multi-party computation, because an adversary can always corrupt a party and
just have it follow the protocol, in which case the other parties in the protocol would never learn that it was
corrupted.

IDEAL FUNCTIONALITIES Let us formalize the multi-string model in the UC framework. Figure 1 gives an
ideal multi-string functionality Fy\icRs-

Functionality Fyicrs

Parametrized by polynomial ¢y,..s, and running with parties P, ..., Py and adversary S.

String generation: On input (crs, sid) from S, pick o — {0, 1}fmers(®) and store it. Send (crs, sid, o)

to S.

String selection: On input (vector, sid,o1,...,0,) where o1, ..., 0, € {0,1}me=(%) from S check
that more than half of the strings o, . .., 0, match stored strings. In that case output
(vector, sid, o1, ... ,0y,) to all parties and halt.

Figure 1: The ideal multi-string generator.

We will assume parties can broadcast their messages and we make this assumption explicit by giving them
access to an ideal broadcast functionality. Ideal broadcast permits each party to broadcast messages to other
parties. We remark that broadcast can be securely realized in a constant number of rounds if authenticated
communication is available [GLOS5]. Furthermore, authenticated communication can be securely realized
using digital signatures, so one possible setup is that the parties somehow have exchanged verification keys
for a digital signature scheme.

18

Functionality 73

Running with parties P, ..., P, and adversary S.

Broadcast: On input (broadcast, sid, ssid, m) from P;, send (broadcast, sid, ssid, P;, m) to all
parties and S. Ignore future (broadcast, sid, ssid, -) inputs from P;.

Figure 2: The ideal authenticated broadcast functionality.

7 Tools

This section will present a number of tools we will need in our constructions.

PSEUDORANDOM CRYPTOSYSTEM WITH PSEUDORANDOM KEYS. A cryptosystem (K pseudo, E, D) has
pseudorandom ciphertexts of length ¢z (k) if for all non-uniform polynomial time adversaries .A we have

Pr [(pk, dk) — Kpeenao(1") s A0 (pk) = 1]

~ Pr |:(p]{;7 dk;) — pseudo(]-k) : ARpk(-) (pk) =].i|7

where R, (m) runs ¢ « {0,1}*2(*) and returns c. We require that the cryptosystem have errorless decryp-
tion.

Trapdoor permutations imply pseudorandom cryptosystems, since we can use the Goldreich-Levin hard-
core bit [GL89] of a trapdoor permutation to make a one-time pad. For setting up our scheme in the common
random string model, we will require that the cryptosystem has a pseudorandom public key as well. Pseudo-
random cryptosystems with pseudorandom keys can be built from various assumptions such as RSA, DDH
and DLIN.

TAG-BASED SIMULATION-SOUND TRAPDOOR COMMITMENT. A tag-based commitment scheme has four
algorithms. The key generation algorithm K. com produces a commitment key ck as well as a trapdoor key
tk. There is a commitment algorithm that takes as input the commitment key ck, a message m and any tag
tag and outputs a commitment ¢ := Comcg(tag; m;r). To open a commitment ¢ with tag tag we reveal m
and the randomness 7. Anybody can now verify ¢ = Comc(tag; m;r). As usual, the commitment scheme
must be both hiding and binding.

In addition, to these two algorithms there are also a couple of trapdoor algorithms Tcom, Topen that
allow us to create an equivocal commitment and later open this commitment to any value we prefer. We
create an equivocal commitment and an equivocation key as (c, ek) < Tcomy(tag). Later we can open it
to any message m as r < Topen,; (tag; m), such that ¢ = Comx (tag; m;r).

We require that equivocal commitments and openings are indistinguishable from real openings. For all
non-uniform polynomial time adversaries .4 we have

Pr [(ck,tk) — Kiag—com(1F) : ARG (ck) = 1]

~ Pr [(Ck,tk) — Ktag—com(1k> : AO(T) (Ck) = 1}’

where R(m,tag) returns a randomly selected randomizer and O(m,tag) computes (c,ek) <«
Tcomyy (tag, m);r «— Topen,,(tag, m) and returns r. Both oracles ignore tags that have already been
submitted once.

The tag-based simulation-soundness property means that a commitment using tag remains binding even
if we have made equivocations for commitments using different tags. For all non-uniform polynomial time

19

adversaries A we have
Pr [(ck,tk) — Ktag_com(lk); (tag,c,mg,r9,m1,71) AO(')(ck) :tag ¢ @ and
¢ = Comgg(tag; mo; ro) = Come (tag; my;ry) and mo # ml] ~ 0,

where O(Com,tag) computes (c,ek) <« Tcomy(tag), returns ¢ and stores (c,tag,ek), and
O(Open, ¢, m, tag) returns r < Topen,;(tag, m) if (c,tag, ek) has been stored, and where () is the list
of tags for which equivocal commitments have been made by O.

