
Covert Multi-party Computation

Nishanth Chandran∗ Vipul Goyal∗ Rafail Ostrovsky† Amit Sahai‡

University of California, Los Angeles
{nishanth,vipul,rafail,sahai}@cs.ucla.edu

Abstract

In STOC’05, Ahn, Hopper and Langford introduced the notion of covert computation. A covert
computation protocol is one in which parties can run a protocol without knowing if other parties
are also participating in the protocol or not. At the end of the protocol, if all parties participated
in the protocol and if the function output is favorable to all parties, then the output is revealed.
Ahn et al. constructed a protocol for covert two-party computation in the random oracle model.

In this paper, we offer a construction for covert multi-party computation. Our construction is
in the standard model and does not require random oracles. In order to achieve this goal, we
introduce a number of new techniques. Central to our work is the development of “zero-knowledge
proofs to garbled circuits,” which we believe could be of independent interest. Along the way, we
also develop a definition of covert computation as per the Ideal/Real model simulation paradigm.

∗Research partially done while visiting IPAM. Supported in part by grants listed below.
†Research partially done while visiting IPAM. This research was supported in part by IBM Faculty Award, Xerox

Innovation Group Award, NSF Cybertrust grant no. 0430254, and U.C. MICRO grant.
‡Research partially done while visiting IPAM. This research was supported in part by NSF ITR and Cybertrust

programs (including grants 0627781, 0456717, and 0205594), a subgrant from SRI as part of the Army Cyber-TA
program, an equipment grant from Intel, and an Alfred P. Sloan Foundation Research Fellowship.

1 Introduction

The notion of secure multi-party computation was introduced by Yao [16] and Goldreich, Micali
and Wigderson [9]. In multi-party computation, parties {P1,, Pn} holding inputs {x1, x2,, xn}
wish to compute f(x1, x2,, xn) in such a way that at the end of the protocol, all parties obtain
f(x1, x2,, xn) and party Pi cannot obtain any information other than what can be determined
given just f(x1, x2,, xn) and xi.

Now, consider the following situation: {P1, P2,, Pn} are members of an organization. The
organization also has a leader who is a harsh dictator! If all the members of the organization unite in
their fight against the leader, then they can overthrow the leader and elect a new one. The combined
strength of all members is needed in order to overthrow the leader. However, if it becomes known
that some subset of the members wish to rise against the authority (but not all of them), then this
could prove to be disastrous for the members opposing the leader. The members somehow wish to
run a protocol such that at the end of the protocol, if all members wish to oppose the leader, the
output is 1, otherwise the output is 0. This can be done using standard multi-party computation.
But for this to work, one of the members Pi needs to come forward and ask the question “shall we
run a protocol to see if all of us are interested in overthrowing the leader?”. This already reveals
information about Pi’s intent. Is it possible for the parties to run a secure multi-party protocol in
such a way that the execution of the protocol is not known until and unless the output is favorable
to all parties? In this paper, we answer this question in the affirmative. Specifically, we construct a
protocol which allows a group of n parties to perform Covert Multi-party Computation.

Ahn, Hopper and Langford introduced this fascinating notion of covert computation [14], and
gave a protocol for covert two-party computation in the random oracle model. Informally, a covert
computation protocol has the following properties: (1) No outsider can tell if the parties are running
a protocol or just communicating normally; (2) No party has a significant advantage over other
parties in determining if the parties are participating in the protocol or not; (3) Even if one party
does not take part in the protocol, or the output of the computation is “unfavorable”, then the
execution of the protocol is indistinguishable from “ordinary looking” conversations. Ahn et al
[14] discuss several applications of covert two-party computation such as dating, cheating in card
games and so on. Many of them also apply to multi-party computation,. For illustration, we discuss
a few applications below:

Joint buying over of a company: There exist a set of n companies who may be potentially
interested in jointly buying another company C. They individually do not have the resources to
buy the company. If a company reveals its interest in buying C, this could significantly increase
the stock price of C (thus making it more expensive). To prevent such a situation, the n companies
can run covert computation to determine if all of them are interested in buying C (and pooling
resources for it) and if they jointly possess the resources to do so. Only if this is the case will the
joint intention of all the companies to buy C be revealed to each other.

Detecting co-spies in Military Camps: Imagine a set of n spies who have infiltrated into an
enemy camp. It would be very useful if they could collectively obtain information from the enemy.

2

On the other hand, suggesting that they may be a spy to a normal member of the military camp
could prove to be disastrous. A set of people can run covert multi-party computation with their
signed credentials as inputs to determine if all of them are spies. The result is revealed only if they
are all allies (in other words, covert computation can be used to perform handshakes among the
members of a secret community).

Tracing a hacker: There exists a set of companies whose data sets have possibly been hacked
into by an external party. No company wishes to admit that it is under attack. Yet, they all know
that if they join forces, they can prevent further damage and possibly trace the attacker. The com-
panies can run covert computation to determine if all of them have been attacked by the hacker.

Aside from the fact that covert multi-party computation has these interesting applications, the var-
ious technical challenges which it comes with makes covert computation interesting theoretically.

There are a few natural questions that arise while considering the notion of covert computation.
These issues were discussed in [14], and we briefly recall them here:

Synchronization. One question we may ask is “don’t parties have to tell each other that they
are interested in running a covert computation protocol for function f anyway?”. This is not the
case: As part of protocol specification, we could have information about how and when to initiate
a particular protocol. This could be in the form of “If we wish to compute function f , then the
protocol begins with the first message exchanged after 2 p.m.”. If a party is interested in computing
function f , then he starts hiding the protocol messages in the “ordinary looking” messages starting
from 2 p.m. Of course, it could be the case that other parties are not interested, in which case
some parties would be executing the protocol, while others would just be carrying on “normal”
conversations. The protocol execution does not take place in this case, and knowledge about which
parties intended to take part in the protocol is not revealed to anyone. (Instead, other parties will
just observe ordinary-seeming conversations.)

