
Round Complexity of Authenticated Broadcast with a
Dishonest Majority∗

Juan A. Garay† Jonathan Katz‡ Chiu-Yuen Koo§ Rafail Ostrovsky¶

Appeared in FOCS 2007: 658-668

Abstract

Broadcast among n parties in the presence of t ≥ n/3 malicious parties is possible only
with some additional setup. The most common setup considered is the existence of a PKI and
secure digital signatures, where so-called authenticated broadcast is achievable for any t < n.

It is known that t+1 rounds are necessary and sufficient for deterministic protocols achiev-
ing authenticated broadcast. Recently, however, randomized protocols running in expected
constant rounds have been shown for the case of t < n/2. It has remained open whether
randomization can improve the round complexity when an honest majority is not present. We
address this question and show upper/ lower bounds on how much randomization can help:

• For t ≤ n/2 + k, we show a randomized broadcast protocol that runs in expectedO(k2)
rounds. In particular, we obtain expected constant-round protocols for t = n/2 +O(1).

• On the negative side, we show that even randomized protocols require Ω(2n/(n − t))
rounds. This in particular rules out expected constant-round protocols when the fraction
of honest parties is sub-constant.

∗A portion of this work was done while the authors were visiting the Institute for Pure and Applied Mathematics
(IPAM), UCLA.

†Bell Labs, Alcatel-Lucent. E-mail: garay@research.bell-labs.com.
‡Dept. of Computer Science, University of Maryland. E-mail: {jkatz,cykoo}@cs.umd.edu. Work of J.K.

supported in part by NSF CAREER award #0447075 and US-Israel Binational Science Foundation grant #2004240.
§Dept. of Computer Science, University of Maryland, E-mail: cykoo@cs.umd.edu.
¶Depts. of Computer Science and Mathematics, UCLA. E-mail: rafail@cs.ucla.edu. Work supported in

part by an IBM Faculty Award, a Xerox Innovation Group Award, NSF Cybertrust grant #0430254, and a U.C. MICRO
grant.

1 Introduction
Designing protocols for simulating a broadcast channel over a point-to-point network in the pres-
ence of faults is a fundamental problem in distributed computing and cryptography. Much work
has focused both on characterizing the feasibility of protocols for solving the problem in different
settings, as well as on the inherent round complexity of such protocols. In a synchronous net-
work with pairwise authenticated channels and no additional setup, the classical results of Pease,
Shostak, and Lamport [24, 29] show that broadcast among n parties is achievable if and only if the
number of malicious parties t satisfies t < n/3. In this setting, a lower bound of t + 1 rounds for
any deterministic protocol is known [16]. A protocol with this round complexity — but with ex-
ponential message complexity — was shown in the initial work by Pease et al. [24, 29]. Following
a long sequence of works [9, 1, 33, 12, 26, 5, 4], Garay and Moses [19] showed a determinis-
tic, polynomial-time Byzantine agreement protocol having optimal resilience t < n/3 and optimal
round complexity t + 1.

To circumvent the above-mentioned lower bound on the round complexity (as well as im-
possibility results for asynchronous networks [15]), researchers beginning with Rabin [31] and
Ben-Or [2] explored the use of randomization. (See [7] for an early survey on the subject.) This
culminated in the work of Feldman and Micali [14], who showed a broadcast protocol with optimal
resilience that runs in expected constant rounds.1

To achieve resilience t ≥ n/3, additional assumptions are needed even if randomization is
used. The most common assumptions are the existence of digital signatures and the presence of
a public-key infrastructure (PKI) established among the n parties in the network; this is referred
to as the authenticated setting. Pease et al. [29, 24] showed an authenticated broadcast protocol
for any t < n, and a polynomial-time protocol achieving this resilience was given by Dolev and
Strong [13].

The (t + 1)-round lower bound for deterministic protocols holds in the authenticated setting as
well [13], and the known protocols [29, 24, 13] meet this bound. Randomized protocols running in
expected constant rounds for t < n/2 have been shown by Fitzi and Garay [17] (based on [6, 28])
under specific number-theoretic assumptions, and by Katz and Koo [23] based on signatures and a
PKI alone.

When an honest majority is not available (i.e., t ≥ n/2), there has been no progress since
the initial work of [29, 24, 13] on improving the round complexity of authenticated broadcast.2

Besides being an interesting and fundamental problem in its own right, authenticated broadcast
is often used as a sub-routine within larger protocols that are designed and analyzed using the
abstraction that a broadcast channel exists. For the specific case of secure multi-party computation
with a dishonest majority, we remark that although meaningful security notions can be achieved
even without broadcast [20], and fairness cannot be achieved even with broadcast [8], there are still
advantages to having broadcast available. Specifically, broadcast can be used to achieve unanimous
abort [20], or partial notions of fairness [18, 22]. In contrast, the constant-round “broadcast-with-

1The Feldman-Micali protocol requires private channels. Goldwasser et al. [21] show a broadcast protocol for
t ≤ n/(3 + ε) that runs in expected O(log n) rounds and does not require private channels.

2The techniques used for t < n/2 do not immediately translate to the case of t ≥ n/2: a key building block in the
former setting is verifiable secret sharing, which is not even feasible in the latter setting.

2

abort” protocol of [20] does not appear to suffice for such applications.

Our contributions. In this paper we make the first progress toward characterizing when random-
ized protocols can beat the (t + 1)-round barrier for t ≥ n/2.

• We show a randomized broadcast protocol tolerating t ≤ n/2 + k malicious parties that
terminates in an expectedO(k2) rounds. This is an improvement over existing state of the art
for t = n/2 + o(

√
n), and gives an expected constant-round protocol when t = n/2 +O(1).

• We show that no randomized broadcast protocol tolerating t malicious parties terminates
in 2n/(n − t) − 2 or fewer rounds. This in particular means that when the fraction of
honest parties is sub-constant, it is impossible to obtain protocols with expected constant
round complexity. It also implies that the Dolev-Strong protocol [13] has optimal round
complexity (to within a constant factor) when t = n−O(1).

Organization. In Section 2.1, we describe our model and give the standard definitions of broadcast
and Byzantine agreement. We present the technical tools we use in Section 2.2; these include a
generalization of gradecast [14] that may be of independent interest. We present our new broadcast
protocol in Section 3, and prove our impossibility result in Section 4. Some proofs are deferred to
the Appendix.

2 Preliminaries

2.1 Model and Definitions
We assume a standard point-to-point network in which parties P1, P2, . . . , Pn communicate in
synchronous rounds using pairwise private and authenticated channels. When we say a protocol
tolerates t dishonest parties, we always mean that it is secure against a rushing adversary who may
adaptively corrupt up to t parties during execution of the protocol and coordinate the actions of
these parties as they deviate from the protocol in an arbitrary manner.3 Parties not corrupted by the
adversary are called honest.