Tag-based simulation-sound trapdoor commitment were implicitly used in Di Crescenzo, Ishai and Os-

trovsky [DIO98]. The explicit term was coined by Garay, MacKenzie and Yang [GMYO06], while the def-
inition presented here is from MacKenzie and Yang [MY04]. In addition, since we are working over ran-
dom strings, we want Kias_com to output public keys that are random or pseudorandom, i.e., we can use
pk «— {0, 1} ras—com instead of a public key.
TAG-BASED SIMULATION-EXTRACTABLE COMMITMENT SCHEME. We will need something that is stronger
than tag-based simulation-sound commitments, namely a tag-based simulation-extractable commitment. This
is a tag-based simulation-sound trapdoor commitment scheme with an additional algorithm Extract that
given an extraction key is able to extract the message inside the commitment. More precisely, with the
trapdoor we can make trapdoor commitments, however, for all other tags, the adversary will end up making
unconditionally binding commitments.

A tag-based simulation-extractable commitment scheme consists of five polynomial time algorithms
(Kse—com, Com, Tcom, Topen, Extract), such that the first 4 constitute a tag-based trapdoor commitment
scheme, and such that (Kge—com, Com, Extract) is a semantically secure cryptosystem. It will have the
property that a non-uniform adversary with access to trapdoor openings of commitments and the extraction
key, still cannot create a new commitment and opening thereof, such that the message it opens to differs from
the extracted message.

For all non-uniform polynomial time adversaries .A we have

Pr [Q = 0;(0,7,8) « Kse,com(lk); (tag, m,r) «— AO(')(U,E); ¢ := Com, (tag; m;r) :
Extracte(tag, c) # m and tag ¢ Q} ~ 0,

where O(Com,tag) computes (c,ek) <« Tcom,(tag), returns c¢ and stores (c,tag,ek), and
O(Open, ¢, m, tag) returns r «— Topen,(tag, m) if (¢, tag, ek) has been stored, and where @ is the list
of tags for which equivocal commitments have been made by O.

We will construct a tag-based simulation-extractable commitment scheme from the tools in this section.
We use a tag-based simulation-sound trapdoor commitment scheme to commit to each bit of m. If m has
length ¢ this gives us commitments cy, . . ., ¢,. When making trapdoor commitments, we can use the trapdoor
key tk to create equivocal commitments cy, . . ., ¢, that can be opened to any bit we like.

We still have an extraction problem, we may be unable to extract a message from tag-based commitments
created by the adversary. To solve this problem we choose to encrypt the openings of the commitments. Now
we can extract messages, but we have reintroduced the problem of equivocation. In a trapdoor commitment
we may know two different openings of a commitment c; to respectively O and 1, however, if we encrypt the
opening then we are stuck with one possible opening. This is where the pseudorandomness property of the
cryptosystem comes in handy. We can simply make two encryptions, one of an opening to 0 and one of an
opening to 1. Since the ciphertexts are pseudorandom, we can open the ciphertext containing the opening we
want and claim that the other ciphertext was chosen as a random string. To recap, the idea so far to commit
to a bit b is to make a tag-based simulation-sound trapdoor commitment c; to this bit, and create a ciphertext
¢i » containing an opening of ¢; to b, while choosing ¢; 1 as a random string.

These are the main ideas, we now present the protocol in Figure 3.

20

Random key: Return o := (ck, pk) — {0, 1}ftas—com(k) 5 {0, 1}¢psendo(k)
Simulation-extraction key:

1. (ck,tk) — Kiag—com(1)
2. (pk’, dk’) — pseudo(lk)
3. Return o = (ck, pk), 7 = (0,tk), £ = (0, xk)

Commitment: On input (o, tag, m) and randomizers as described below do

1. Fori = 1 to ¢ select r; at random and let ¢; := Com(tag, i; m;; r;)

2. Fori = 1to ¢ select R; y,, at random and set ¢; ,,,, = Ep(ri; Rim,) and choose ¢; 1, as a
random string.

3. Return ¢ := (c1, ¢10, €11, - - -, Coy Co0, Co1)
Opening: On input (tag, c,m, 1, Rimys---,7¢, Rom,) do

1. Verify that for all i we have ¢; = Come(tag, i;m;; ;)
2. Verify that for all ¢ we have ¢; m, = Epk(7i; Rim,)

3. Return 1 if all checks work out, else return 0
Trapdoor commitment: On input 7 = (o, tk) do

1. Fori = 1to ¢ let (¢;, ek;) « Tcomy(tag, i) and let r;o, 71 be equivocations so
¢; = Comeg(tag, i; 0;10) = Comeg(tag, i; 1;141).
2. Fori = 1 to / select randomness R;; and set ¢;p := Epp(1ip; Rip).