Does MPC and Steganography lead to Covert MPC? At first glance, it may seem that by
combining multi-party computation and steganography, we can immediately obtain covert com-
putation protocols. Again, as argued by [14], this is not the case: Recall that steganographically
encoding all messages of a standard secure multi-party computation protocol would yield a proto-
col for which no outside observer can determine if the protocol for computing the function is being
run or not. This however provides no guarantee to the participants of the protocol itself. Covert
computation must guarantee that the protocol execution remains hidden from participating parties.

We assume that all parties know a common circuit for the function f and further, they know
the roles they will play in the protocol. We call a party a non-participating party if it does not
play the required role during protocol execution. The parties also possess information about the
synchronization of the protocol. Adversarial parties also know all such details.

3

1.1 Our Contributions

Our main contribution in this paper is the first construction of covert multi-party computation.
Our construction is in the standard model. Along the way, we also introduce a tool that we call a
“zero-knowledge proof to garbled circuit,” which we believe could be of independent interest.

We also develop a clean new definition of covert computation which is based on the Ideal/Real
model simulation paradigm. This definition adds various desirable properties beyond those guaran-
teed by the model of [14], as we discuss in Section 2. Techniques similar to what we develop here
may be necessary even for covert two-party computation satisfying an Ideal/Real model simulation
based definition.

In many applications of covert computation, a notion of fairness is central to the covertness that
we desire: We want that at the end of the protocol, either all parties learn about the participation of
other parties, or none do1. However, analyzing fairness and covertness together is complex. One of
our technical contributions is to give a meaningful definition of covert multi-party computation that
does not guarantee fairness. We provide a relatively clean construction (incorporating all our main
ideas) that achieves this definition. We then construct a covert version of “Timed-commitment”
[2, 12] (which is a standard tool to add fairness in secure computation protocols). Finally, we show
that by following known techniques for achieving fairness [12, 6], we can modify our construction
(using covert timed-commitments) to achieve the end goal of fair covert multi-party computation.

New Techniques. We now describe the main technical challenges that we encounter and the
techniques used to overcome them.

1. Enforcing honest behavior in covert computation is a non-trivial task. This is because if
one party “verifies” that another party is executing the protocol honestly, then covertness is
immediately compromised. To enforce honest behavior, our main tool is a novel technique
which we call “zero-knowledge to garbled circuits”.

2. Unfortunately, however, zero-knowledge to garbled circuits cannot be applied to achieve se-
cure covert multi-party computation as “easily” as ordinary zero-knowledge proofs can be
applied to achieve secure (ordinary) multi-party computation. We first modify the GMW
multi-party computation protocol [9] (to incorporate correctness and other required proper-
ties) and use zero-knowledge to garbled circuit in a specific manner at the end. We then do
a direct analysis of the resulting protocol to prove that it indeed satisfies the notion of covert
multi-party computation.

3. We also construct a covert version of “timed-commitments” [2, 12] (which is a standard
tool to add fairness in secure computation protocols), using techniques similar to those
used to construct “dense cryptosystems” [13]. Covert timed-commitments can then be di-
rectly employed in covert computation protocols to achieve fairness (similar to how timed-
commitments are employed in regular secure computation protocols [12, 6]).

1This is exactly analogous to the notion of fairness for output delivery. Indeed, we will later show that techniques
developed for output delivery can be composed with our techniques for covertness to achieve “fair covertness”.

4

1.2 Covert Two-Party vs Multi-Party Computation

In this section, we informally describe some of the ideas of the covert two-party computation
protocol of Ahn et al [14], and argue why we cannot translate their results and techniques to
achieve our result. The starting point of [14] is an observation that the problem of covert two-party
computation reduces to designing a protocol in which the messages sent by each party are indis-
tinguishable from random to the other one. They first consider a simple two party computation
scenario where only the first party has to receive the output and there is no requirement of out-
put correctness. This problem can be solved by using Yao’s garbled circuits [16] and 1-out-of-2
oblivious transfers (OT). Ahn et al [14] modify Yao’s garbled circuits to create a covert version
by using an encryption scheme where a ciphertext is indistinguishable from a random number (in-
deed, a garbled circuit is simply a number of encrypted secret keys). They also construct a covert
1-out-of-2 OT by modifying an OT protocol of Naor and Pinkas [11]. This already gives a weak
form of covert two-party computation where only one of the parties receive the output (and there
is no correctness guarantee). One could use the protocol twice (once in each direction) where both
parties should get the output.

A novel idea used by [14] to obtain their final result is to use covert garbled circuits to replace
zero-knowledge proofs: We have already argued that zero-knowledge proofs destroy covertness
(since they are verifiable). Ahn et al get around this problem as follows: Instead of sending a
message directly, each party will send a garbled circuit. This circuit takes as input all the secrets of
the other party, checks the honesty of the conversation so far, and if it is correct, outputs the next
message. If the recipient has cheated, then the garbled circuit outputs a random message.

Unfortunately, this idea does not extend to our situation. The main reason is that a dishonestly
prepared garbled circuit would learn all the secrets of some party A, and could output a message to
A that causes A’s later communication to destroy A’s privacy. In the two-party case, as soon as A
receives such a dishonestly prepared garbled circuit from B, B stops getting any further messages
from A (since B behaved dishonestly). However in the multi-party setting, another party C could
still get further messages from A (thus potentially destroying A’s privacy). Furthermore, this does
lead to other undesirable situations even in the two party case [14]; in Appendix A, we describe
a situation involving the protocol of [14] in which one of the parties could force the other party’s
output of the protocol to be, for example, the other party’s input itself. To overcome this problem,
we develop a method of providing zero-knowledge proofs to garbled circuits, which guarantees
that even dishonestly prepared garbled circuits do not learn any new information.

