
A Survey of Single-Database PIR:
Techniques and Applications

Rafail Ostrovsky∗ William E. Skeith III†

Abstract

In this paper we survey the notion of Single-Database Private Information Re-
trieval (PIR). The first Single-Database PIR was constructed in 1997 by Kushilevitz
and Ostrovsky and since then Single-Database PIR has emerged as an important cryp-
tographic primitive. For example, Single-Database PIR turned out to be intimately
connected to collision-resistant hash functions, oblivious transfer and public-key en-
cryptions with additional properties. In this survey, we give an overview of many of
the constructions for Single-Database PIR (including an abstract construction based
upon homomorphic encryption) and describe some of the connections of PIR to other
primitives.

1 Introduction

A Single-Database Private Information Retrieval (PIR) scheme is a game between two play-
ers: a user and a database. The database holds some public data (for concreteness, an n-bit
string). The user wishes to retrieve some item from the database (such as the i-th bit)
without revealing to the database which item was queried (i.e., i remains hidden). We stress
that in this model the database data is public (such as stock quotes) but centrally located;
the user, without a local copy, must send a request to retrieve some part of the central data1.
A naive solution is to have the user download the entire database, which of course preserves
privacy. However, the total communication complexity in this solution, measured as the
number of bits transmitted between the user and the database is n. Private Information Re-
trieval protocols allow the user to retrieve data from a public database with communication
strictly smaller than n, i.e., with smaller communication then just downloading the entire
database.

∗Computer Science Department and Department of Mathematics, UCLA, 90095. Supported in part by
IBM Faculty Award, Xerox Innovation Group Award, NSF Cybertrust grant no. 0430254 and U.C. MICRO
grant. E-mail: rafail@cs.ucla.edu

†Department of Mathematics, UCLA. Supported in part by NSF grant no. 0430254, and U.C. Presidential
Fellowship. E-mail: wskeith@math.ucla.edu, wskeith@ucla.edu.

1PIR should not be confused with a private-key searching on encrypted data problem, where user uploads
his own encrypted data to a remote database and wants to privately search over that encrypted data without
reveling any information to the database. For this model, see the discussion in [9, 18] and references therein.

1

1.1 Single-Database PIR

PIR was introduced by Chor, Goldreich, Kushilevitz and Sudan [8] in 1995 in a setting in
which there are many copies of the same database and none of these copies are allowed to
communicate with each other. In the same paper, Chor at. al. [8] showed that single-
database PIR does not exist (in the information-theoretic sense.) Nevertheless, two years
later, (assuming a certain secure public-key encryption) Kushilevitz and Ostrovsky [23] pre-
sented a method for constructing single-database PIR. The communication complexity of
their solution is O(2

√
log n log log N) which for any ε > 0 is less then O(nε). Their result relies

on the algebraic properties Goldwasser-Micali public-key encryption scheme [17]. In 1999,
Cachin, Micali and Stadler [7] demonstrated the first single database PIR with polyloga-
rithmic communication, under the so-called φ-hiding number-theoretic assumption. Chang
[6], and Lipmaa [25] showed O(log2 n) communication complexity PIR protocol (with a mul-
tiplicative security parameter factor), using a construction similar to the original [23] but
replacing the Goldwasser-Micali homomorphic encryption with the Damg̊ard, M. Jurik vari-
ant of the Pailler homomorphic encryption [10]. Gentry and Ramzan [15] also showed the
current best bound for communication complexity of O(log2 n) with an additional benefit
that if one considers retrieving more then one bit, and in particular many consecutive bits
(which we call blocks) then ratio of block size to communication is only a small constant.
The scheme of Lipmaa [25] has the property that when acting on blocks the ratio of block
size to communication actually approaches 1, yet the parameters must be quite large before
this scheme becomes an advantage over that of [15]. In general, the issue of amortizing the
cost of PIR protocol for many queries has received a lot of attention. We discuss it separately
in the next subsection.

All the works mentioned above exploit some sort of algebraic properties, often coming
from homomorphic public-key encryptions. In [24], Kushilevitz and Ostrovsky have shown
how to construct Single Database PIR without the use of any algebraic assumptions, and
instead relying on the existence of one-way trapdoor permutations. However, basing the
protocol on more minimal assumptions comes with a performance cost: they show how to
achieve (n− O(n

k
− k2)) communication complexity, and additionally, the protocol requires

more than one round of interaction.
In this survey, we give the main techniques and ideas behind all these constructions (and

in fact, show a generic construction from any homomorphic encryption scheme with certain
properties) and attempt to do so in a unified manner.