3. Return ¢ := (c1, c10, €11, - - -, €1, Cro, ¢o1) and ek := (0,71, R10, Ri1,...,7¢, R0, Rep).
Trapdoor opening: On input (tag, ek, c, m) return (71,m,, Rimys -+ T0mys Bemy)-

Extraction: On input (tag, (o, dk), c¢) use the decryption key to decrypt the ciphertexts ¢;;. In case, we
for i have exactly one ciphertext c;;, that decrypts to r;;, so ¢; = Com, (tag, i; b;), we set
m; = b. In case all these processes succeed, we return the concatenation m, else we return 1.

Figure 3: Tag based simulation-extractable commitment.

Theorem 12 Tag-based simulation-extractable commitment schemes exist with pseudorandom keys if pseu-
dorandom cryptosystems with pseudorandom keys exist.

Proof. Tag-based simulation-sound trapdoor commitments with pseudorandom keys can be built from one-
way functions, so we have the tools needed in the construction. This also shows that we have pseudorandom
keys for the tag-based simulation-extractable commitment scheme.

We now need to prove that even after seeing trapdoor commitments and openings, it is hard to come
up with a commitment with a different tag and open this commitment to a message that differs from the
extraction. Consider first the case, where the adversary for some index ¢ creates c¢;, ¢;g, ¢;1 S0 both ¢;9 and
c;1 decrypt to valid openings of ¢; to respectively 0 and 1. Since tag has not been used before, we have not
used tag, ¢ in any commitment we have trapdoor opened before, so we have broken the simulation-sound
binding property of the tag-based simulation-sound trapdoor commitment. The errorless decryption property
of the pseudorandom cryptosystem now tells us that if the adversary opens all triples ¢;, c;o, ¢;1 successfully

21

to either O or 1, then we get the opening when decrypting.

We also need to prove that we have the trapdoor property. We will modify the trapdoor oracle in several
steps and show that A cannot tell the difference. Let us start with the oracle that on input (tag, m) returns
a randomly chosen randomizer 71, 1 1, C1,1—mys - - - » 70, Remy» €1,1—m,. Instead of making commitments
c; := Comgy(tag, i;my; r;), we may instead run (c;, ek;) < Tcomyy(tag,i); 7; < Topen,y, (m;) and use r;
as the randomizer. By the trapdoor property of the tag-based simulation-sound commitment the two oracles
are indistinguishable to A.

Next, consider the trapdoor oracle, where we make trapdoor openings to both r;p and r;; so ¢; =
Comy(tag,i;b;7;p) for both b = 0 and b = 1. We encrypt r;;, with randomness R; ;. We then return
7, Bim;, Ci,1—m;. By the pseudorandomness of the ciphertexts, this is indistinguishable from the previous
oracle. O

8 UC Commitment in the Multi-String Model

We will now show how to securely realize the following ideal UC commitment functionality fé:évM in the
multi-string model.

Functionality 713},
Parametrized by polynomial #, and running with parties P, ..., Py and adversary S.

Commitment: On input (commit, sid, m) from party P; check that m € {0, 1}“*) and in that case
store (sid, P;,m) and send (commit, sid, ;) to all parties and S. Ignore future
(commit, sid, -) inputs from P;.

Opening: On input (open, sid) from P; check that (sid, P;, m) has been stored, and in that case send
(open, sid, P;,m) to all parties and S.

Figure 4: The ideal commitment functionality.

Before describing our UC commitment protocol, let us offer some intuition. To prove that our UC com-
mitment is secure, we will describe an ideal process adversary S that interacts with Fé‘évM and makes a
black-box simulation of .4 running with Fyicrs and P4, . .., Py. There are two general types of issues that
can come up in the ideal process simulation. First, when]:é:(])VM tells S that a party has committed to some
message, S does not know which message it is, however, S has to simulate to .4 that this party makes a UC
commitment. Therefore, we want to be able to make trapdoor commitments and later open them to any value.
Second, when a corrupt party controlled by A sends a UC commitment, then S needs to input some message
to fé:évM. In this case, we therefore need to extract the message from the UC commitment.