2 Preliminaries and Model

Network Model. We consider a system of n parties that interact with each other. Each of the
parties could either be trying to compute some function jointly with other parties (hoping that
other parties are interested in computing this function too), or could just be carrying out normal
day to day conversation. As in [14], we envision that the protocol messages are hidden by the
parties in “ordinary” or “innocent-looking” messages (using steganographic techniques). Ordinary
communication patterns and messages are formally defined in a manner similar to the channels
used by [10] and [15]. The only difference between the channels in [14] and the channels we use,

5

is that our channel is a broadcast channel shared by all n participants in the protocol.
Similar to [14], we note that it is enough to construct covert computation protocols only for the

uniform channel. This is due to the following lemma:

Lemma 1 If Π covertly realizes the functionality f for the uniform channel, then there exists a
protocol ΣΠ that covertly realizes f for the broadcast channel B.

The above lemma follows from the proof for the bidirectional channel present in [14]. We refer
the reader to [14] for further details.

Here onwards, we shall concentrate only on constructing covert computation protocols for which
it can be shown that all messages in the protocol are indistinguishable from messages drawn at
random from the uniform distribution. By using the above compiler, we can then obtain a covert
computation protocol for any broadcast channel B.

2.1 Covert Computation Model

We first consider a model of covert computation which does not include the notion of fairness
(we discuss the issue of fairness later on). Informally speaking, our model is as follows. As be-
fore, we consider a system of n parties (say, P = {P1, . . . , Pn}), of which some may be trying
to run the covert computation protocol while others could just be carrying out regular conversa-
tion. This gives rise to so called participating parties and non-participating parties. If any of the
parties are non-participating, we would like the covert computation protocol to just output ⊥ to
all parties (hiding which party participated and which did not). Each participating party Pi holds
an input xi. Our (possibly randomized) function f to be computed by the n parties is denoted
by f : ({0, 1}∗)n → {0, 1}∗, that is, for a vector of inputs ~x = (x1, . . . , xn), the output is f(~x)
(the case where different parties should get different outputs can be easily handled using standard
techniques). Note that we may also view f as a deterministic function when the randomness is
explicitly supplied as input. Additionally, we have a function g : ({0, 1}∗)n → {0, 1} which de-
termines whether the output is favorable to all the parties or not. In particular, if g(~x) = 0, the
output f(~x) is said to be non-favorable. In that case, the covert computation protocol should just
produce ⊥. No one can tell whether any party participated at all or not even after the protocol is
over. However, if every party is a participating party and g(~x) = 1, we would like the output of the
protocol to be f(~x) (and thus the fact that everyone participated becomes public).

To formalize the above requirement, we extend the standard paradigm for defining secure multi-
party computation as discussed in [7]. We define an ideal model of computation and a real model
of computation, and require that any adversary in the real model can be emulated (in the specific
sense described below) by an adversary in the ideal model.

In a given execution of the protocol we assume that all inputs have length κ, the security pa-
rameter. We consider a static adversary who corrupts up to n − 1 of the players before execution
of the protocol. We also assume a synchronous network with rushing. Finally, we consider com-
putational security only and therefore restrict our attention to adversaries running in probabilistic
polynomial time.

6

IDEAL MODEL. In the ideal model there is a trusted party which computes the desired functionality
based on the inputs and the participation data handed to it by the players. Let M ⊂ [n] denote
the set of players malicious by the adversary. Then an execution in the ideal model proceeds as
follows:

Inputs Each participating party Pi has input xi. We represent the vector of inputs by ~x.

Send inputs to trusted party Honest participating parties always send their inputs to the trusted
party. Honest non-participating parties are assumed to send ⊥ to the trusted party (jump-
ing ahead, this corresponds to sending regular uniformly selected messages according to the
broadcast channel in the real world). Corrupted parties, on the other hand, may decide to
send modified values or ⊥ to the trusted party. We do not differentiate between malicious
participating parties and malicious non-participating parties (and assume that malicious par-
ties are free to behave whichever way they want).

Trusted party computes the result If any of the parties sent a ⊥ as input, the trusted party sets
the result to be ⊥. Otherwise, let ~x denote the vector of inputs received by the trusted party.
Now, the trusted party checks if g(~x) = 0 and sets the result to be ⊥ if the check succeeds.
Otherwise, the trusted party sets the result to be f(~x). It generates and uses uniform random
coin if required for the computation of g(~x) or f(~x).

Trusted party sends results to adversary The trusted party sends the result (either f(~x) or⊥) to
party Pi for all i ∈M.

Trusted party sends results to honest players The adversary, depending on its view up to this
point, prepares a (possibly empty) list of honest parties which should get the output. The
trusted party sends the result to the parties in that list and sends ⊥ to others.

Outputs An honest participating party Pi always outputs the response it received from the trusted
party. Non-participating parties and corrupted parties output ⊥, by convention. The adver-
sary outputs an arbitrary function of its entire view (which includes the view of all malicious
parties) throughout the execution of the protocol.

Observe that the main difference between our ideal model (for covert computation) and the ideal
model for standard secure multi-party computation (MPC) is with respect to participation data. In
standard MPC, it is implicitly assumed that every player is taking part in the protocol and that this
information is public. In covert computation, if the result from the trusted party is⊥, the adversary
cannot tell whether this is because some party did not participate (or if any honest party participated
at all) or because the output was not favorable. If all the parties participate and the output is
favorable, only then the adversary learns the output and the fact that everyone did participate. We
do not consider fairness (of getting output or learning about participation) in the above model. As
pointed out above, we do not differentiate between malicious participating parties and malicious
non-participating parties (and assume that malicious parties are free to behave whichever way they
want). However, differentiation between honest non-participating parties and malicious parties is
obviously necessary since the adversary should not know which parties are non-participating and

7

which are participating among the honest party set (while the adversary fully controls and knows
everything about malicious parties).

For a given adversary A, the execution of (f, g) in the ideal model on participation data ~PD
(indicating which of the parties are participating) and input ~x (assuming ⊥ as the input of non-
participating parties) is defined as the output of the parties along with the output of the adversary
resulting from the process above. It is denoted by IDEALf,g,A(~PD, ~x).