1.2 Amortizing database work in PIR

Instead of asking to retrieve blocks, one can ask what happens if one wants to retrieve k
out of n bits of the database (not necessarily consecutive). Indeed, this was considered by
Ishai, Kushilevitz, Ostrovsky and Sahai [20]. In this setting, in addition to communication
complexity (of retrieving k out of n bits) there is another important consideration: the
total amount of computation needed to be performed by the database to compute all k PIR
answers. (Observe that for a single PIR query the amount of computation required by the
database must be linear: if this is not the case, the database will not touch at least one
bit, and hence the database can safely deduce that the ”untouched” bits are not the ones
being retrieved, violating the user’s privacy.) Now, what is the total computation required

2

to retrieve k different bits? A naive solution is to just run one of the PIR solutions k times.
It is easy to see that using hashing one can do better: The user, with indices i1, . . . , ik,
picks at random a hash function h that sends all n entries of the database to k buckets
and where the selection of h is made independently from i1, . . . , ik. The user sends h to the
database. Note that the expected size of each bucket is about n/k. The database partitions
its database into buckets according to h (that is gets from the user), and treats every bucket
as a new “tiny” database. For an appropriate choice of a hash family, this ensures that with
probability 1−2−Ω(σ), the number of items hashed to any particular bucket is at most σ log k.
Now the user can apply the standard PIR protocol σ log k times to each bucket. Except for
2−Ω(σ) error probability, the user will be able get all k items. Note that the cost is much
smaller then the naive solution. In particular, counting the length of all PIR invocations the
total size of all databases on which we run standard PIR is σ log k · n, instead of the naive
kn. This idea is developed further, and in fact the error-probability is removed, and better
performance is derived via explicit batch codes [20] instead of hashing.

Note however, that this approach requires that it is the same user that is interested in
all k queries. What happens if the users are different? In this case, assuming the existence
of anonymous communication, nearly-optimal PIR in all parameters can be achieved in the
multi-user case [21].

1.3 Connections: Single Database PIR and OT

Single-database PIR has a close connection to the notion of Oblivious Transfer (OT), in-
troduced by Rabin [35]. A different variant of Oblivious Transfer, called 1-out-of-2 OT,
was introduced by Even, Goldreich and Lempel [14] and, more generally, 1-out-of-n OT was
considered in Brassard, Crepeau and Robert [3]. Informally, 1-out-of-n OT is a protocol for
two players: A sender who initially has n secrets x1, . . . , xn and a receiver who initially holds
an index 1 ≤ i ≤ n. At the end of the protocol the receiver knows xi but has no information
about the other secrets, while the sender has no information about the index i. Note that
OT is different from PIR in that there is no communication complexity requirement (beyond
being polynomially bounded) but, on the other hand, “secrecy” is required for both players,
while for PIR it is required only for the user. All Oblivious Transfer definitions are shown to
be equivalent [5]. As mentioned, communication-efficient implementation of 1-out-of-n OT
can be viewed as a single-server PIR protocol with an additional guarantee that only one
(out of n) secrets is learned by the user and the remaining n− 1 remain hidden. In [23], it
is noted that their protocol can also be made into a 1-out-of-n OT protocol2, showing the
first 1-out-of-n OT with sublinear communication complexity. Naor and Pinkas [27] have
subsequently shown how to turn any PIR protocol into 1-out-of-n protocol with one invoca-
tion of a Single-Database PIR protocol and logarithmic number of invocations of 1-out-of-2
OT. DiCresenzo, Malkin and Ostrovsky [12] showed that any single database PIR protocol
implies OT. In fact, their result holds even if the PIR protocol allows the communication
from database to user to be as big as n− 1. Thus, [12] combined with [27] tells us that any
Single-Database PIR implies 1-out-of-n OT. In [24], it is shown how to build 1-out-of-n OT
based on any one-way trapdoor permutation with communication complexity strictly less

21-out-of-n OT in the setting of multiple copies of the database where none of the copies are allowed to
talk to each other was treated in [16] and renamed Symmetric Private Information Retrieval (SPIR), though
for Single-database PIR, the definition of SPIR is identical to the more established notion of 1-out-of-n OT.

3

than n.

1.4 Connections: PIR and Collision-Resistant Hashing

Ishai, Kushilevitz and Ostrovsky [19] showed that any one-round Single-Database PIR pro-
tocol is also a collision-resistant hash function. Simply pick an index i for the PIR query
at random, and generate a PIR query. Such a PIR query is the description of the hash
function. The database contents serves as the input to the hash function and the evaluation
of the PIR query on the database is the output of the hash function. It is easy to see that
the PIR function is both length-decreasing and collision-resistant. It is length-decreasing
by the non-triviality of PIR protocol, since it must return the answer with length which is
less then the size of the database. Is it collision resistant since if the adversary can find two
different databases that produce the same PIR answer, then these two databases must differ
in at least one position, say j. Finding such a position tells us that j 6= i, hence it reveals
information about i. This violates the PIR requirement that no information about i should
be revealed.