As a tool to get both the trapdoor/simulation property and at the same time the extractability property,
we will use a tag-based simulation-extractable commitment. Our idea in constructing a UC commitment is
to use each of the n common random strings output by Fnicrs as a public key for a tag-based simulation-
extractable commitment scheme. This gives us a set of » commitment schemes, of which at least ¢t = ["7“1
are secure. Without loss of generality, we will from now on assume we have exactly ¢ secure commitment
schemes. In the ideal process, the ideal process adversary simulates Fyicrg and can therefore pick the strings
as simulation-extractable public keys where it knows both the simulation trapdoors and the extraction keys.

To commit to a message m, a party makes a (¢, n)-threshold secret sharing of it and commits to the n
secret share using the n public keys specified by the random strings. When making a trapdoor commitment,
S makes honest commitments to n — ¢ random shares for the adversarial keys, and trapdoor commitments
with the ¢ simulation-extractable keys. Since the adversary knows at most n — ¢ < ¢ shares, we can later

22

open the commitment to any message we want by making suitable trapdoor openings of the latter ¢ shares. To
extract a message m from a UC commitment made by the adversary, we extract ¢ shares from the simulation-
extractable commitments. We can now combine the shares to get the adversarial message.

One remaining issue is when the adversary recycles a commitment or parts of it. This way, we may risk
that it uses a trapdoor commitment made by an honest party, in which case we are unable to extract a message.
To guard against this problem, we will let the tag for the simulation-extractable commitment scheme contain
the identity of the sender F;, forcing the adversary to use a different tag, which in turn enables us to extract.

Another problem arises when the adversary corrupts a party, which enables it to send messages on behalf
of this party. At this point, however, we learn the message so we just need to force it to reuse the same
message if it reuses parts of the trapdoor commitment. We therefore introduce a second commitment scheme,
which will be a standard trapdoor commitment scheme, and use this trapdoor commitment scheme to commit
to the shares of the message. The tag for the simulation-extractable commitment will include this trapdoor
commitment. Therefore, if reusing a tag, the adversary must also reuse the same trapdoor commitment given
by this tag, which in turn computationally binds her to use the same share as the one the party committed to
before being corrupted.

These ideas give us a UC commitment scheme in the multi-string model. As an additional bonus, the
protocol is non-interactive except for a little coordination to ensure that everybody received the same com-
mitment.

Commitment: On input (vector, sid, (ck1,01), ..., (cky,0y)) from Fycrs and (commit, sid, m) from
Z, the party P; does the following. She makes a (¢, n)-threshold secret sharing s, ..., s, of m. She
picks randomizers 7; and makes commitments ¢; := Comgy,(s;j;7;). She also picks randomizers
R; and makes tag-based commitments C; := Com,,((F;,c;); s;; Rj). The commitment is ¢ :=
(c1,C1,...,cn, Cy). She broadcasts (broadcast, sid, c).

Receiving commitment: A party on input (vector,sid, (cki,01),...,(ckn,0p)) from Fycrs and
(broadcast, sid, P;, ¢) from Fpc broadcasts (broadcast, sid, P;, ¢).

Once he receives similar broadcasts from all parties, all containing the same F;,c, he outputs
(commit, sid, P;) to the environment.

Opening commitment: Party P; wishing to open the commitment broadcasts
(open, sid, s1,71, R1,. .., Sn,"n, Ry).

Receiving opening: A party receiving an opening (open, sid, P;, s1,,7r1, R1, ..., Sn, n, Ry) from Fpc
to a commitment he received earlier, checks that all commitments are correctly formed c; =
Comgg, (s5;75) and C; = Comg; (P, ¢j); 85;75). He also checks that sy, ..., s, all are valid shares
of a (¢, n)-threshold secret sharing of some message m. In that case he outputs (open, sid, P;, m).

Theorem 13 The protocol securely realizes J”:é(])vM in the (Fpc, Facrs)-hybrid model, assuming tag-based
simulation-extractable commitment schemes with pseudorandom keys exist in the common random string
model.

Proof. We describe the ideal-process adversary S and sketch why it is secure along the way. It will run a
black-box simulation of A. In particular, it will simulate the parties Py, ..., Py and the ideal functionalities
Fnmcrs and Fpc. The dummy parties that are actually involved in the protocol and communicate with Z are
written as P, ..., Py.

Communication: Forward all communication between A and Z. Also, whenever A delivers a message to a
party F;, simulate this delivery.

23

Common random strings: Whenever A asks Fycrs for a common random string, select (ck,tk) «—
Ktrapdoor(lk) and (0,7,€) + Ks_com(1¥) and return (crs,sid, (ck,0)), while storing

(ck,tk,o,T1,8).