The existence of a PKI means that prior to execution of the protocol all parties hold the same
vector (pk1, . . . , pkn) of public keys for a digital signature scheme, and each honest party Pi holds
the honestly generated secret key ski associated with pki. When we describe signature computation
in our protocols, we omit for simplicity certain additional information that should be signed along
with the message. That is, when we say that party Pi signs message m and sends it to Pj , we
implicitly mean that Pi signs the concatenation of m with additional information such as: (1) the
identity of the recipient Pj , (2) the current round number, (3) an identifier for the message (in
case multiple messages are sent to Pj in the same round); and (4) an identifier for the particular
(sub-)protocol to which m belongs (in case multiple sub-protocols are being run; cf. [25]). This
information is also verified, as appropriate, when the signature is verified.

3A rushing adversary waits until it receives messages from all honest parties in a given round before sending any
messages of its own for that round. Adaptive corruption means that the adversary is allowed to corrupt parties on the
fly, as opposed to deciding which parties to corrupt before execution of the protocol begins.

3

We assume in our proofs that the adversary cannot forge valid signatures on behalf of honest
parties. Using a standard hybrid argument and assuming the existence of one-way functions [27,
32], this implies that our protocols are secure against any computationally-bounded adversary.
(Alternately, if stronger setup is assumed then information-theoretic pseudo-signatures [30] can be
used.)

We now give the standard definition of broadcast [24].

Definition 1 (Broadcast). A protocol for parties P = {P1, . . . , Pn}, where a distinguished sender
P ∗ ∈ P holds an initial input m, is a broadcast protocol tolerating t malicious parties if the
following conditions hold for any adversary controlling at most t parties:

Agreement: All honest parties output the same value.

Validity: If the sender is honest, then all honest parties output m. ♦
We will also rely on protocols for the related task of Byzantine agreement (BA). Here, each party
holds an initial input: the agreement condition remains the same as above; validity requires that
if all honest parties hold initial input m, then all honest parties will output m. Note that BA is
impossible to achieve for t ≥ n/2 (in any setting).

2.2 Tools
We describe two technical tools we use to construct our randomized broadcast protocol.

BA in expected constant rounds for t < n/2. The work of Katz and Koo [23] gives an authen-
ticated BA protocol BAHonestMaj tolerating any t < n/2 malicious parties and running in expected
constant rounds. Protocol BAHonestMaj satisfies the following stronger property that we will rely on
in the present work:

Lemma 1. If h > n/2 honest parties start BAHonestMaj with the same input, then all honest parties
terminate protocol BAHonestMaj in exactly K rounds for some constant K.

Gradecast. Gradecast, a generalization of crusader agreement [11], was introduced by Feld-
man and Micali [14]. As opposed to broadcast, where the honest parties are required to reach a
unanimous decision, in gradecast the honest parties are allowed to disagree by “a small amount”.
Specifically, parties now output a grade along with their output value; the grade output by a party
can be viewed as the “confidence” of this party in the sender. The gradecast protocol given by Feld-
man and Micali supports the three grades {0, 1, 2}, and runs in three rounds. Here, we generalize
their protocol to the case of an arbitrary number of grades. We first present the definition:

Definition 2 (Gradecast with multiple grades). A protocol for parties P = {P1, . . . , Pn}, where
P ∗ ∈ P holds an initial input m, is a g∗-gradecast protocol (tolerating n− 1 malicious parties) if
the following conditions hold for any adversary controlling any number of parties:

Functionality: An honest party Pi outputs a message mi and a grade gi ∈ {0, 1, . . . , g∗}.

Correctness: If the sender is honest, then mi = m and gi = g∗ for all honest parties Pi.

4

Soundness: Let Pi, Pj be any two honest parties. If gi ≥ 2, then mj = mi and gj ≥ gi − 1.
If gi = 1, then mj = mi or gj = 0. ♦

A similar primitive called “proxcast” was defined and constructed by Considine et al. [10].
Our construction differs from theirs in two ways. First, our construction is in the authenticated
setting while theirs relies on the existence of “k-cast channels”. Second, our protocol can tolerate
any number of dishonest parties, while theirs only tolerates a constant fraction (the exact constant
depends on the value of k) of malicious participants.

We now demonstrate a construction of g∗-gradecast for any value g∗. Specifically, we define
a protocol M-Gradecast(m, g∗) where m represents the initial value of the sender and g∗ denotes
the maximum supported grade. In the description that follows, each party Pi starts with internal
variables ḡi, Si, and mi initialized to 0, the empty set, and ⊥, respectively.

Protocol M-Gradecast(m, g∗)

Round 1: The sender computes a signature σ on m and sends (m, σ) to all parties.

Round 2 to Round 2g∗ + 1:
Step (a) Each party Pi does as follows: For each tuple (m′, σ′) received by the end of the

previous round, if σ′ is a valid signature by the sender on m′ and m′ /∈ Si, then:

• Set Si := Si ∪ {m′}. If |Si| = 1, then set mi := m′.
• Pi sends (m′, σ′) to all other parties.

Step (b) If (mi 6=⊥) and (|Si| = 1) then set ḡi := ḡi + 1.

Output determination: Each party Pi sets gi := bḡi/2c and outputs (mi, gi).

Lemma 2. Protocol M-Gradecast(·, g∗) is a g∗-gradecast protocol with round complexity 2g∗+1.

The proof is given in the Appendix.

3 Randomized Broadcast Protocols for Dishonest Majority
As a warm-up, we first construct an expected constant-round broadcast protocol for the special
case of t = n/2 (and n even) before dealing with the more general case.

3.1 The Case t = n/2

The main idea here is as follows: in the first phase, the sender will gradecast its input m. If the
sender is honest, this gradecast is already enough to implement broadcast; on the other hand, if
the other parties catch the sender cheating then they can exclude the sender and determine their
output by executing BAHonestMaj . The key point is that in the latter case, assuming t = n/2 to begin
with, an honest majority is present once the dishonest dealer is excluded. (Variants of this idea
— i.e., executing a protocol until either something good happens or some dishonest parties can
be excluded — have been used in prior work on Byzantine agreement [1, 26, 5, 19].) Of course,
we need to handle the scenario where some parties believe the sender is honest while other parties

5

catch the sender cheating; this can be done using the grades obtained in the initial gradecast. We
now provide a formal description of the protocol:

Phase I P ∗, who holds input m, acts as the sender in an execution of M-Gradecast(m, 2), outputs
m, and then exits the protocol. Let (mi, gi) denote the output of Pi in this step.

Phase II All parties except P ∗ (who has already exited the protocol) run BAHonestMaj in the follow-
ing way:

• If gi = 2, then Pi enters protocol BAHonestMaj with input mi, terminates BAHonestMaj after
K rounds (where K is the constant from Lemma 1), and outputs mi. We stress that Pi

outputs mi regardless of the output (if any) of protocol BAHonestMaj .
• Otherwise (i.e., gi < 2), Pi enters protocol BAHonestMaj with input mi, runs BAHonestMaj un-

til successful termination of the protocol, and outputs whatever directed to by BAHonestMaj .