REAL MODEL. Honest participating parties follow all instructions of the prescribed protocol,
while malicious parties are coordinated by a single adversary and may behave arbitrarily. Non-
participating parties are assumed to draw messages uniformly from the broadcast channel. At the
conclusion of the protocol, honest participating parties compute their output as prescribed by the
protocol, while the non-participating parties and malicious parties output ⊥. Without loss of gen-
erality, we assume the adversary outputs exactly its entire view of the execution of the protocol.
For a given adversary B and protocol Π for covertly computing f , the execution of Π in the real
model on participation data ~PD and input ~x (denoted REALΠ,B(~PD, ~x)) is defined as the output of
the parties along with the output of the adversary resulting from the above process.

Having defined these models, we now define what is meant by a secure protocol. By probabilistic
polynomial time (PPT), we mean a probabilistic Turing machine with non-uniform advice whose
running time is bounded by a polynomial in the security parameter κ. By expected probabilistic
polynomial time , we mean a Turing machine whose expected running time is bounded by some
polynomial, for all inputs.

Definition 1 Let f, g and Π be as above. Protocol Π is a t-secure protocol for computing (f, g)
if for every PPT adversary A corrupting at most t players in the real model, there exists an
expected PPT adversary S corrupting at most t players in the ideal model, such that for all
~PD ∈ ({0, 1})n, ~x ∈ ({0, 1}∗)n, we have:{

IDEALf,g,S(~PD, ~x)
}

c≡
{

REALΠ,A(~PD, ~x)
}

Fair Covert Multi-Party Computation: We now consider the issue of fairness (of getting out-
put or learning about participation). Similar to standard multi-party computation [6], we note that
achieving full fairness (which could be modeled by requiring that the adversary has to instruct the
trusted party either to abort or to send the result to every party before getting the result) of out-
put is impossible [4] and this could be easily extended to participation data. However, a weaker
notion (similar to [12, 6]) of fairness is indeed achievable. In this notion, we divide the protocol
in two phases namely: computation phase and output revealing phase. In the computation phase,
every party has negligible advantage in predicting the output and party participation. In the output
revealing phase, if a subset of parties together have advantage ε in predicting the output and party
participation, then all honest parties have roughly the same advantage (e.g., polynomial in ε) in
predicting the output and party participation. We call a protocol satisfying this notion of fairness
as fair covert multi-party computation. We remark here that the properties of covertness and fair-
ness are tied to each other. Suppose, at a given stage, a party has an ε advantage towards guessing

8

the value of the output, then it has at least an ε advantage towards guessing party participation as
well. We give a construction of fair covert multi-party computation in the full version of this paper
[3].

Comparing our model to the model of Ahn et al [14]: The approach taken in [14] to define
covert computation was different. They consider various desirable properties of covert computation
(like strong internal covertness, strong fairness and final covertness) and give separate definitions
for each of them. We first note that it is not clear to us if one can satisfy the property of fairness
and final covertness simultaneously. To the best of our interpretation, final covertness informally
means that even after the protocol has terminated and the output was favorable, the fact that any
party participated remains hidden unless the output itself is distinguishable from random. Indeed
it seems that their construction does not achieve these two properties together. It is very easy to
repair the construction in such a way that the property of final covertness is lost, but we do not
see how to repair it while still guaranteeing final covertness. We note that our definition does not
require final covertness. More discussion on this issue is included in Appendix A.

Also, a desirable property that is not included in the model of [14] is that of correctness of
output. In their protocol, it is possible for a malicious party to misbehave in a way which allows
it to “force” any value as the function output on the honest party, even without having an input
which would lead to such a function output (although the malicious party would not be able to
itself learn any information in this case)2. We note that correctness is a desirable property in covert
computation (e.g., if the adversary can trick the honest party into thinking that the function output
is favorable, the honest party may decide to behave in a way that could be fatal to it). This property
is addressed by the Ideal/Real model simulation-based definition that we propose.

3 Summary of Covert Computation Primitives

In this section, we list the primitives required to build covert multi-party computation. These
primitives are “covert” variants of the standard ones. In other words, all the messages sent by
a party in these primitives look indistinguishable from random messages. Below, we give a brief
description of each of these primitives. A more detailed description can be found in the full version
of this paper [3].

1. Covert Commitments [8]: The commitment scheme based on the Goldreich-Levin hard-
core predicate is a covert bit commitment that is perfectly binding, since the commitments
are indistinguishable from random.

2. Covert 1-out-of-2 and 1-out-of-4 Oblivious Transfer [14, 11]: Covert 1-out-of-2 Oblivi-
ous Transfer is presented in [14], while a slight modification of the protocol gives us covert
1-out-of-4 Oblivious Transfer.

2In particular, the malicious party could send a garbled circuit (as per their protocol) which takes secrets of the
honest party as input and outputs any value (possibly even dependent on the honest party’s input)

9

3. Covert Yao’s Garbled Circuit [14, 16]: This is a version of garbled circuit [16] in which the
garbled circuit program (which is just a series of encrypted gate tables [16, 1]) can be eval-
uated in a “non-verifiable” manner. Covert garbled circuits can be used (in conjunction with
covert 1-out-of-2 oblivious transfers) as a building block in covert two-party computation
[14].

4. Covert Semi-honest GMW multi-party computation protocol [9]: This is just the stan-
dard (semi-honest) GMW multi-party computation protocol [9] where (a) we use covert 1-
out-of-4 oblivious transfer, (b) we exclude the final share broadcast phase. That is, in covert
GMW multi-party computation protocol, the parties initially hold their inputs and finally
hold the shares of the output (rather than the output itself). Note that zero-knowledge proofs
are not used in this protocol (and thus the protocol by itself does not provide any guarantees
against malicious adversaries).

Notation Let a and b be two strings. a ◦ b denotes the concatenation of the two strings a and
b. We write Com(x) to denote a perfectly binding covert commitment to a string or bit x and
Open(Com(x)) denotes the opening to Com(x) (which x along with the randomness used in
computing Com(x)). P = [n] denotes the set of all parties, M ⊂ [n] denotes the set of parties
malicious by the adversary and H = P −M denotes the set of honest parties in the protocol.