When A inputs (vector,sid, (cki,01),...,(ck,,0n)) to Frucrs check that more than half
the pairs (cki1,01),...,(ckn,0,) match the stored public keys. In that case, send
(vector, sid, (ck1,01),. .., (ckp,0y)) to all parties and halt the simulation of Fyicrs. Note, we

only need ¢ stored keys, so if there are more than ¢ honest key pairs, we just act as if we only knew ¢ of
the trapdoors.

Commitment by honest party: On receiving (commit, sid, P;) from fé:(])vM we learn that P; has made a
commitment, albeit we do not know the message. We wait until A has submitted reference strings to
JFmcrs and delivers them to F;.

We select a (¢, n)-threshold secret sharing sy, . . ., s, of 0. For the n — ¢ reference strings where we do
not know the trapdoor keys, we commit to s; as ¢; := Comy(s;;7;) and C; := Comy, (P, ¢j; 555 ;).
For the t reference strings where we do know the trapdoor keys, we make trapdoor commit-
ments (cj,ek;) « Tcom(tk) and (Cj, EK;) « Tcom; (P;,c;). We simulate broadcasting
(broadcast, sid, c1,C1, ..., cn, Cy).

The process for receiving a commitment is exactly the same as in the protocol, when simulated parties
see the commitments they broadcast it. When everybody has broadcast, they are supposed to output
(commit, sid, P;) to the environment. S therefore delivers the corresponding commitment message
from f(lj:éVM to the dummy party.

Opening: When S receives (open, sid, P;, m) from]—'é:évM it means that P; has been instructed to open
the commitment, and it was a commitment to m. We recall the n — ¢ shares that we committed
to honestly, and fit them into a (¢, n)-threshold secret sharing s, ..., s, of m. We open the n — ¢
commitments c;, C; correctly. We then trapdoor open the ¢ commitments c;, C; where we know the
corresponding equivocation keys as r; < Topen, (s;) and R; < Topengg, ((F;,¢;),s;). We
broadcast (broadcast, sid, s1,71, R1, ..., Sn, 'n, Rn)

Receiving an opening: On receiving an opening of an earlier received commitment, we check that the
commitments contains a consistent (¢, n)-threshold secret sharing of sq,...,s, of a message m and
for all j we have ¢; = Comey, (sj;7;) and C; = Comy, (P, ¢j; 555 ;). In that case, we deliver
(open, sid, P;,m) from fé:(J)VM to our dummy party that outputs the opening to Z.

Corruption: In case a party P; is corrupted, we corrupt the corresponding dummy party P,. We need to
simulate the history of this party. If the party has not yet made a commitment, this is easy since there
is no history to simulate. If the party has already opened the commitment, we just need to reveal the
randomness used in generating the one-time signature.

If the party has made a commitment but not yet opened it, we must simulate an opening of it. On
corrupting P;, we learn the message it committed to, so we can use the opening simulation for honest
parties described earlier.

Commitment by corrupt party: When a corrupt party makes a commitment (c;,C1, ..., ¢, Cy) so our
simulated party would output (commit, sid, P;), we need to input some message to]-'égM SO we can
make the corresponding dummy party output this in the ideal process.

We use the extraction keys, to extract t committed values s; < Extracte, ((F;, ¢;), C;). The only case,
where we cannot do this is when the tag (F;, ¢;) has been used before by P;, because then it may be
a trapdoor commitment we are looking at. However, this can only happen if P; used (P;, c;) as a tag

24

when it was honest, and then upon corruption we have made a trapdoor opening of ¢; to some s; and
therefore do not need to do any extraction.

We then reconstruct m from these shares and input (commit, sid, m) to]—"é:évM on behalf of the
dummy party. In case we did not manage to extract a message, we input m := 0 to]—"é:éVM, which is ok
as long as we do not end up in a situation, where we need to ask fék])VM to open the commitment. This
causes f(I):éVM to send out (commit, sid, P;) messages to all dummy parties that we can deliver when
needed in the simulation.

Opening by corrupt party: When a corrupt party wants to open a commitment, we check the opening and
if acceptable we input (open, sid) to f(lng- If any honest party receives the opening, we deliver the
message (open, sid, P;, m) to the corresponding dummy party P; that outputs it to the environment.

To see that this gives us a good simulation, consider the following hybrid experiments for adversary A and
environment Z.

Hybrid 1: This is the protocol executed with .4 and environment Z.

Hybrid 2: This is the protocol, where we store (ck,tk,o,7,&) and return (ck, o), whenever A queries
JFumcrs for a common reference string.

Since both commitment schemes have pseudorandom keys, hybrid 1 and 2 cannot be distinguished.

Hybrid 3: This is hybrid 2 modified such that honest party P; for ¢ commitments where it knows the key,
creates equivocal commitments using the trapdoor keys, instead of making real commitments. To
produce the openings, it then uses the equivocation keys to generate randomizers so the commitments
open to the relevant shares.