1.5 Connections: PIR and Function-Hiding PKE

A classic view of a public-key encryption/decryption paradigm is that of an identity map:
it takes a plaintext message m and creates a ciphertext which can be decrypted back to
m. However, in many applications, instead of an identity map, there is a need for a public-
key encryption to perform some secret computation during encryption. That is, the key-
generation algorithm takes as an additional input a function specification f(·) ∈ F from
some class F of functions and produces a public key. The resulting public-key is not much
bigger then the description of a typical f ′ ∈ F , yet the public-key should not reveal which f
from F have been used during the key-generation phase. The encryption/decryption maps m
to f(m). The definition becomes nontrivial (in the sense that one can not push all the work
of computing f(·) to the decryption phase) when for all f ∈ F it holds that |f(m)| < |m|,
and we insist that the ciphertext size must be smaller than the size of m.

Any single-round PIR can be used to achieve this notion for the class of encryption
functions that encrypt a single bit out of the message, hiding which bit they encrypt: simply
publish in your public key both the PIR query and an additional public-key encryption (with
small ciphertext expansion, compared to the plaintext, such as [34, 10]). When encrypting
the message, first compute PIR answer, and then encrypt the resulting answer with the
public-key encryption. (Some specific PIR constructions do not need this additional layer of
encryption).

What makes the Function-Hiding PKE notion interesting, is that there are many ex-
amples of functions beyond PIR-based projection map. For example, as was shown by
Ostrovsky and Skeith [31] that one can construct an encryption scheme which takes multiple
documents, and encrypts only a subset of these documents – only those that contain a set of
hidden keywords, where the public-key encryption function does not reveal which keywords
are used as selectors of the subset.

4

1.6 Connections: PIR and Complexity Theory

Dziembowski and Maurer have shown the danger of mixing computational and information-
theoretic assumptions in the bounded-storage model. The key tool to demonstrate an attack
was a computationally-private PIR protocol [13]. The compressibility of NP languages was
shown by Harnick and Naor to be intimately connected to computational PIR [22]. In par-
ticular, what they show that if certain NP language is compressible, then one can construct
a single-database PIR protocol (and a collision-resistant hash function) that can be built (in
a non-black-box way) based on any one-way function. Naor and Nissim [28] have shown how
to use computational PIR (and Oblivious RAMs [18]) to construct communication-efficient
secure function evaluation protocols.

There is an interesting connection between zero-knowledge arguments and Single-Database
PIR. In particular, Tauman-Kalai and Raz have shown (for a certain restricted class) an ex-
tremely efficient zero-knowledge argument (with pre-processing) assuming Single-Database
PIR protocols [36].

Another framework of constructing efficient PIR protocols is with the help of additional
servers, such that even if some of the servers leak information to the database, the overall
privacy is maintained [11]. The technique of [11] is also used to achieve PIR combiners [26],
where given several PIR implementations, if some are faulty, they can still be combined into
one non-faulty PIR.

1.7 Public-Key Encryption that supports PIR Read & Write

Consider the following problem: Alice wishes to maintain her email using a storage-provider
Bob (such as Yahoo! or hotmail e-mail account). She publishes a public key for a semantically-
secure public-key encryption scheme, and asks all people to send their e-mails encrypted
under her public key to the intermediary Bob. Bob (i.e. the storage-provider) should allow
Alice to collect, retrieve, search and delete emails at her leisure. In known implementations
of such services, either the content of the emails is known to the storage-provider Bob (and
then the privacy of both Alice and the senders is lost) or the senders can encrypt their mes-
sages to Alice, in which case privacy is maintained, but sophisticated services (such as search
by keyword, and deletion) cannot be easily performed by Bob. Recently, Boneh, Kushile-
vitz, Ostrovsky and Skeith [2] (solving the open problem of [1]) have shown how to create a
public key that allows arbitrary senders to send Bob encrypted e-mail messages that support
PIR queries over these messages and the ability to modify (i.e. to do PIR writing) Bob’s
database, both with small communication complexity (approximately O(

√
n)). It may be

interesting to note, however, that manipulating the algebraic structures of currently available
homomorphic encryption schemes cannot achieve PIR writing with communication better
than Ω(

√
n), as shown in the recent work of Ostrovsky and Skeith [32].