We now argue that the above protocol achieves broadcast for t = n/2 in expected constant
rounds. If the sender is honest then, by the correctness property of M-Gradecast(m, 2), each
honest party Pi outputs (mi = m, gi = 2) in Phase I and thus, in Phase II, outputs mi = m after
executing BAHonestMaj for exactly K rounds. As the round complexity of Phase I is constant, the
entire protocol runs for a strict constant number of rounds.

If the sender is dishonest, then protocol BAHonestMaj is run with an honest majority. There are
two sub-cases to consider. The first sub-case is that there exists an honest party Pi whose output in
Phase I is (mi, gi = 2). Then by the soundness property of M-Gradecast(m, 2), all honest parties
Pj have mj = mi. Hence all honest parties enter protocol BAHonestMaj holding the same input mi,
and the protocol BAHonestMaj terminates after K rounds with each honest party Pj outputting mi,
regardless of the grade gj it output in the first step. The second sub-case is when all honest parties
output a grade less than 2 in Phase I. Then all honest parties run BAHonestMaj until termination, and
so all honest parties output the same value in expected constant rounds.

3.2 The Case t ≤ n/2 + k

In this section we construct a broadcast protocol Rand-Bcast for t ≤ n/2+k that runs in expected
O(k2) rounds. For simplicity, we assume n is even and so t = n/2 + k. (Everything that follows
works also for n odd, though things can be optimized somewhat.) Set c

def
= 2k; this is equal to

the difference between the number of dishonest parties and the number of honest parties. Without
loss of generality, let P1 be the sender. Rand-Bcast consists of two phases: Phase I takes exactly
O(c2) rounds, while Phase II runs for O(1) rounds in expectation. At the end of Phase I, each
party in Init

def
= {P1, . . . , Pc+1} outputs a message, which will be its final output for the entire

protocol, while each party Pi in Rem
def
= {Pc+2, . . . , Pn} outputs a tuple of the form {(mi,1, gi,1),

(mi,2, gi,2), . . . , (mi,c+1, gi,c+1)}. In the second phase, parties in Rem = {Pc+2, . . . , Pn} determine
their outputs using the output they obtained in Phase I. Parties in Init = {P1, . . . , Pc+1} do not take
part in Phase II.

Phase I is based on the authenticated broadcast protocol of Dolev and Strong [13] which toler-
ates any t < n dishonest parties and has the property that, in each round, honest parties send the

6

same message to all other parties. Roughly speaking, parties P1, . . . , Pc+1 will execute the Dolev-
Strong protocol with the following twist: whenever a party Pi (in the Dolev-Strong protocol) is
supposed to send a message to every other party in {P1, . . . , Pc+1}, party Pi instead gradecasts the
message to all n parties in the network using protocol M-Gradecast from Section 2.2. This has
the effect of allowing parties Pc+2, . . . , Pn to “monitor” the execution of the Dolev-Strong protocol
being run by parties P1, . . . , Pc+1.

The Dolev-Strong protocol guarantees that broadcast is achieved among P1, . . . , Pc+1 at the end
of Phase I. As mentioned earlier, each remaining party Pi ∈ {Pc+2, . . . , Pn} outputs {(mi,1, gi,1),
(mi,2, gi,2), . . . , (mi,c+1, gi,c+1)} based on the messages and grades it received in Phase I. Infor-
mally, mi,k is the message that Pi “believes” Pk will output, with gi,k indicating the level of “con-
fidence” Pi has in this determination. In particular, if Pk is honest then mi,k will be equal to the
message output by Pk and gi,k will be the maximum possible grade. Furthermore, based on the
properties of M-Gradecast, a relaxed form of agreement is achieved among the remaining parties.
Specifically, for any honest parties Pi, Pj ∈ {Pc+2, . . . , Pn} and k ∈ {1, . . . , c + 1} we have:

• If gi,k > 1, then mi,k = mj,k and gj,k ≥ gi,k − 1.

• If gi,k = 1, then mi,k = mj,k or gj,k = 0.

Therefore, although the remaining honest parties may not reach a unanimous decision when Pk is
dishonest, the remaining honest parties will only disagree by “a small amount”.

In Phase II, each remaining party Pi first locally “combines” its output {(mi,1, gi,1), (mi,2, gi,2),
. . ., (mi,c+1, gi,c+1)} into a single message/grade pair (mi, gi), with gi ∈ {0, 1, 2}, such that the
following hold for all honest parties Pi, Pj ∈ {Pc+2, . . . , Pn}:

• If there exists an honest party Pk ∈ {P1, . . . , Pc+1}, then mi is equal to the message output
by Pk, and gi = 2 (the maximum possible grade).

• If gi = 2, then mi = mj and gj ≥ 1.

Finally, parties Pc+2, . . . , Pn determine their final output as in Phase II of the broadcast protocol
for t = n/2 described earlier. The key observation is that if there exists even a single honest party
Pk ∈ {P1, . . . , Pc+1}, then for every honest party Pi ∈ {Pc+2, . . . , Pn} it holds that mi = mk

(where mk is the output of Pk) and gi = 2; otherwise (i.e., if P1, . . . , Pc+1 are all dishonest), a
majority of the remaining parties are honest, and so they can rely on the output of BAHonestMaj .

Gradecast is also used as a building block in the (expected) sub-linear broadcast protocols
of [14, 23, 3, 21]. In these works, gradecast is used to replace the broadcast channel in various sub-
protocols that are run among all n parties in the network; these sub-protocols achieve some relaxed
functionality that suffices for achieving broadcast. Here, we use gradecast in a different way, by
having a small subset of the parties run some sub-protocol while gradecasting their messages to all
parties in the network.

We now describe the two phases of the protocol in more detail, and prove the protocol’s cor-
rectness.

7

3.2.1 Phase I

Set g∗ def
= 2dlog(c+1)e+1 + 2dlog(c+1)e − 1.4 Recall that we assume, without loss of generality, that

P1 is the sender. Let Init
def
= {P1, . . . , Pc+1} (these are the parties who run the Dolev-Strong

protocol in the initial phase) and let Rem
def
= {Pc+2, . . . , Pn} (these are the parties who remain in

the second phase). Each party Pi ∈ Init \ {P1} has a variable Mi initialized to the empty set; each
party Pi ∈ Rem has variables gi,1, . . . , gi,c+1 all initialized to g∗, and variables Mi,1, . . . , Mi,c+1 all
initialized to the empty set.

Roughly speaking, when a party Pi ∈ Init \ {P1} receives a new message that originated from
P1 (with correct signatures attached), then as long as |Mi| < 2 it signs and gradecasts the received
message, and adds the message to Mi. However, Pi stops adding new messages once |Mi| = 2,
as this means Pi has received valid signatures of the sender on two different messages (and so Pi

knows the sender is dishonest). Each Pi determines its output based on the contents of Mi at the
end of Phase I.