Hybrid 2 and hybrid 3 are indistinguishable due to the trapdoor properties of the commitment schemes.

Hybrid 4: We modify hybrid 3 such that when an honest party P; makes a commitment, it uses a (¢,n)-
threshold secret sharing of O instead of a threshold secret sharing of m. In the opening phase, it
opens the n — t pairs (c;, C;) where it does not know the trapdoors honestly to the s; it committed
to. It reconstructs shares s; for the ¢ equivocal commitments so s1,. .., sy is a (¢, n)-threshold secret
sharing of m. It then opens the equivocal commitments to these values.

Hybrid 3 and hybrid 4 are perfectly indistinguishable, since n —t¢ < t shares in a (¢, n)-threshold secret
sharing scheme do not reveal anything about m.

Hybrid 5: We now turn to modify the way we handle corrupt parties. Whenever a corrupt party P; submits
a commitment (¢1, C1, . . ., ¢y, Cp) to Fpc, we want to extract a message.

For any of the ¢t C;’s where we know the key, there are two cases to consider. One case is where
(P, ¢;) has been used as a tag when F; was still honest. In this case, we learned an opening s;,r; of
¢; upon corruption, and will therefore consider s; the share. The second case is when (P;, ¢;) has not
been used as a tag in a simulation-extractable commitment. In that case, we can extract a share s;.

We now have ¢ shares, so we can recombine them to get a possible message m. We input
(commit, sid, m) on behalf of P;. In case anything fails, we input m := 0 on behalf of P;.

Hybrid 4 and hybrid 5 are indistinguishable. The problem arises if the extracted m does not match the
opening. There are two ways this could happen. One possibility is that c; created by an honest party
that is later corrupted is opened to a different share than in the simulation. However, this would imply
a breach of the binding property of the trapdoor commitment scheme. Another possibility is that the
extraction fails. However, this would imply breaking the simulation-extractability of the commitment
scheme.

25

We conclude the proof by observing that hybrid 5 is identical to the simulation.

9 Multi-party Computation

We will now show how to generate a common random string on the fly using UC commitment. More pre-
cisely, we will securely realize an ideal functionality Fcrg that produces a random bit-string.

Functionality Fcgrs

Parameterized with polynomial ¢ and running with parties P, ..., P, and adversary S.

CRS generation: Generate random o « {0, 1}“*) and output (crs, sid, o) to all parties and S. Halt.

Figure 5: The ideal common random string generator.

COIN-FLIPPING. The parties will use the following natural coin-flipping protocol, where all parties first
commit to a string of random bits and subsequently open all the commitments and use the exclusive-or of the
random strings as the output.

Commitment: P; chooses at random 7; « {0, 1}*%). It submits (commit, sid, ;) to FGdy. F&dy on
this input sends (commit, sid, P;) to all parties.

Opening: Once P, sees (commit, sid, P;) for all 4, it sends (open, sid, ;) to FEQ\ - F&dy on this input
sends (open, sid, P;, ;) to all parties.

Output: Once P; sees (commit, sid, P;, r;) for all j, it outputs (crs, sid, EBjyzlrj) and halts.

Theorem 14 The protocol securely realizes (perfectly) the ideal common reference string generator FcRrs
in the fé:évM-hybrid model.

Proof. Consider the following ideal process adversary S working in the Fcrg-hybrid model, giving it a
common reference string o. It runs a black-box simulation of .4, a simulated copy of]—'é:évM and simulated
parties Py, ..., Py, not to be confused with the dummy parties 151, e Py that interact with Z and FCRS.-
Whenever the simulated .4 communicates with the environment Z it simply forwards those messages. We
now list the events that can happen in the protocol.

On activation of F;, it simulates fé:éVM receiving a commitment from F; by outputting
(commit, sid, P;) to all parties and .A.

On delivery of commitments from all parties to an honest party F;, it selects r; at random, subject to the
continued satisfiability of condition o = @é\f:lrj and stores it. It then simulates]:(13:(])\[1\/1 receiving an opening
of P;’s commitment to r;.

In case A corrupts a party P;, we corrupt the corresponding dummy party P;. If P; has made a com-
mitment but it has not yet been opened, we select r; at random, subject to the continued satisfiability of the
condition o = @éyzlrj, and simulate that this was the commitment P; made. In all other cases of corruption,
either 7; has not yet been selected, or the commitment has already been opened and A already knows 7.