1.8 Organization of the rest of the paper

In the rest of the paper we give an overview of the basic techniques of single database PIR. It
is by no means a complete account of all of the literature, but we hope that it rather serves
as an introduction, and a clear exposition of the techniques that have proved themselves
most useful. We begin with what we feel are the most natural and intuitive settings, which

5

are based upon homomorphic encryption, and we attempt to give a fairly unified and clear
account of this variety of PIR protocols. We then move to PIR based on the Φ-Hiding
assumption, and to a construction based upon one-way trapdoor permutations. Throughout,
our focus is primarily on the intuition behind these schemes; for complete technical details,
one can of course follow the references.

1.9 Balancing the Communication Between Sender and Receiver

Virtually every single database private information retrieval protocol is somewhat compara-
ble to every other in that they all:

• Adhere to a strict definition of privacy

• Necessarily have Ω(n) computational complexity (where n is the size of the database).3

As such, it is the case that the primary metric of value or quality for a PIR protocol is the
total amount of communication required for its execution. Therefore, it may be useful to
examine a somewhat general technique for minimizing communication complexity in certain
types of protocols, which we’ll be able to apply to single database PIR. Suppose that a
protocol P is executed between a user U and a database DB, in which U should privately
learn some function f(X) where X ∈ {0, 1}n is the collection of data held by DB. By
“privately”, we mean that DB should not gain information regarding certain details of f .
Let g(n) represent the communication from U to DB and h(n) be the communication from
DB to U involved in the execution of P . So, g, h : Z+ −→ Z+. As a simplifying assumption
to illustrate the idea, suppose that:

1. The function of the database f(X) that U wishes to compute via the protocol depends
only on a single bit of X.

2. g, h can be represented, or at least estimated by polynomial (or rational) functions in
n.

If all of these conditions are satisfied, then we’ll often have a convenient way to take the
protocol P , and derive a protocol P ′ with lower communication which will just execute P as
a subroutine. The idea is as follows: since the function of X we are computing is highly local
(it depends only on a single bit of X) we can define P ′ to be a protocol that breaks down the
database X into y smaller pieces (of size n/y) and executes P on each smaller piece. Then,
the desired output will be obtained in one of the y executions of P . Such a protocol will have
total communication Tn(y) = g(n/y)+yh(n/y). It may be the case that this will increase the
communication of U or DB, but will reduce the total communication involved. If indeed all
functions are differentiable as we’ve assumed, then we can use standard calculus techniques
to minimize this function (for any positive n) with respect to y. For example, suppose
that the user’s communication is linear, and the database’s communication is constant. For
example, let g(n) = rn+ s and h(n) = c, so that Tn(y) = yc+ s+ rn

y
. Solving the equation

d
dy
Tn(y) = 0 on (0,∞) gives

y =

√
crn

c

3In order to preserve privacy, the database’s computation must involve every database element.

6

This value of y is easily verified to be a local minimum, and we see that by executing the
protocol O(

√
n) times on pieces of size O(

√
n) we can minimize the total communication.

More generally, similar techniques can of course be applied when the function f depends
on more than one bit of X, as long as there is a uniform way (independent of f) to break
down the database X into pieces that contain the relevant bits. These techniques can be
applied to more general situations still, in which the function depends on many database
locations; however, in this case one will need a method of reconstructing the output from the
multiple protocol returns (in our simple example, the method is just selecting the appropriate
value from all the returns). Also, for this technique to be of value in such a situation, it will
generally be necessary to have a uniform way to describe the problem on smaller database
pieces.

2 PIR Based on Group-Homomorphic Encryption

The original work on computational PIR by Kushilevitz and Ostrovsky [23] presented a
private information retrieval protocol based upon homomorphic encryption. Such techniques
are often very natural ways to construct a variety of privacy-preserving protocols. It is often
the case with such protocols based upon homomorphic encryption, that although the protocol
is designed with a specific cryptosystem, there is a more fundamental, underlying design
that could be instantiated with many different cryptosystems in place of the original, and
furthermore this choice of cryptosystem can have a very non-trivial impact on performance.
For example, the work of [23] used the homomorphic cryptosystem of Goldwasser and Micali
[17] to create a PIR protocol, and in the following years, many other similar protocols were
developed based upon other cryptosystems, e.g., the work of Chang [6] which is based upon
the cryptosystem of Paillier [34], and also the work of Lipmaa [25]. However, the method
of [23] was actually quite generic, although it was not originally stated in such a way. In
this section, we’ll present an abstract construction based upon any group homomorphic
encryption scheme which has [23] and [6] as special cases, as well as capturing the work of
[25]. Hopefully, this section will provide the reader with general intuition regarding private
information retrieval, as well as a pleasant way to understand the basics of a moderate
amount of the literature in computational PIR.