4 Zero-knowledge Proofs to Garbled Circuits

In this section, we describe a tool for the construction of covert multi-party computation. Sup-
pose Pi wishes to give Pj a value v, only if Pj can prove an NP statement Lj . If the proof is
incorrect, then Pj must receive a random value. We also desire covertness, that is, none of the
parties should know whether the other participated or not (and in particular, Pi should not know if
Pj gave a correct proof to the statement or not).

One way to achieve this is to have Pi send a covert garbled circuit to Pj which takes as input
the statement Lj (input by Pi) and the witness wj (input by Pj). The garbled circuit checks if the
witness wj is a valid witness that proves Lj . If this is the case, the circuit outputs the required value
v to Pj (and a random value otherwise). Now, if we were to use this construction as a subprotocol
in a bigger protocol, then the following is a possible concern (as discussed before). If Pj feeds in
the witness wj to the covert garbled circuit (that could have been maliciously prepared by Pi), the
output could be wj itself or some function of it. Hence Pj could potentially lose its covertness or
security (of input) if Pj uses this output to compute an outgoing message (later in the protocol). In
our construction, we require a stronger property from this kind of functionality, namely, the output
of the functionality should be independent of the secrets of the receiver (and picked by the sender
from a distribution known in advance). To summarize, we need a protocol to achieve the following:
(a) Pi has to give a value v to Pj only if Pj can prove an NP statement Lj (and Pj should receive a
random number otherwise), (b) The output v to Pj is from a distribution “known”3 to Pj , (c) The

3More formally, this means that there exists a simulator which can extract v from Pi even without having a witness
to Lj

10

covertness of both Pi and Pj is preserved. We now proceed to present our construction and prove
the above properties as 3 lemmas later on.

Let the value that Pi wishes to give Pj be denoted by v. Let the NP statement that Pj wishes to
prove to Pi be Lj . Let Pj have a witness wj that proves the NP statement Lj . Without loss of gen-
erality, we can assume that the statement Lj is “A given graph G has a Hamiltonian cycle”. Hence
wj is a witness to the Hamiltonian cycle of the graph G. The high level idea behind the protocol is
as follows: Pj initially picks a random permutation π of graph G and sends (covert) commitments
of the adjacency matrix H = π(G) of the graph. Pj will also commit to the permutation π. Pi will
flip a bit b at random and send this to Pj . If b = 0, Pi will prepare a covert garbled circuit that
takes as input: the opening to the commitment of the adjacency matrix of H and the opening to
the commitment of the permutation π. This garbled circuit will check if the openings are valid and
if H = π(G). If these checks succeed, then the output of the garbled circuit is v. Otherwise, the
output is a random value R. If b = 1, Pi prepares a covert garbled circuit that takes as input, the
opening to the commitment to the edges in H forming a Hamiltonian cycle. This garbled circuit
will check if the opening is valid and if the opened edges form a Hamiltonian cycle. If these checks
succeed, then the output of the garbled circuit is v. Otherwise, the output is a random value R. Pi

will then send the prepared covert garbled circuit to Pj . If b = 0, Pj’s input to the garbled circuit
is the opening to all the commitments and if b = 1, Pj’s input to the garbled circuit is the opening
to the edges of the Hamiltonian cycle. In this way, Pj will get the value v only if he gives a valid
proof. Note that in this protocol, we achieve soundness only with probability half. To amplify
the soundness so that a cheating Pj will be caught with overwhelming probability, Pi will break v
into q shares (where q is determined by the security parameter) - {v1, v2,, vq} and run the above
protocol q times, giving outputs v1, v2,, vq one by one in each round to Pj . If the statement Lj

is true, Pj receives v =
⊕n

t=1 vt. Otherwise, he will receive a random value. We describe the
zero-knowledge proof to a garbled circuit protocol in more detail in the full version [3].

We call this protocol ZKSend(i, j, v, Lj) (since it transfers a value v covertly from Pi to Pj only
if Pj can prove in zero-knowledge the validity of statement Lj). We remark here that the above
protocol achieves covert version of conditional oblivious transfer (conditional OT was introduced
by di Crescenzo, Ostrovsky and Rajagopalan [5]), where a value is sent from a sender to a receiver
conditioned upon the fact that a given NP statement is true. The sender does not know which of
two values the receiver gets (i.e., if the NP statement was true or not). The receiver can choose one
of two values, by either giving a valid proof to the NP statement or not.

We prove the following lemmas about this construction in the full version of this paper [3].

Lemma 2 (ZKSend Security) Consider the following two security games: In the first game, hon-
est party Pi executes ZKSend(i, j, v, Lj) with Pj , where v is a fixed value. In the second game,
honest party Pi executes ZKSend(i, j, R, Lj) with Pj where R is drawn at random from the uni-
form distribution. In both games, the statement Lj is false. Then, no PPT adversary Pj can
distinguish between the distributions of the views in the two games except with negligible proba-
bility.

Lemma 3 (ZKSend Covertness) In protocol ZKSend(i, j, v, Lj), when v is random and if Pi is
honest, no PPT machine Pj can distinguish between the messages sent by Pi and messages drawn

11

at random from the uniform distribution, with probability greater than ε, where ε is negligible
in the security parameter κ. Similarly, if Pj is honest, no PPT machine Pi can can distinguish
between the messages sent by Pj and messages drawn at random from the uniform distribution,
with probability > ε, where ε is negligible in the security parameter κ. In other words, covertness
of Pi and Pj are both preserved.

Lemma 4 (ZKSend Simulatability) No PPT adversary Pi running an execution of ZKSend(i, j, v, Lj),
can distinguish between the view in a real execution of ZKSend(i, j, v, Lj) and the view in a sim-
ulated execution of ZKSend(i, j, v, Lj), with advantage > ε (where ε is negligible in κ).