Each party Pi ∈ Rem acts as follows: every time it hears Pj ∈ Init gradecast a new message
that originated from P1 (with correct signatures attached), then as long as |Mi,j| < 2 it adds the
message to Mi,j and updates gi,j based on the grade it received in the aforementioned execution
of gradecast. At the end of Phase I, Pi determines Mi,j (i.e., its determination as to what Pj will
output) based on the contents of Mi,j .
Protocol Rand-Bcast — Phase I
Step 1: P1 computes a signature σ of m, runs M-Gradecast((m,σ, P1), g

∗), outputs m, and exits
the protocol.

Step j, for 2 ≤ j ≤ c + 2:
1. Each Pi does the following: For each gradecast performed in the previous step, let (m′

i,`, g
′
i,`)

be the local output (of party Pi) of an invocation of M-Gradecast with P` ∈ Init as the sender.
(Note: each P` may gradecast multiple times in a given step. The output of each gradecast
is handled separately.) Let m′

i,` have the form (m,σα0 , P1, σα1 , Pα1 , . . . , σαj−2
, Pαj−2

= P`).

If P1, Pα1 , . . . , Pαj−2
∈ Init are all unique; σα0 is a valid signature on m by P1; and σαk

is a
valid signature on σαk−1

by Pαk
for 1 ≤ k ≤ j − 2 (if all these conditions hold, we say m′

i,`

is valid in step j), then:

Case 1: Pi ∈ Init \ {P1}. If j < c + 2, m /∈ Mi and |Mi| < 2, then: set Mi := Mi ∪ {m};
compute a signature σαj−1

on σαj−2
; and run M-Gradecast((m′

i,`, σαj−1
, Pi), g

∗).
Case 2: Pi ∈ Rem. Set gi,` := min{gi,`, g

′
i,`}. If m /∈ Mi,` and |Mi,`| < 2, then set Mi,` :=

Mi,` ∪ {m}.

2. If Pi ∈ Init \ {P1}: Let d ≤ 2 denote the number of times Pi has already run M-Gradecast
in this step. Run 2 − d invocations of M-Gradecast(‘nothing’, g∗). (This ensures that each
Pi ∈ Init \ {P1} acts as the sender in exactly two executions of M-Gradecast in each step.)

4Jumping ahead, the reason g∗ is set to this particular value is related to the second phase of the protocol. In
Phase II, the parties will combine c+1 message/grade pairs into a single message/grade pair in a sequence of log(c+1)
steps. In each step, the maximum possible grade will be reduced by half, and we set g∗ to this particular value so that
the final grade will lie between 0 and 2.

8

Output determination: Let ⊥ and φ be two special symbols, with ⊥ indicating that a party has
received two different messages with valid signatures of the sender, and φ indicating that a party
did not receive any messages with a valid signature of the sender.

Each party Pi ∈ Init \ {P1} does: If |Mi| = 2, output ⊥; if |Mi| = 1, output the message in Mi;
if |Mi| = 0, output φ.

Each party Pi ∈ Rem does: For each P` ∈ Init, compute mi,` as follows:

• If |Mi,`| = 2, set mi,` :=⊥; if |Mi,`| = 1, set mi,` to be the message in Mi,`; if
|Mi,`| = 0, set mi,` := φ.

The round complexity of Phase I is O(k2) as claimed. We now state several properties related
to the first phase of our protocol (proofs appear in the Appendix). Phase II of Rand-Bcast is
described in Section 3.2.2.

Lemma 3. If the sender P1 is honest, the following holds at the end of Phase I:
1. All honest parties in Init \ {P1} output m;

2. For all honest parties Pi ∈ Rem, it holds that mi,1 = m and gi,1 = g∗. Furthermore, for
each 2 ≤ j ≤ c + 1 it holds that mi,j = m or mi,j = φ (this holds even if Pj is dishonest).

The next three lemmas concern the case when there exists an honest party in Init \ {P1}.

Lemma 4. If any honest party Pi ∈ Init \ {P1} outputs ⊥, then all honest parties in Init \ {P1}
output ⊥, and for any honest Pj ∈ Rem it holds that mj,i =⊥ and gj,i = g∗ at the end of Phase I.

Lemma 5. If any honest party Pi ∈ Init \ {P1} outputs φ, then all honest parties in Init \ {P1}
output φ, and for any honest Pj ∈ Rem it holds that mj,i = φ and gj,i = g∗ at the end of Phase I.
Moreover, if mj,k 6= φ for some k ∈ {1, . . . , c + 1}, then gj,k ≤ 1.

Lemma 6. If any honest party Pi ∈ Init \ {P1} outputs m 6∈ {⊥, φ}, then all honest parties in
Init \ {P1} output m, and for any honest Pj ∈ Rem it holds that mj,i = m and gj,i = g∗ at the end
of Phase I. Moreover, if mj,k 6= m and mj,k 6= φ for some k ∈ {1, . . . , c + 1}, then gj,k ≤ 1.

The next lemma states that some relaxed form of agreement exists among the parties in Rem
regarding their determination as to what a (dishonest) P` ∈ Init outputs. (Note that the case of an
honest P` is handled in the previous three lemmas.) The lemma follows directly from the properties
of gradecast and the specification of Phase I.

Lemma 7. For 1 ≤ ` ≤ c + 1, at the end of Phase I:
• If an honest party Pi ∈ Rem has gi,` > 1, then all honest parties Pj ∈ Rem have both
mj,` = mi,` and gj,` ≥ gi,` − 1.

• If an honest party Pi ∈ Rem has gi,` = 1, then all honest parties Pj ∈ Rem have either
mj,` = mi,` or gj,` = 0.

9

3.2.2 Phase II

In the second phase of the protocol, the parties in Rem determine their outputs based on the in-
formation they obtained in the first phase. Recall that by the end of Phase I, each Pi holds values
{(mi,1, gi,1), (mi,2, gi,2), . . . , (mi,c+1, gi,c+1)}where 0 ≤ gi,j ≤ g∗ for all 1 ≤ j ≤ c+1. In Phase II,
based on these values, each Pi first locally computes a single message/grade pair (m

(0)
i , g

(0)
i),

and then determines its output as in Phase II of the protocol for t = n/2 described earlier. The
message/grade (m

(0)
i , g

(0)
i) is computed from {(mi,1, gi,1), (mi,2, gi,2), . . . , (mi,c+1, gi,c+1)} in a se-

quence of dlog(c + 1)e (non-interactive) steps: in each step the number of message/grade pairs is
reduced by half by “combining” two adjacent message/grade pairs into a single pair.

Before we describe the second phase of the protocol, we first describe a subroutine which takes
a value d, two messages m1,m2, and two grades g1, g2 (where 0 ≤ g1, g2 ≤ 2d+1 +2d−1) as input,
and outputs a message m and a grade g (where 0 ≤ g ≤ 2d + 2d−1 − 1).