2.1 Homomorphic Encryption Schemes

Let (K, E ,D) be a cryptosystem, the symbols representing the key generation, encryption,
and decryption algorithms respectively. Generally, we say that such a cryptosystem is secure
if it is secure against a chosen plaintext attack, i.e., if E produces distributions that are
computationally indistinguishable, regardless of the input. Roughly speaking, this means
that it is not feasible to extract any information from the output of E . For example, even if a
(computationally bounded) adversary knows that there are only two possible messages a and
b, he still cannot tell E(a) apart from E(b), even if he repeatedly executes the (randomized)
algorithm E on inputs of his choice.

To construct our PIR protocol, we only need a secure cryptosystem that is homomorphic
over an abelian group, G. I.e., if the cryptosystem (K, E ,D) has plaintext set G, and

7

ciphertext set G′, where G,G′ are groups, then we have that

D(E(a) ? E(b)) = a ∗ b

where a, b ∈ G, and ∗, ? represent the group operations of G,G′ respectively. So, the cryp-
tosystem allows for oblivious distributed computation of the group operation of G. (Note
that we reduce the equivalence to hold modulo decryption since the encryption algorithm E
must be probabilistic in order to satisfy our requirements for security.)

For such a cryptosystem to be of any conceivable use, we of course have that |G| > 1.
Hence, there is at least one element g ∈ G of order greater than 1. Suppose that ord(g) = m.
If the discrete log problem4 in G is easy (as will often be the case e.g., when G is an
additive group of integers) then we can represent our database as X = {xi}n

i=1 where each
xi ∈ {0, ...,m− 1}. Otherwise, we will just restrict the values of our database to be binary,
which is the traditional setting for PIR. I.e., xi ∈ {0, 1} for all i ∈ [n]. As it turns out, a
homomorphic encryption protocol alone is enough to create a PIR protocol.

2.2 Basic Protocols From Homomorphic Encryption

In what follows, we will provide a sequence of examples of PIR from homomorphic encryption,
each becoming slightly more refined and efficient. Let us suppose that the i∗ position of the
database is desired by a user U . Keeping the notation established above, let G,G′ be groups
which correspond to the plaintext and ciphertext of our homomorphic cryptosystem (resp.)
and let g ∈ G be a non-identity element. As a first attempt at a PIR protocol, a user U
could send queries of the form Q = {qi}n

i=1 where each qi ∈ G′ such that

D(qi) =

{
g if i = i∗

idG otherwise

Then, the database can respond with

R =
n∑

i=1

xi · qi

using additive notation for the operation of G′ (and of G from this point forward) and using
· to represent the Z-module action. Now U can recover the desired database bit as follows,
computing

D(R) = D

(
n∑

i=1

xi · qi

)
=

n∑
i=1

xi · D(qi) = xi∗ · D(qi∗) = xi∗ · g

and hence U determines xi∗ = 1 if and only if D(R) = g. Or, in the case where the discrete
log is easy in G, U would compute xi∗ as the log of D(R) to the base g (just by division,
in the case of an additive group of integers). This protocol is clearly correct, but it is also
easily seen to be private. The only information received by DB during the protocol was
an array of ciphertexts, which by our assumptions on the cryptosystem, each come from

4We will refer to the problem of inverting the Z-module action on an abelian group G as the “discrete
log problem in G”.

8

(computationally) indistinguishable distributions, and hence contain no information that
can be efficiently extracted. For a formal proof, one can apply a standard hybrid argument.

However, although our protocol is both correct and private, it unfortunately requires the
communication of information proportional in size to the entire database in order to retrieve
a single database element. This could have just as easily been done by sending the entire
database to the user, which would also maintain the user’s privacy. Setting k = log |G′|
as a security parameter, the user must communicate O(nk) bits. Fortunately, this can be
modified into a more communication-efficient protocol without much effort. To begin, one

can organize the database as a square, X = {xij}
√

n
i,j=1, and if the (i∗, j∗) position of the

database is desired, the user can send a query of the form Q = {qi}
√

n
i=1 defined just as

before (we will ignore the j∗ index for reasons that will become clear shortly). Then, the

database can compute Rj =
∑√

n
i=1 xij · qi for each j and send {Rj}

√
n

j=1 back to the user

as the query response. Now as we’ve seen, from D(Rj), U can recover {xi∗j}
√

n
j=1 just as

before. In particular, U can compute xi∗j∗ (even though much more information is actually
received). Note that the total communication involved in the protocol has now become
non-trivially small: it is now proportional to

√
n for each party as opposed to the O(n)

communication required by our original proposal and the trivial solution of communicating
the entire database to U .