5 Covert Multi-party Computation without fairness

Parties {P1, P2,, Pn} holding inputs {x1, x2,, xn}wish to compute a function f(x1, x2,, xn)
covertly if and only if the function output is favorable to all parties. g(x1, x2,, xn) is the function
that determines if the function output is favorable (g(x1, x2,, xn) = 1) or not (g(x1, x2,, xn) =
0). We first give an outline of the protocol and then discuss it in detail. The protocol consists of
three main phases: the Input Commitment phase, the GMW phase and the Output Exchange phase.
In the Input Commitment phase, all Parties commit to their inputs and randomness (note that we
do not require coin flipping in our protocol) and run a challenge-response protocol with each other
(which would enable the simulator to extract the input and randomness later on). In the GMW
phase, the parties run a Covert-GMW protocol to compute a commitment to the function value and
the opening to the commitment (if the function output is favorable to all parties). If the function
value is not favorable, then the output of the Covert-GMW protocol is just a randomly chosen
number. At the end of the GMW phase, the parties hold shares of the output (which is either a
commitment along with its opening, or a random number). In the Output Exchange phase, parties
exchange these shares with each other if and only if all the parties were honest till the GMW phase.
We now discuss the protocol in more detail.

5.1 Input Commitment phase

1. InputRandomCommit : Let Xi = xi ◦ Ki ◦ ri, where xi is the input of party Pi and ri is
a random tape that Pi will contribute to the GMW circuit (which requires randomness to
compute its output). Ki is a random key chosen by Pi. This key will be used by Pi to check
the correctness of the function output. This key will guarantee that the function output was
indeed computed using the GMW circuit (and was not in some malicious way forced as the
output by other parties). We shall explain later how this check exactly works. Pi additionally
generates random tapes ui, si and ti. These random tapes will be used in different stages of
the protocol. Pi now commits to Xi, ui, si and ti. Here ui is the randomness that Pi will
use in the GMW phase (that is, to break his input into shares and to execute the oblivious
transfer protocols), si is the randomness that Pi will use in subprotocol ExtractEnable and
ti is the randomness that Pi will use in the CommitmentExchange subprotocol of the Output
Exchange phase.

12

2. ExtractEnable : In this stage, parties execute a challenge-response protocol with each other.
Intuitively, the protocol execution is such that it enables the simulator to extract (Xi, ui) for
all malicious parties Pi during simulation (e.g., by rewinding the execution). To execute this
stage, a party Pi uses the random tape si wherever required (e.g., to compute commitments
and generates challenges).

Let IRi = Open(Com(Xi)) ◦ Open(Com(ui)). Every pair of parties (Pi, Pj) will run the
following l times (1 ≤ t ≤ l, where l is determined by the security parameter):

(a) Pi picks a pair (IRt
ij[0], IRt

ij[1]) at random such that IRt
ij[0]⊕ IRt

ij[1] = IRi. It then
commits to this pair by sending (Com(IRt

ij[0]), Com(IRt
ij[1])).

(b) Pj now picks a bit qt
ij at random and sends it to Pi.

(c) Pi responds with IRt
ij[q

t
ij]. Note that Pi does not send an opening to the commitment

but only sends IRt
ij[q

t
ij]. This is because sending an opening will compromise Pi’s

covertness.

We note here that the ExtractEnable protocol will help the simulator extract the inputs and
some specific randomness (i.e., Xi and ui) of all malicious parties during protocol simula-
tion (by rewinding the protocol execution) if none of them deviate from the protocol. Of
course, the malicious parties could deviate from the protocol specification and either give
incorrect commitments or incorrect openings. In such a case (i.e., whenever the simulator
fails to extract), later stages of our protocol will ensure that malicious parties do not learn
any information (in a computational sense). Jumping ahead, the later stages will force the
output of all the parties to be ⊥ in this case.

5.2 GMW phase

In this phase all parties execute a Covert-GMW protocol (see Section 3). In this protocol, the
parties jointly evaluate a circuit for the following function (which takes as input {X1, X2,, Xn}
where Xi = xi ◦Ki ◦ ri):

F (X1,, Xn) =





(R1, R2) if g(x1, x2,, xn) = 0

(Com(f(x1,, xn),K1,, Kn),
Open(Com(f(x1,, xn), K1,, Kn)))
otherwise

Where R1 and R2 are randomly selected values of appropriate length. The randomness used
by this function is r1 ⊕ r2 ⊕ ⊕ rn. The randomness used by Pi to execute the Covert-
GMW protocol (namely to compute shares of its input and to execute all the oblivious trans-
fers) comes from ui. Let F (X1, X2,, Xn) = (F [1], F [2]) where F [1] is the commitment
Com(f(x1, x2,, xn), K1, K2,, Kn) while F [2] is its opening Open(Com(f(x1, x2,, xn), K1, K2,, Kn)).
At the end of the GMW phase, every party Pi will hold shares of the output, i.e., Pi holds
(Fi[1], Fi[2]) such that

⊕n
t=1 Ft[1] = F [1] and

⊕n
t=1 Ft[2] = F [2].

The Covert-GMW protocol is similar to the semi-honest GMW protocol (except for the fact that
it uses our specific covert secure 1-out-of-4 OT based on [11] rather than a semi-honest 1-out-of-4

13

OT). What guarantees could it possibly provide when the parties might deviate from the protocol
executions arbitrarily? Interestingly, we show that the above protocol (when used in conjunction
with our fully secure OT rather than a semi-honest one) maintains privacy of the inputs (if the
parties do not broadcast their output shares). More precisely, the view of an adversary (controlling
up to n− 1 parties) in the above protocol can be simulated until the output broadcast phase.

Intuitively, the malicious parties, even if they deviate from the protocol arbitrary, do not learn
any information (in a computational sense) in this phase because of the following. The GMW
protocol (not considering output share broadcast) consists of only two kind of message: one where
parties broadcast (n − 1) random shares of their input to other parties, the second where parties
engage in a 1-out-of-4 OT protocol with others. The first type of message obviously does not reveal
any information about the output (since its just a randomly selected number). In the second type
of messages, a party gives away only one of the 4 bits (when acting as a sender of information in a
covert 1-out-of-4 OT protocol). However, all the four bits are individually indistinguishable from
a random. This is because while preparing these four bits, a single bit of randomness is used [9]
(making the four bits individually random).