Subroutine Combine(d,m1,m2, g1, g2)

If (m1 = m2) then
m := m1 and g := max{g1 − 2d − 2d−1, g2 − 2d − 2d−1, 0};

else if (m1 6= m2) and (m1 6= φ) and (m2 6=⊥) then
begin
If (g1 ≤ 1) and (g2 = 2d+1 + 2d − 1) then m := m2 and g := 2d + 2d−1 − 1
else if (g1 ≤ 2) and (g2 ≥ 2d+1 + 2d − 2) then m := m2 and g := 2d + 2d−1 − 2
. . .
else if (g1 ≤ 2d + 2d−1) and (g2 ≥ 2d + 2d−1) then m := m2 and g := 0
else m := m1 and g := max{g1 − 2d − 2d−1, 0}
end

else (Note: here, either (m1 = φ and m2 6= φ) or (m1 6=⊥ and m2 =⊥))
begin
if (g2 ≤ 1) and (g1 = 2d+1 + 2d − 1) then m := m1 and g := 2d + 2d−1 − 1
else if (g2 ≤ 2) and (g1 ≥ 2d+1 + 2d − 2) then m := m1 and g := 2d + 2d−1 − 2
. . .
else if (g2 ≤ 2d + 2d−1) and (g1 ≥ 2d + 2d−1) then m := m1 and g := 0
else m := m2 and g := max{g2 − 2d − 2d−1, 0}
end

output (m, g).

Each party invokes the above subroutine using as input its own set of message/grade pairs.
Informally, if a “relaxed” form of agreement on the input message/grade pairs has been established
among the parties, this “relaxed” form of agreement still holds for the output message/grade pair.
We make three observations regarding Combine. The first observation states that if one of the
input messages is equal to⊥ and the corresponding grade is the maximum grade possible, then the
output message will be equal to ⊥ and the output grade will be the maximum grade possible.

Observation 1. If m1 =⊥ (resp., m2 =⊥) and g1 = 2d+1 + 2d − 1 (resp., g2 = 2d+1 + 2d − 1),
then m =⊥ and g = 2d + 2d−1 − 1.

10

The second observation is that if one of the input messages is equal to m′ /∈ {⊥, φ}, the
corresponding grade is the maximum grade possible, and one of the three following conditions
hold: (i) the other input message is equal to φ; (ii) the other input grade is “low” (i.e., at most 1);
or (iii) the two input messages are the same, then the output message will be equal to m′ and the
output grade will be the maximum grade possible.

Observation 2. If m1 /∈ {⊥, φ}; g1 = 2d+1 + 2d − 1; and either (1) m2 = φ or (2) g2 ≤ 1 or
(3) m2 = m1, then m = m1 and g = 2d+2d−1−1. Analogously, if m2 /∈ {⊥, φ}; g2 = 2d+1+2d−1;
and either (1) m1 = φ or (2) g1 ≤ 1 or (3) m1 = m2, then m = m2 and g = 2d + 2d−1 − 1.

The third observation is that if one of the input messages is equal to φ, the corresponding grade
is the maximum grade possible, and one of the two following conditions hold: (i) the other input
message is equal to φ or (ii) the other input grade is “low” (i.e., at most 1), then the output message
will be equal to φ and the output grade will be the maximum grade possible.

Observation 3. If m1 = φ; g1 = 2d+1 + 2d − 1; and either (1) m2 = φ or (2) g2 ≤ 1, then m = φ
and g = 2d + 2d−1 − 1. Analogously, if m2 = φ; g2 = 2d+1 + 2d − 1; and either (1) m1 = φ or
(2) g1 ≤ 1, then m = φ and g = 2d + 2d−1 − 1.

We are now ready to specify the second phase of the protocol. Recall that the parties in Init do
not take part in this phase.

Protocol Rand-Bcast — Phase II:
Parties Pi ∈ Rem perform the following steps:

1. For 1 ≤ j ≤ c + 1 set m
(dlog(c+1)e)
i,j := mi,j and g

(dlog(c+1)e)
i,j := gi,j

for c + 2 ≤ j ≤ 2dlog(c+1)e set m
(dlog(c+1)e)
i,j := φ and g

(dlog(c+1)e)
i,j := 0.

2. For d := dlog(c + 1)e to 1 do:
for e := 1 to 2d−1 do: (m

(d−1)
i,e , g

(d−1)
i,e) ← Combine(d,m

(d)
i,2e−1, g

(d)
i,2e−1,m

(d)
i,2e, g

(d)
i,2e).

3. Set (mi, gi) := (m
(0)
i,1 , g

(0)
i,1).

If gi = 2 then Pi enters protocol BAHonestMaj with input mi, terminates BAHonestMaj after K
rounds (where K is the constant from Lemma 1), and outputs mi.
else (i.e., gi < 2) Pi enters protocol BAHonestMaj with input mi, runs BAHonestMaj until successful
termination of the protocol, and outputs whatever directed to by BAHonestMaj .

We prove the following technical lemma in the Apendix which states that relaxed agreement is
established on the message/grade pairs {(mi, gi)}.

Lemma 8. By the end of Phase II, the following holds for all honest parties Pi, Pj ∈ Rem:
• If gi > 1, then mj = mi and gj ≥ gi − 1.

• If gi = 1, then mj = mi or gj = 0.

We now argue that Rand-Bcast achieves broadcast. There are three cases:

11

The sender P1 is honest. By Lemma 3, all honest parties in Init \ {P1} output m. For any honest
party Pi ∈ Rem, it follows from Lemma 3 and Observation 2 that mi = m and gi = 2 at the end
of Phase II, which implies that Pi outputs m.

P1 is dishonest but there is an honest party Pi ∈ Init\{P1}. Suppose Pi outputs⊥. By Lemma 4,
all honest parties in Init \ {P1} output ⊥. Lemma 4 and Observation 1 show that, at the end of
Phase II, mj =⊥ and gj = 2 for any honest party Pj ∈ Rem, which implies that Pj outputs ⊥. On
the other hand, if Pi outputs φ it follows from Lemma 5 and Observation 3 that all honest parties
output φ. Finally, if Pi outputs m 6∈ {⊥, φ} it follows from Lemma 6 and Observation 2 that all
honest parties output m.

All parties in Init are dishonest. This means that a strict majority of the parties in Rem are honest.
There are two sub-cases. The first sub-case is that by the end of Phase II there exists an honest
party Pi ∈ Rem such that gi = 2. Then, by Lemma 8, mj = mi for all honest parties Pj and so
all honest parties will output the same value mi. The second sub-case is that gi ≤ 1 for all honest
parties Pi. In this case, it follows from the properties of BAHonestMaj that all honest parties output the
same message.

Phase I terminates in exactly O(k2) rounds. Arguing as in the case of t = n/2, we see that
Phase II terminates in expected constant rounds. We thus obtain the following theorem:

Theorem 1. There exists an authenticated randomized n-party broadcast protocol tolerating t =
n/2 + k dishonest parties that runs in (expected) O(k2) rounds.

4 A Lower Bound on the Round Complexity
We start by considering a group of k parties P1, P2, . . . , Pk such that only two of them are hon-
est. We show that there does not exist any (randomized) broadcast protocol having any runs that
terminate in fewer than k − 1 rounds.

Consider a broadcast protocol Π for k parties that tolerates k − 2 dishonest parties. For 1 ≤
i ≤ k, we construct a protocol Π̄i that is the same as Π except that:

• If i = 1, then P1 ignores all the messages sent to it except for those from P2, and only sends
messages to P2 (i.e., P1 only communicates with P2).