The two experiments, .4 running with parties P, ..., Py in the Fé:évM—hybrid model, and S running
with dummy parties Py,...,Py in the Fcrs-hybrid model are perfectly indistinguishable to Z. To see
this, consider a hybrid experiment, where we run the simulation and choose all r;’s at random and then set
o= @f\ilﬁ- Inspection shows that this gives a perfect simulation of Z’s view of the protocol in the Fé:évM—
hybrid model. At the same time, also here we get a uniform random distribution on o and the r;’s subject to
the condition o = @jy:lrj. O

26

MULTI-PARTY COMPUTATION. Armed with a coin-flipping protocol, we can generate random strings.
Canetti, Lindell, Ostrovsky and Sahai [CLOS02] demonstrated that with access to a common random string,
it is possible to do any kind of multi-party computation, even if only a minority of the parties is honest. We
therefore get the following corollary to Theorems 13 and 14.

Theorem 15 For any well-formed functionality F there is a non-trivial protocol that securely realizes it
in the (Fpc, FMcRs)-hybrid model, provided enhanced trapdoor permutations with dense public keys and
augmented non-committing encryption exists.

Proof. Canetti, Lindell, Ostrovsky and Sahai [CLOS02] show that assuming enhanced trapdoor permutations
with dense public keys* and augmented non-committing encryption, there is a non-trivial protocol that se-
curely realizes F in the (Fpc, Fcrs)-hybrid model. To clarify matters; they actually claim that enhanced
trapdoor permutation, dense cryptosystems and augmented non-committing encryption suffice for realizing
general multi-party computation in the common random string model, however, a careful reading of their
paper reveals that in the common random string model they need a pseudorandom cryptosystem with pseu-
dorandom keys in the construction of their UC commitment scheme. Enhanced trapdoor permutations with
dense public keys, imply the existence of enhanced trapdoor permutations, dense public key cryptosystems
and pseudorandom cryptosystems with pseudorandom public keys.

Theorem 14 shows that we can securely realize Fcrg in the Fé:évM—hybrid model. Therefore, by the
universal composability theorem [Can01], we can securely realize F in the (Fpc, Fé‘(])vM)—hybrid model.

Theorem 13 shows that we can securely realize fé‘éVM in the (Fpc, Fmcrs)-hybrid model assuming the
existence of extractable trapdoor commitments. Recall from Theorem 12 that pseudorandom cryptosystems
imply the existence of extractable trapdoor commitments. By the universal composability theorem we get that
JF can be securely realized in the (Fpc, Farcrs)-hybrid model under the stated cryptographic assumptions.
(]

Acknowledgments

We thank Silvio Micali and Eyal Kushilevitz for an inspiring discussion in February of 2004 that motivated
us to explore this setting.

References

[AdI78] Leonard M. Adleman. Two theorems on random polynomial time. In proceedings of FOCS 78,
pages 75-83, 1978.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In proceedings of
CRYPTO 04, LNCS series, volume 3152, pages 41-55, 2004.

[BCNP04] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally composable proto-
cols with relaxed set-up assumptions. In proceedings of FOCS '04, pages 186—195, 2004.

[BDMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive zero-
knowledge. SIAM Jornal of Computation, 20(6):1084—-1118, 1991.

[BFO3] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. SIAM
Journal of Computing, 32(3):586—615, 2003.

“Enhanced trapdoor permutations with dense public keys, are enhanced trapdoor permutations, where the public keys can be
sampled from a random string obliviously of the trapdoor, and at the same time we can sample the public key with the trapdoor and
create convincing randomness that would make the public key be sampled.

27

[BFMS8]

[Can01]

[CDPWO07]

[CFO1]

[CLOS02]

[Dam92]

[DDO*02]

[DDP99]

[DDP02]

[DIO98]

[DNO2]

[DP92]

[FLS99]

[GL89]

[GLOS]

Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its appli-
cations. In proceedings of STOC ’88, pages 103—-112, 1988.

Ran Canetti. Universally composable security: A new paradigm for cryptographic pro-
tocols. In proceedings of FOCS 01, pages 136-145, 2001. Full paper available at
http://eprint.iacr.org/2000/067.

Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable security
with pre-existing setup. In TCC ’07, LNCS series, pages 61-85, 2007. Full paper available at
http://eprint.iacr.org/2006/432.

Ran Canetti and Marc Fischlin. Universally composable commitments. In proceedings
of CRYPTO 01, LNCS series, volume 2139, pages 19-40, 2001. Full paper available at
http://eprint.iacr.org/2001/055.

Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-
party and multi-party secure computation. In proceedings of STOC '02, pages 494-503, 2002.
Full paper available at http://eprint.iacr.org/2002/140.