5.3 Output Exchange phase

In the previous two stages, no information about the output (or participation) was revealed to
any party (even if they deviate arbitrarily from the protocol). In other words, the messages ex-
changed between the parties in the previous stages were “not valuable” for deducing any poten-
tially unknown information. In this phase, the parties actually exchange valuable messages having
information so as to be able to get the function output at the end.

This phase consists of two subprotocols: CommitmentExchange and OpeningExchange. Infor-
mally, in the CommitmentExchange phase, the parties exchange their shares (held at the end of
GMW phase) of the commitment conditioned upon the fact that every party was honest till the
end of GMW phase. In the OpeningExchange phase, the parties exchange their shares of the
commitment opening conditioned upon the fact that every party was honest till the end of Com-
mitmentExchange phase. These two subprotocols heavily rely on the various properties of our
zero-knowledge to garbled circuit (i.e., ZKSend(i, j, v, Lj)) construction.

1. CommitmentExchange : The randomness that a party Pi uses in this subprotocol comes
from ti. In this subprotocol, parties exchange shares of F [1]. Every party Pi breaks his
share of F [1] (namely Fi[1]) further into n shares: {F 1

i [1], F 2
i [1],, F n

i [1]}. Pi then runs
ZKSend(i, j, F j

i [1], Lj) with every Pj, j 6= i. Lj is an NP statements which asserts that the
party Pj was honest in the protocol up to the end of the GMW phase. More specifically, Lj

is the following statement: There exists Xj(= xj ◦Kj ◦ rj), uj and sj such that,

• There exist strings for the commitments Com(Xj), Com(uj) and Com(sj) (broadcast
in the Input Commitment phase) that open the commitments to Xj, uj and sj respec-
tively.

• Given all the incoming messages to Pj (over the broadcast channel), the outgoing mes-
sages of Pj were honestly computed as per the protocol specifications in (a) ExtractEn-
able subprotocol using randomness sj , (b) GMW phase using randomness uj .

14

Upon having {F i
1[1], F i

2[1],, F i
n[1]} after executing ZKSend with other parties to get (n−

1) shares (the share F i
i [1] is already held by Pi), the party Pi broadcasts F i[1] =

⊕n
t=1 F i

t [1].
Upon receiving F i[1] for all i, all parties compute F [1] =

⊕n
i=1 F i[1].

This protocol is used to do the following. A party Pi holds a share of the output (at the
end of the GMW phase). Only if the other n − 1 parties were honest, Pi would like to give
its share out. However, if any party deviated from the prescribed protocol during the Input
commitment or GMW phase, it could be potentially dangerous for Pi to give out its output
share (since the output of the GMW circuit then is not guaranteed to be the function value
only). Hence, Pi breaks its share further into n subshares and transfers these subshares one
by one to other parties using ZKSend. If any of the parties was dishonest previously, it is
guaranteed that at least one of those n subshares will be lost (since ZKSend will output
a randomly selected value instead of the right subshare to a dishonest party). Thus, in case
cheating happened in previous stages (and the output share is not a share to the right function
output), the GMW output is essentially “lost”.

2. OpeningExchange : In this subprotocol, parties exchange shares of F [2]. Every party Pi

breaks his share of F [2] (namely Fi[2]) into n further shares {F 1
i [2], F 2

i [2],, F n
i [2]}. Pi,

then runs ZKSend(i, j, F j
i [2], Lj) with every Pj, j 6= i. Lj is an NP statement which asserts

that the party Pj was honest in the protocol up to the end of CommitmentExchange in the
Output Exchange phase. Similar to the CommitmentExchange subprotocol, upon receiving
{F i

1[2], F i
2[2],, F i

n[2]}, Pi broadcasts F i[2] =
⊕n

t=1 F i
t [2]. Finally, all parties compute

F [2].

All parties now check if F [2] is a valid opening to the commitment F [1]. Every party Pi

further checks if Ki is contained in F [2]. If these checks succeed, then the output of Pi is
f(x1, x2,, xn). Otherwise if any of the checks fail, the output of Pi is ⊥.

The only goal of this subprotocol is to ensure correctness of the output (rather than privacy
of inputs or covertness etc). If all the parties were honest till CommitmentExchange, they
already got a commitment to the right function output (and thus an incorrect function output
cannot be “forced” on a party). Otherwise, a party Pi ensures that the share of its commit-
ment opening is “lost” (and thus the secret value Ki cannot figure in the final broadcast).

A full proof of security (as per our Ideal/Real model simulation based definition) of the above
construction can be found in the full version of this paper [3].

Acknowledgements: We thank Yuval Ishai and Manoj Prabhakaran for several helpful discus-
sions.

References

[1] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols (extended abstract).
In STOC, pages 503–513. ACM, 1990.

15

[2] D. Boneh and M. Naor. Timed commitments. In CRYPTO ’00: Advances in Cryptology, 20th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 20-24, pages 236–254,
2000.

[3] N. Chandran, V. Goyal, R. Ostrovsky, and A. Sahai. Covert multi-party computation. Cryptology
ePrint Archive, 2007. http://eprint.iacr.org/.

[4] R. Cleve. Limits on the security of coin flips when half the processors are faulty (extended abstract).
In STOC, pages 364–369. ACM, 1986.

[5] G. D. Crescenzo, R. Ostrovsky, and S. Rajagopalan. Conditional oblivious transfer and timed-release
encryption. In EUROCRYPT, pages 74–89, 1999.

[6] J. A. Garay, P. MacKenzie, M. Prabhakaran, and K. Yang. Resource fairness and composability of
cryptographic protocols. In TCC ’06: Proceedings of the Third Theory of Cryptography Conference,
pages 404–428, 2006.

[7] O. Goldreich. Foundations of Cryptography: Basic Applications. Cambridge University Press, Cam-
bridge, UK, 2004.

[8] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In STOC ’89: Pro-
ceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, 15-17 May, Seattle,
Washington, USA, pages 25–32, 1989.