• If 2 ≤ i ≤ k − 1, Pi ignores all the messages sent to it except for those from Pi−1 and Pi+1,
and only sends messages to Pi−1 and Pi+1 (i.e., Pi only communicates with Pi−1 and Pi+1).

• If i = k, then Pk ignores all the messages sent to it except for those from Pk−1, and only
sends messages to Pk−1 (i.e., Pk only communicates with Pk−1).

For 1 ≤ i ≤ k − 1 and b ∈ {0, 1}, define scenario S
(b)
i as follows:

• P1 is the sender and the bit b is its input.

• All parties except for Pi and Pi+1 are dishonest. The honest parties Pi and Pi+1 execute the
protocol Π; a dishonest party Pj executes the protocol Π̄j .

12

For any 2 ≤ i ≤ k, party Pi cannot distinguish whether it is in S
(b)
i−1 or S

(b)
i . In scenario S

(b)
1 ,

parties P1 and P2 are both honest. Thus, P1 and P2 have to output b by the end of the protocol.
Since P2 cannot distinguish whether it is in S

(b)
1 or S

(b)
2 , we see that P2 has to output b in scenario

S
(b)
2 as well; this means that P3 has to output b as well. Prior to round 1, however, the view of P2

is completely independent of b, and so the view of P3 is independent of b prior to round 2.
In general, in scenario S

(b)
i , parties Pi and Pi+1 have to output b and the view of Pi+1 is com-

pletely independent of b prior to round i. If b is chosen uniformly at random and Π terminates
before round k − 1, then in scenario S

(b)
k−1 the output of Pk will not be equal to b with probability

at least 1/2. Since Π is a broadcast protocol, Π cannot terminate before round k− 1. We conclude
that there does not exist any broadcast protocol that can terminate in less than k−1 rounds if k−2
out of k parties are dishonest.

Using standard player-partitioning techniques (see the Appendix), we can generalize the above
to show:

Theorem 2. There does not exist any (randomized) n-party broadcast protocol tolerating t dis-
honest parties that terminates in fewer than 2n/(n− t)− 1 rounds (when n− t ≥ 2).

References
[1] A. Bar-Noy, D. Dolev, C. Dwork, and H. R. Strong. Shifting gears: Changing algorithms on

the fly to expedite Byzantine agreement. In 6th Annual ACM Symposium on Principles of
Distributed Computing (PODC), 1987.

[2] M. Ben-Or. Another advantage of free choice: Completely asynchronous agreement pro-
tocols. In 2nd Annual ACM Symposium on Principles of Distributed Computing (PODC),
1983.

[3] M. Ben-Or, E. Pavlov, and V. Vaikuntanathan. Byzantine agreement in the full-information
model in O(log n) rounds. In 38th Annual ACM Symposium on Theory of Computing (STOC),
2006.

[4] P. Berman and J. A. Garay. Efficient distributed consensus with n = (3 + ε)t processors. In
5th Intl. Workshop on Distributed Algorithms (WDAG), 1991.

[5] P. Berman and J. A. Garay. Cloture votes: n/4-resilient, polynomial-time distributed consen-
sus in t + 1 rounds. Mathematical Systems Theory, 26(1):3–20, 1993.

[6] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in Constantitnople: Practical asyn-
chronous Byzantine agreement using cryptography. In 19th Annual ACM Symposium on
Principles of Distributed Computing (PODC), 2000.

[7] B. Chor and C. Dwork. Randomization in Byzantine agreement. Advances in Computing
Research, 4, 1989.

13

[8] R. Cleve. Limits on the security of coin flips when half the processors are faulty. In 18th
Annual ACM Symposium on Theory of Computing (STOC), 1986.

[9] B. A. Coan. A communication-efficient canonical form for fault-tolerant distributed proto-
cols. In 5th Annual ACM Symposium on Principles of Distributed Computing (PODC), 1986.

[10] J. Considine, M. Fitzi, M. Franklin, L. A. Levin, U. Maurer, and D. Metcalf. Byzantine
agreement given partial broadcast. J. Cryptology, 18(3):191–217, 2005.

[11] D. Dolev. The Byzantine generals strike again. J. Algorithms, 3(1):14–30, 1982.

[12] D. Dolev, R. Reischuk, and H. R. Strong. Early stopping in Byzantine agreement. J. ACM,
37(4):720–741, 1990.

[13] D. Dolev and H. Strong. Authenticated algorithms for Byzantine agreement. SIAM J. Com-
puting, 12(4):656–666, 1983.

[14] P. Feldman and S. Micali. An optimal probabilistic protocol for synchronous Byzantine
agreement. SIAM J. Computing, 26(4):873–933, 1997.

[15] M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus with one faulty
processor. J. ACM, 32(2):374–382, 1985.

[16] M. J. Fischer and N. A. Lynch. A lower bound for the time to assure interactive consistency.
Info. Proc. Lett., 14(4):183–186, 1982.

[17] M. Fitzi and J. A. Garay. Efficient player-optimal protocols for strong and differential con-
sensus. In 22nd Annual ACM Symp. on Principles of Distributed Computing (PODC), 2003.

[18] J. A. Garay, P. D. MacKenzie, M. Prabhakaran, and K. Yang. Resource fairness and com-
posability of cryptographic protocols. In 3rd Theory of Cryptography Conference (TCC),
2006.

[19] J. A. Garay and Y. Moses. Fully polynomial Byzantine agreement for n > 3t processors in
t + 1 rounds. SIAM J. Computing, 27(1):247–290, 1998.

[20] S. Goldwasser and Y. Lindell. Secure multi-party computation without agreement. J. Cryp-
tology, 18(3):247–287, 2005.

[21] S. Goldwasser, E. Pavlov, and V. Vaikuntanathan. Fault-tolerant distributed computing in
full-information networks. In 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 2006.

[22] R. Gradwohl, S. P. Vadhan, and D. Zuckerman. Random selection with an adversarial major-
ity. In Advances in Cryptology — Crypto 2006.

[23] J. Katz and C.-Y. Koo. On expected constant-round protocols for Byzantine agreement. In
Advances in Cryptology — Crypto 2006.

14

[24] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Trans. Prog.
Lang. Syst., 4(3):382–401, 1982.

[25] Y. Lindell, A. Lysyanskaya, and T. Rabin. On the composition of authenticated Byzantine
agreement. In 34th Annual ACM Symposium on Theory of Computing (STOC), 2002.

[26] Y. Moses and O. Waarts. Coordinated traversal: (t + 1)-round Byzantine agreement in poly-
nomial time. J. Algorithms, 17(1):110–156, 1994.

[27] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applica-
tions. In 21st Annual ACM Symposium on Theory of Computing (STOC), 1989.

[28] J. Nielsen. A threshold pseudorandom function construction and its applications. In Advances
in Cryptology — Crypto 2002.

[29] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. J.
ACM, 27(2):228–234, 1980.