Ivan Damgérd. Non-interactive circuit based proofs and non-interactive perfect zero-knowledge
with proprocessing. In proceedings of EUROCRYPT ’92, LNCS series, volume 658, pages 341—
355, 1992.

Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and Amit
Sahai. Robust non-interactive zero knowledge. In proceedings of CRYPTO 01, LNCS series,
volume 2139, pages 566-598, 2002.

Alfredo De Santis, Giovanni Di Crescenzo, and Giuseppe Persiano. Non-interactive zero-
knowledge: A low-randomness characterization of np. In proceedings of ICALP ’99, LNCS
series, volume 1644, pages 271-280, 1999.

Alfredo De Santis, Giovanni Di Crescenzo, and Giuseppe Persiano. Randomness-optimal char-
acterization of two np proof systems. In proceedings of RANDOM °02, LNCS series, volume
2483, pages 179-193, 2002.

Giovanni Di Crescenzo, Yvail Ishai, and Rafail Ostrovsky. Non-interactive and non-malleable
commitment. In proceedings of STOC 98, pages 141-150, 1998.

Ivan Damgard and Jesper Buus Nielsen. Perfect hiding and perfect binding univer-
sally composable commitment schemes with constant expansion factor. In proceedings of
CRYPTO °02, LNCS series, volume 2442, pages 581-596, 2002. Full paper available at
http://www.brics.dk/RS/01/41/index.html.

Alfredo De Santis and Giuseppe Persiano. Zero-knowledge proofs of knowledge without inter-
action. In proceedings of FOCS ’92, pages 427436, 1992.

Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs
under general assumptions. SIAM Journal of Computing, 29(1):1-28, 1999.

Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In
proceedings of STOC ’89, pages 25-32, 1989.

Shafi Goldwasser and Yehuda Lindell. Secure multi-party computation without agreement. Jour-
nal of Cryptology, 18(3):247-287, 2005.

28

[GMR89]

[GMW8T7]

[GMYO06]

[GO9%4]

[GOSO06a]

[GOSO06b]

[GP90]

[Gro06]

[HILL99]

[KP98]

[MYO04]

[Nao91]

[NR99]

[Ost91]

[OWO93]

[PPS06]

[SahO1]

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proofs. SIAM Journal of Computing, 18(1):186-208, 1989. First published at STOC 1985.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play ANY mental game, or A
completeness theorem for protocols with honest majority. In proceedings of STOC '87, pages
218-229, 1987.

Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthening zero-knowledge protocols
using signatures. Journal of Cryptology, 19(2):169-209, 2006.

Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems.
Journal of Cryptology, 7(1):1-32, 1994.

Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new techniques for
nizk. In proceedings of CRYPTO 06, LNCS series, volume 4117, pages 97-111, 2006.

Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero-knowledge for np.
In proceedings of EUROCRYPT ’06, LNCS series, volume 4004, pages 339-358, 2006.

Andrew Granville and Carl Pomerance. On the Least Prime in Certain Arithmetic Progressions.
Journal of the London Mathematical Society, s2-41(2):193-200, 1990.

Jens Groth. Simulation-sound nizk proofs for a practical language and constant size group
signatures. In proceedings of ASIACRYPT °06, LNCS series, 2006. Full paper available at
http://www.brics.dk/~7Jjg/NIZKGroupSignFull.pdf.

Johan Hastad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal of Computation, 28(4):1364-1396, 1999.

Joe Kilian and Erez Petrank. An efficient noninteractive zero-knowledge proof system for np
with general assumptions. Journal of Cryptology, 11(1):1-27, 1998.

Philip D. MacKenzie and Ke Yang. On simulation-sound trapdoor commitments. In proceedings
of EUROCRYPT ’04, LNCS series, volume 3027, pages 382—-400, 2004. Full paper available at
http://eprint.iacr.org/2003/252.

Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology, 4(2):151-158,
1991.

Moni Naor and Omer Reingold. Synthesizers and their application to the parallel construction
of pseudo-random functions. Journal of Computer and Systems Sciences, 58(2):336-375, 1999.

Rafail Ostrovsky. One-way functions, hard on average problems, and statistical zero-knowledge
proofs. In Proceedings of Structure in Complexity Theory Conference, pages 133-138, 1991.

Rafail Ostrovsky and Avi Wigderson. One-way fuctions are essential for non-trivial zero-
knowledge. In proceedings of ISTCS "93, pages 3—17, 1993.

Omkant Pandey, Manoj Prabhakaran, and Amit Sahai. Personal communication, November,
2006.

Amit Sahai. Non-malleable non-interactive zero-knowledge and adaptive chosen-ciphertext se-
curity. In proceedings of FOCS ’01, pages 543-553, 2001.

29