[9] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In STOC ’87: Proceedings
of the 19th annual ACM conference on Theory of computing, pages 218–229, New York, NY, USA,
1987. ACM Press.

[10] N. J. Hopper, J. Langford, and L. von Ahn. Provably secure steganography. In CRYPTO ’02: Pro-
ceedings of the 22nd Annual International Cryptology Conference on Advances in Cryptology, pages
77–92, London, UK, 2002. Springer-Verlag.

[11] M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In SODA ’01: Proceedings of the
12th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 448–457, Philadelphia, PA, USA,
2001. Society for Industrial and Applied Mathematics.

[12] B. Pinkas. Fair secure two-party computation. In EUROCRYPT ’03: International Conference on the
Theory and Applications of Cryptographic Techniques, Warsaw, Poland, May 4-8, Proceedings, pages
87–105, 2003.

[13] A. D. Santis and G. Persiano. Zero-knowledge proofs of knowledge without interaction (extended
abstract). In FOCS ’92: 33rd Annual Symposium on Foundations of Computer Science, 24-27 October,
Pittsburgh, Pennsylvania, USA, pages 427–436, 1992.

[14] L. von Ahn, N. Hopper, and J. Langford. Covert two-party computation. In STOC ’05: Proceedings
of the 37th annual ACM symposium on Theory of computing, pages 513–522, New York, NY, USA,
2005. ACM Press.

[15] L. von Ahn and N. J. Hopper. Public-key steganography. In EUROCRYPT ’04: Proceedings of
the 23rd Annual Eurocrypt Conference on Advances in Cryptology, pages 323–341. Springer-Verlag,
2004.

[16] A. C.-C. Yao. Protocols for secure computations (extended abstract). In FOCS ’82: Proceedings of
23rd Annual Symposium on Foundations of Computer Science, pages 160–164, 1982.

16

Appendix

A Covert Two-Party Computation Protocol of [14]

In this subsection, we recall the covert two-party computation protocol (in the malicious adver-
sary model) from [14]. We then point out a scenario in which their construction does not satisfy
the property of fairness. It is very easy to repair the construction to achieve fairness, but such that
the property of final covertness is lost. However, it is not clear to us if the properties of fairness
and final covertness can be satisfied simultaneously. The protocol of Ahn et al [14] proceeds in
three stages and is as follows (here G is modeled as a random oracle):

1. Commit Stage: Alice picks k + 2 strings, r0, s0[0], s0[1],, s0[k], each k bits in length,
where k is related to the security parameter κ. Alice commits to these strings using the
covert commitment scheme. The strings s0[0],, s0[k] are state values used by Alice to
check if Bob was honest. Bob does likewise with values r1, s1[0],, s1[k].

2. Compute Stage: We make use of a pseudorandom generator G : {0, 1}k ← {0, 1}l.

• Alice and Bob run two serial rounds of Covert-YAO as described earlier.

• If neither party cheats and if the output is favorable, then Alice knows f(x, y)⊕G(r1)
and Bob’s first state value s1[0]. Bob knows f(x, y)⊕G(r0) and Alice’s first state value
s0[0].

3. Reveal Stage: This consists of k rounds where each round consists of two runs of the Covert-
YAO protocol.

• At the end of round i, if nobody cheats, Alice learns the ith bit of Bob’s string r1,
labeled r1[i] and also the next state value, s1[i] of Bob. Similarly, Bob learns r0[i] and
s0[i], the next state value of Alice (see [14] for a full description).

• After k rounds in which neither party cheats, Alice knows r1 and can compute f(x, y)
and likewise Bob can compute the output.

Fairness scenario. Now, we consider the following situation. Let w = w1w2....wn and w′ =
w1w2....w̄n be two strings such that G(w) 6= G(w′). In other words, w and w′ differ only in the last
bit, but their outputs when fed into the random oracle G are complete different. Now, Alice sets
r0 = w and takes part in the covert two-party computation protocol with Bob. At the last round of
the reveal stage, Alice, after learning Bob’s string r1 completely, quits the protocol without giving
Bob, the value of wn. Now, although Alice gets the output completely, Bob has ambiguity between
two equally likely values of the output. Furthermore, in the event that f(x, y) ∈ {0, 1}, the output
is completely hidden from Bob. In this way, the protocol is unfair. To correct this, Alice and Bob
could initially compute H(r0) and H(r1) respectively (where H is modeled as a different random
oracle) and output these values as commitments to r0 and r1. Now, if some party quits the protocol
after receiving n bits, the other party has at least n − 1 bits and after guessing the last bit, the

17

party can verify the value by computing H(r). In short, a verifiable value needs to be exchanged
between Alice and Bob (so that if one party aborts early, the verifiable value allows the other party
to “guess and check” the remaining bits). However clearly such a verifiable value destroys the
property of final covertness (i.e., if every party participated and the function output was favorable,
then every party knows that the computation happened).

Output Correctness Scenario. We now consider another scenario in which it is possible for
the malicious party (say Alice) to misbehave in a way which allows it to “force” any value as the
function output on the honest party (say Bob), without having an input which would lead to such
a function output. (We stress that in the protocol of [14], however, privacy is guaranteed: Alice
would not be able to itself learn any information in this case). To do this, Alice starts deviating
from the protocol from the very beginning and prepares an incorrect garbled circuit in the compute
stage itself. The garbled circuit takes as input the secrets (including input) of Bob (as per the
protocol) and chooses a string s possibly depending upon Bob’s inputs. The garbled circuit now
outputs s ⊕ G(r0) to Bob (as opposed to f(x, y) ⊕ G(r0)). In the reveal stage, Alice’s garbled
circuits simply reveal bits of r0 one by one as per the protocol specifications. Since Alice deviates
from the protocol, she would be unable to get anything except uniformly chosen messages from
the garbled circuits prepared by Bob. However, Alice is still free to prepare her garbled circuits
maliciously in a manner described above. Hence, the output of Bob is forced to be the string s.

18