However, we can make further improvements still. Let

φ : G′ ↪→ Zl

be an injective map such that for all y ∈ G′, each component of φ(y) is less than ord(g). I.e.,
one can think of the map as φ : G′ ↪→ Zl

ord(g). Any such map with do- we only require that

both φ and φ−1 are efficiently, publicly computable. Note that in general, we will always
have l > 1 since ord(g) ≤ |G| and |G| < |G′|, the latter inequality following from the fact
that the encryption scheme is always probabilistic (D is never injective, but of course is
always surjective). Again, note that we do not ask for any algebraic conditions from the
map φ; it can be any easily computed injective set map. (For example, we could just break
down a binary representation of elements of G′ into sufficiently small blocks of bits to obtain

the map φ.) Now, we can refine our query, and send Q =
[
{qi}

√
n

i=1, {pj}
√

n
j=1

]
where qi∗ and

pj∗ are set to encryptions of g, but all others encrypt idG. Then, the database will initially
proceed as before, computing

Rj =

√
n∑

i=1

xij · qi

but then further computing

Rt =
n∑

j=1

φ(Rj)t · pj

where φ(Rj)t represents the t-th component of φ(Rj). This is sent as the query response to
U . To recover the desired data, U computes for every t ∈ [l]

D(Rt) = φ(Rj∗)t · g

from which φ(Rj∗) can be computed. Then since φ−1 is efficiently computable, U can recover

Rj∗ =
∑√

n
i=1 xij∗ · qi, and as we have seen xi∗j∗ is easily recovered from D(Rj∗).

9

So now what amount of communication is required by the parties? The database sends
O(l log(|G′|)) = O(lk) bits of information, meanwhile the user U sends O(2k

√
n) bits of

information which will generally be a large improvement on the database side. We can
naturally extend this idea to higher dimensional analogs. Representing the database as a
d-dimensional cube (we have just seen the construction for d = 1, 2), we accomplish the
following communication complexity: O(kd d

√
n) for the user’s query, and O(ld−1k) commu-

nication for the database’s response.

The preceding construction is essentially that of [23] and of [6]. Both are simply special
cases of what has been described above:

The work of [23] is based upon the cryptosystem of [17], which is homomorphic over the
group Z2, having ciphertext group ZN for a large composite N . In this case, it is simply the
binary representation of a group element that plays the role of the map φ : G ↪→ Zl. I.e., we
have l = k, the security parameter, and φ : ZN ↪→ Zk takes an element h ∈ ZN and maps it
to a sequence of k integers, each in {0, 1} corresponding to a binary representation of h.

The work of [6] is also a special case of this construction. Here, the protocol is based
upon the cryptosystem of [34], and we have G = ZN and G′ = Z∗N2 , hence we can greatly
reduce the parameter l in comparison to the work of [23]. In this case, it is easy to see that
we only need l = 2, which is in fact minimal, as we have discussed before. The author of [6]
uses the map φ : Z∗N2 ↪→ ZN defined by the division algorithm, dividing by N to obtain a
quotient and remainder of appropriate size. Roughly speaking, (and using C-programming
notation) he uses the map x 7→ (x/N, x%N). However, as we have seen before, this is not
necessary- any map could have been used (appropriately partitioning bits, etc.). Note also
that since the discrete log in G is not hard (as we have defined it) we do not need to restrict
our database to storing bits. Database elements could be any numbers in ZN .

These quite generic methods also capture the work of [25], as long as the appropriate
cryptosystem is in place.

Consider a “length-flexible” cryptosystem, for example, that of Damg̊ard and Jurik [10].
Such a cryptosystem has the property that given a message of arbitrary length, and given
a fixed public key, one can choose a cryptosystem from a family of systems based on that
key, so that the message fits in one ciphertext block regardless of the key and the message
length. Using this, we can further reduce the database’s communication in our PIR protocol,
using essentially the very same generic technique described above. We’ll demonstrate the
following:

Theorem 2.1 For all d ∈ Z+ there exists a PIR protocol based on the homomorphic cryp-
tosystem of Damg̊ard and Jurik with user communication of O(kd2 d

√
n) and database com-

munication of O(kd) where k is a security parameter and n is the database size.