[30] B. Pfitzmann and M. Waidner. Information-theoretic pseudosignatures and Byzantine agree-
ment for t ≥ n/3. Technical Report RZ 2882 (#90830), IBM Research, 1996.

[31] M. Rabin. Randomized Byzantine generals. In 24th IEEE Symposium on Foundations of
Computer Science (FOCS), 1983.

[32] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In 22nd
Annual ACM Symposium on Theory of Computing (STOC), 1990.

[33] S. Toueg, K. J. Perry, and T. K. Srikanth. Fast distributed agreement. SIAM J. Computing,
16(3):445–457, 1987.

A Deferred Proofs

A.1 Correctness of M-Gradecast
Lemma 2. Protocol M-Gradecast(·, g∗) is a g∗-gradecast protocol with round complexity 2g∗+1.

Proof. We first prove correctness. Suppose the sender is honest and let Pi be any honest party.
All parties receive (m,σ) in round 1. Since the adversary cannot forge signatures, |Si| = 1 and
mi = m at all times. Hence ḡi = 2g∗ by the end of the protocol and Pi will output (m, g∗).

Next we prove soundness. Suppose there exists an honest party Pi that outputs gi ≥ 1. Note
that ḡi ≥ 2gi by the end of the protocol. Let round r1 be the round during which mi is added to Si

by Pi. Then |Si| = 0 (and hence ḡi = 0) prior to round r1. We claim that if there exists an honest
party Pj who receives (m′, σ′) in round r2 such that m′ 6= mi and σ′ is a valid signature on m by
the sender, then r2 > r1 + 2gi − 3. Assume the claim is not true, i.e., r2 ≤ r1 + 2gi − 3. Since Pj

is honest, it sends (m′, σ′) to all parties (including Pi) in round r2 + 1. Then by the end of step (a)

15

in round r2 + 2, it holds that |Si| ≥ 2 (note that Si contains mi by then as mi is the first message
added to it). Hence the value of ḡi is at most r2 + 2− r1 ≤ 2gi − 1, a contradiction.

We now complete the proof. Since Pi is honest, Pi sends mi along with a valid signature from
the sender to all parties in round r1. All honest parties receive it by the end of round r1. The claim
we proved in the last paragraph states that no honest party Pj receives a different message m′ 6= mi

(with a valid signature from the sender) in or before round r1 + 2gi − 3. Consider the value of ḡj

by the end of the protocol. If gi ≥ 2, then ḡj ≥ r1 + 2gi − 3 + 1− r1 ≥ 2gi − 2, and so Pj outputs
mi with gj ≥ gi − 1. For the case gi = 1, following the claim in the previous paragraph, no honest
party Pj receives a message m′ different from mi (with a valid signature from the sender) in or
before round r1 − 1. Since Pj receives mi (along with a valid signature from the sender) in round
r1, it holds that mi ∈ Sj by the end of step (a) in round r1 + 1. It follows that gj = 0 (if a different
message m′ is received by Pj in round r1) or mj = mi.

A.2 Properties of Rand-Bcast
Lemma 3. If the sender P1 is honest, the following holds at the end of Phase I:

1. All honest parties in Init \ {P1} output m;

2. For all honest parties Pi ∈ Rem, it holds that mi,1 = m and gi,1 = g∗. Furthermore, for
each 2 ≤ j ≤ c + 1 it holds that mi,j = m or mi,j = φ (this holds even if Pj is dishonest).

Proof. If the sender P1 is honest, then in step 1 all honest parties Pi ∈ Init\{P1} receive (m,σ, P1)
as the output of the gradecast by P1, where σ is a valid signature on m by P1. Hence m ∈ Mi by
the end of step 2. Since the adversary cannot forge a signature of P1, no message besides m will
be added to Mi by the end of Phase I. Thus, all honest parties Pi ∈ Init \ {P1} will output m.

For all honest parties Pj ∈ Rem, we have mj,1 = m and gj,1 = g∗ by the properties of
M-Gradecast. Furthermore, mj,i = m or mj,i = φ for any 2 ≤ i ≤ c + 1 as the adversary cannot
forge a valid signature of P1.

We prove two technical results that will be used in the proofs of Lemmas 4– 6.

Lemma 9. Let Pi ∈ Init \ {P1} be honest. If m ∈ Mi by the end of Phase I, then:
1. For any honest Pj ∈ Init \ {P1} it holds that m ∈ Mj or |Mj| = 2.

2. For any honest Pj ∈ Rem it holds that m ∈ Mj,i.

Proof. Suppose m is added to Mi in step k. Then in step k − 1, party Pi received a message
m′

i,αk−2
= (m,σα0 , P1, σα1 , Pα1 , . . . , σαk−2

, Pαk−2
) as the output of a gradecast by some party

Pαk−2
. In step k, Pi verifies that m′

i,αk−2
is valid, adds m to Mi, computes a signature σαj−1

of
σαj−2

, and gradecasts (m′
αk−2,i, σαj−1

, Pi). All honest parties receive (m′
i,αk−2

, σαj−1
, Pi) as the

output of that gradecast. Since m is added to Mi in step k, it means that m is not in Mi in step
k − 1. Therefore, Pi /∈ {P1, Pα1 , . . . , Pαk−2

}. This implies that k ≤ c + 1.
We know that (m′

i,αk−2
, σαj−1

, Pi) is valid in step k + 1. Consider an honest Pj ∈ Init \ {P1}.
If m is not added to Mj in step k +1, then it means that m is already in Mj or |Mj| = 2 by the end
of step k + 1. This proves the first item. Next consider an honest party Pj ∈ Rem. Following the

16

properties of M-Gradecast and the protocol description, m ∈ Mj,i by the end of step k + 1, which
proves the second item.

Lemma 10. Let Pi ∈ Rem be honest. If, for some Pj ∈ Init, it holds that m ∈ Mi,j and gi,j ≥ 2
at the end of Phase I, then for all honest parties Pk ∈ Init \ {P1} it holds that either m ∈ Mk or
|Mk| = 2 at the end of Phase I.

Proof. Suppose m is added to Mi,j in step r. This means Pj gradecasts mj = (m,σα0 , . . . , σαr−2 , Pj)
in step r − 1, and Pi receives mj with grade at least 2. Following the properties of M-Gradecast,
all honest parties receive mj with grade at least 1. We know that mj is valid in step r since m is
added to Mi,j in step r. Therefore, by the end of step r, it holds that m ∈ Mk or |Mk| = 2 for all
honest parties Pk ∈ Init \ {P1}.

Lemma 4. If any honest party Pi ∈ Init \ {P1} outputs ⊥, then all honest parties in Init \ {P1}
output ⊥, and for any honest Pj ∈ Rem it holds that mj,i =⊥ and gj,i = g∗ at the end of Phase I.

Proof. If Pi outputs⊥, then |Mi| = 2 by the end of Phase I. Using Lemma 9, by the end of Phase I
|Mj| = 2 for all honest parties Pj ∈ Init \ {P1}. Therefore Pj outputs ⊥. If Pj ∈ Rem is honest,
Pj always receives grade g∗ in every gradecast by Pi. By Lemma 9, mj,i =⊥ and gj,i = g∗.