What the Damg̊ard and Jurik system affords us is the following: instead of having only
one plaintext and ciphertext group G,G′, we now have a countable family at our disposal:

{Gi, G
′
i}∞i=1

all of which correspond to a single public key. These groups are realized by Gi ' ZN i , G′
i '

Z∗N i+1 , and hence we have natural inclusion maps of G′
i ↪→ Gi+1. This, along with the

observation that Gi is cyclic for all i, are essentially the only important facts regarding

10

this system that we’ll utilize. So, Gi is always cyclic, and we have a natural (although not
algebraic) map

ψi : G′
i ↪→ Gi+1

This is all we need to modify our generic method. We will just replace the map φ with the
maps ψi, and accordingly, we will modify our query so that the vector for the i-th dimension
encrypts idGi

in all positions except for the index of interest, which will encrypt a generator
of Gi. With only these minor substitutions to the abstract construction, the protocol will
follow exactly as before. This will give us a protocol with communication complexity for the
user U of

d∑
i=1

ik d
√
n = O(kd2 d

√
n)

and for the database, we require only
O(kd)

as opposed to the previous exponential dependence on the dimension d of the cube used!
Optimizing the parameters, setting d = log(n)

2
, we have O(k log2(n)) communication for the

user and O(k log(n)) for the database. So, as one can see, even a completely generic method
can be quite useful, producing a near optimal, poly-logarithmic protocol.

3 PIR Based on the Φ-Hiding Assumption

Cachin, Micali, and Stadler recently developed a new cryptographic assumption called the
Φ-Hiding Assumption, and successfully used this assumption to build a PIR protocol with
logarithmic communication. Roughly, this assumption states that given two primes p0, p1

and a composite m = pq such that either p0|φ(m) or p1|φ(m), it is hard to distinguish
between the two primes. (Here, φ(m) is the Euler-φ function, so that φ(m) = (p−1)(q−1).)
The assumption also of course states that given a small prime p, it is computationally feasible
to find a composite m such that p|φ(m). Such an m is said to φ-hide p. A query for the i-th
bit of the database essentially contains input to a prime sequence generator, a composite
m that φ-hides pi (the i-th prime in the sequence) and a random r ∈ Z∗m. The database
algorithm returns a value R ∈ Z∗m such that with very high probability, R has pi-th roots if
and only if the database bit at location i was 1.

3.1 Preliminaries

To understand the protocol, let us start with some very basic algebraic observations. Let G
be a finite abelian group, and let k ∈ Z+. Consider the following map:

ϕk : G→ G defined by x 7→ xk

Since G is abelian, it is clear that ϕk is a homomorphism for all k ∈ Z+. What is ϕk(G)?
Clearly it is precisely the set of all elements in G that posses a k-th root in G. I.e.,

Im(ϕk) = {x ∈ G | ∃y ∈ G � x = yk}

We will denote this set by Hk = Im(ϕk). Clearly it is a subgroup since it is the homo-
morphic image of a group. The size of this subgroup of course depends on k and G. If, for

11

example, (k, |G|) = 1, then it is easy to see that ϕk(G) = G, since if Ker(ϕk) 6= {e} then
there are non-identity elements of order dividing k, which is clearly impossible. In the case
that (k, |G|) > 1, how big is Ker(ϕk)? It is at least as big as the largest prime divisor of
(k, |G|) > 1, by Cauchy’s theorem if you like. For example, if k is a prime such that k | |G|,
then the map ϕk is at least a k to 1 map.

Finally, let’s take a look at the subgroups Hk = ϕk(G) = Im(ϕk). We will just need the
following observation:

∀k ∈ Z Hk CC G

Here the symbol Hk CC G signifies that Hk is a characteristic subgroup of G, which is to
say that the subgroups Hk are fixed by every automorphism of G. (Compare with normal
subgroups which are those fixed by every inner automorphism of G.) Note that for any finite
G, if H CC G and ϕ ∈ Aut(G) then ϕ(x) ∈ H ⇐⇒ x ∈ H for all x ∈ G.

Let us summarize the few facts that will be of importance to us, and also narrow our
view to correspond more directly to what we will need. Suppose that p ∈ Z is a prime, and
define the maps ϕp as before. Then,

1. ϕp ∈ Aut(G) ⇐⇒ p - |G|

2. ϕp is at least a p to 1 map if p | |G|.

3. ∀p, Hp CC G (although this is trivial in the case that p - |G| and hence Hp = G). So
for any ϕ ∈ Aut(G) and x ∈ G we have ϕ(x) ∈ Hp ⇐⇒ x ∈ Hp.

3.2 A Brief Description of the Protocol

We now have enough information for a basic understanding of how and why the PIR protocol
of [7] works. First, we will begin with the “how”. Continuing with our preceding notation,
suppose that X = {xi}n

i=1 is our database, with each xi ∈ {0, 1}, and again, suppose that the
index of interest to U is i∗. The protocol executes the following steps, involving a database
DB and a user U .