We prove Lemma 6 first, since we rely on it to prove Lemma 5.

Lemma 6. If any honest party Pi ∈ Init \ {P1} outputs m 6∈ {⊥, φ}, then all honest parties in
Init \ {P1} output m, and for any honest Pj ∈ Rem it holds that mj,i = m and gj,i = g∗ at the end
of Phase I. Moreover, if mj,k 6= m and mj,k 6= φ for some k ∈ {1, . . . , c + 1}, then gj,k ≤ 1.

Proof. By the end of Phase I, m ∈ Mi. Consider an honest party Pj ∈ Init \ {P1}. By Lemma 9,
we have m ∈ Mj by the end of Phase I. If Pj does not output m, then |Mj| = 2 which means Pj

outputs ⊥. By Lemma 4, Pi should output ⊥ instead of m, a contradiction.
Next consider an honest party Pj ∈ Rem. We know that mj,i = m and gj,i = g∗ by the

properties of M-Gradecast. Now suppose there exists a 1 ≤ k ≤ c + 1 such that mj,k 6= m and
mj,k 6= φ. Then there exists m′ 6= m such that m′ ∈ Mj,k by the end of Phase I. By Lemma 10,
this means gj,k ≤ 1 or m′ ∈ Mi or |Mi| = 2 by the end of Phase I. Since Pi outputs m, we have
Mi = {m} and this means gj,k ≤ 1.

Lemma 5. If any honest party Pi ∈ Init \ {P1} outputs φ, then all honest parties in Init \ {P1}
output φ, and for any honest Pj ∈ Rem it holds that mj,i = φ and gj,i = g∗ at the end of Phase I.
Moreover, if mj,k 6= φ for some k ∈ {1, . . . , c + 1}, then gj,k ≤ 1.

Proof. Consider an honest party Pj ∈ Init \ {P1}. If Pj does not output φ then, using Lemma 4
and Lemma 6, Pi should output ⊥ or m′ instead, a contradiction.

Now consider an honest party Pj ∈ Rem. Properties of M-Gradecast imply that mj,i = φ and
gj,i = g∗. Suppose there exists a 1 ≤ k ≤ c+1 such that mj,k 6= φ. Then there exists an m′ ∈ Mj,k

by the end of Phase I. Following Lemma 10, gj,k ≤ 1 or m′ ∈ Mi or |Mi| = 2. Since Pi outputs φ,
this implies that gj,k ≤ 1.

17

Lemma 8. By the end of Phase II, the following holds for all honest parties Pi, Pj ∈ Rem:
• If gi > 1, then mj = mi and gj ≥ gi − 1.

• If gi = 1, then mj = mi or gj = 0.

Proof. The lemma follows once we show that, by the end of Phase II, for any 0 ≤ d ≤ dlog(c+1)e
and 1 ≤ e ≤ 2d:

• If g
(d)
i,e > 1 for some honest party Pi ∈ Rem, then m

(d)
j,e = m

(d)
i,e and g

(d)
j,e ≥ g

(d)
i,e − 1 for any

honest party Pj ∈ Rem .

• If g
(d)
i,e = 1 for some honest party Pi ∈ Rem , then either m

(d)
j,e = m

(d)
i,e or g

(d)
j,e = 0 for any

honest party Pj ∈ Rem.
We prove the above by induction on d.

Base Case: The statement is true for d = dlog(c + 1)e and any e by Lemma 7.

Inductive Step: Assume the statement is true for d = d′ + 1 and e = 2e′ − 1 and e = 2e′. We
show that the statement is true for d = d′ and e = e′. We have the following cases:

1. Suppose that for all honest parties Pi, Pj ∈ Rem, we have m
(d′+1)
i,2e′−1 = m

(d′+1)
j,2e′−1. Consider

the two sub-cases:

• m
(d′+1)
i,2e′ = m

(d′+1)
j,2e′ for all honest parties Pi, Pj . Then following the protocol specifica-

tion, the statement is true for d = d′ and e = e′.

• m
(d′+1)
i,2e′ 6= m

(d′+1)
j,2e′ for some honest parties Pi, Pj . This means g

(d′+1)
k,2e′ ≤ 1 for all

honest parties Pk. Following the protocol specification, if g
(d′+1)
k,2e′−1 > 2d + 2d−1, then

m
(d′)
k,e′ = m

(d′+1)
k,2e′−1 and g

(d′)
k,e′ = g

(d′+1)
k,2e′−1 − 2d − 2d−1, else g

(d′)
k,e′ = 0. Thus the statement is

true for d = d′ and e = e′.

2. Next suppose that for all honest parties Pi, Pj ∈ Rem, it holds that m
(d′+1)
i,2e′ = m

(d′+1)
j,2e′ . The

proof of this case is analogous to the previous case.

3. Finally, consider the case where neither condition above holds. This means that g(d′+1)
i,2e′−1 ≤ 1

and g
(d′+1)
i,2e′ ≤ 1 for all honest parties Pi. Following the protocol specification, g

(d′)
i,e′ = 0.

Hence the statement holds.

A.3 The Lower Bound
Theorem 2. There does not exist any (randomized) n-party broadcast protocol tolerating t dis-
honest parties that terminates in fewer than 2n/(n− t)− 1 rounds (when n− t ≥ 2).

Proof. Let h = n − t. We divide the parties into k = n/(h/2) disjoint groups G1, . . . , Gk, each
of size h/2. Consider a broadcast protocol Π for n parties that can tolerate t dishonest parties. For
1 ≤ i ≤ k, we construct a protocol Π̄i that is the same as Π except that

18

• If i = 1, then the parties in G1 ignore all the messages sent to them except for those from
the parties in G1 ∪G2, and only send messages to the parties in G1 ∪G2 (i.e., parties in G1

only communicates with parties in G1 ∪G2).

• If 2 ≤ i ≤ k − 1, parties in Gi ignore all the messages sent to them except for those from
the parties in Gi−1 ∪Gi ∪Gi+1, and only send messages to parties in Gi−1 ∪Gi ∪Gi+1 (i.e.,
parties in Gi only communicates with parties in Gi−1 ∪Gi ∪Gi+1).

• If i = k, then the parties in Gk ignore all the messages sent to them except for those from
the parties in Gk−1 ∪Gk, and only send messages to the parties in Gk−1 ∪Gk (i.e., parties in
Gk only communicates with parties in Gk−1 ∪Gk).

For 1 ≤ i ≤ k − 1 and b ∈ {0, 1}, define scenario S
(b)
i as follows:

• The sender is in G1 and the bit b is its input.

• All parties except for the parties in Gi ∪Gi+1 are dishonest.

• The honest parties in Gi ∪ Gi+1 execute protocol Π; each dishonest party in Gj executes
protocol Π̄j .

The rest of the proof proceeds analogously to the discussion in Section 4.

19