1. U sends a random seed for a publicly known prime sequence generator to DB, the
primes being of intermediate size5.

2. U computes pi∗ , the i∗-th prime in the sequence based on the random seed.

3. U finds a composite number m that φ-hides pi∗ , and sends m to DB. In particular, we
have that pi∗ | φ(m). Recall that φ(m) = |Z∗m|.

4. DB selects r ∈ Z∗m at random, and computes R ∈ Z∗m as follows:

R = ϕpxn
n
◦ ϕp

xn−1
n−1

◦ · · · ◦ ϕp
x1
1

(r)

= r
∏n

i=1 p
xi
i mod m

5. U receives R from DB as the response, and determines that xi∗ = 1 if and only if
R ∈ Hpi∗ .

5Revealing a large prime dividing φ(m), (p > 4
√

m) enables one to factor m, so the primes must be chosen
to be small.

12

These steps are essentially the entire protocol at a high level. However, it may not be
immediately obvious that the statement R ∈ Hpi∗ has much to do with the statement xi∗ = 1.
But using the 3 facts we established early on, it isn’t too hard to see that these are in fact
equivalent with very high probability.

¿From our first fact, we know that ϕpi
∈ Aut(G) whenever i 6= i∗ with overwhelming

probability, since the only way for this to not be the case is if pi | φ(m). However, due to
the fact that there are at most only a logarithmic number of prime divisors of φ(m) out of
many choices, this event will be extremely unlikely6. So, all of the ϕpi

are automorphisms,
except for ϕpi∗ .

¿From our next fact, we know that with very high probability r 6∈ Hpi∗ , where r ∈ Z∗m
was the element randomly chosen by DB. Since the map is at least pi∗ to 1, the entire group
is at least pi∗ times the size of Hpi∗ . So, if we were to pick an element at random from Z∗m,
there is at best a 1

pi∗
chance that it will be in Hpi∗ . So, in the length of our primes pi, there

is an exponentially small probability that a random r will be in Hpi∗ .
Finally, we noted that the subgroupsHpi

are characteristic subgroups, and hence our fixed
by every automorphism of Z∗m. In particular, Hpi∗ CC Z∗m. So, all of the automorphisms
{ϕpi

}i6=i∗ will preserve this group: things outside will stay outside, and things inside will stay
inside, and of course ϕpi∗ moves every element into Hpi∗ . I.e.,

ϕpi∗ (x) ∈ Hpi∗ ∀x

and if i 6= i∗, then
ϕpi

(x) ∈ Hpi∗ ⇐⇒ x ∈ Hpi∗

We can trace the path that r takes to become R and see what happens: We have that
the element r begins outside of the subgroup Hpi∗ and then r is moved by many maps, all
of which come from the set

{ϕ1, ...ϕi∗−1} ∪ {Id}

depending on whether or not xi = 1. But what is important is that all of these maps are
automorphisms, which therefore fix Hpi∗ . So, no matter what the configuration of the first
i∗ − 1 elements of the database, r will have not moved into Hpi∗ at this point. Next, we
conditionally apply the map ϕpi∗ depending on whether or not xi∗ = 1, which conditionally
moves our element into Hpi∗ . This is followed by the application of more automorphisms,
which as we have seen have no effect on whether or not the response R will be in Hpi∗ . So,
since Hpi∗ is fixed by every automorphism, the only chance that r has to move from outside
Hpi∗ to inside Hpi∗ is if the map ϕpi∗ is applied, which happens if and only if xi∗ = 1. Hence,
we have that (with overwhelming probability) R ∈ Hpi∗ if and only if xi∗ = 1.

The privacy this protocol can be proved directly from the Φ-Hiding assumption, although
it may be more pleasant to think of this in terms of the indistinguishability of the subgroup
Hpi

to a party not knowing the factorization of m. Now, let us take a look back and
examine the communication to see why this was useful. The challenge of creating PIR
protocols is usually to minimize the amount of communication. A PIR protocol with linear

6According to the prime number theorem, there are approximately N
2 log N primes of bit length equal to

that of N . Our chances of picking m such that another pi inadvertently divides φ(m) are approximately
polylog(m)

m which is negligibly small as the length of m in bits (i.e., log m, the security parameter) increases.

13

communication is quite trivial to construct: just transfer the entire database. This is of
course not very useful. The PIR protocol we have described above, however, has nearly
optimal communication. The database’s response is a single element R ∈ Z∗m which has
size proportional to the security parameter alone (which must be at least logarithmic in
n), and the user’s query has the size of the security parameter, and the random input to
a prime sequence generator, which could also be as small as logarithmic in n. So, we have
constructed a PIR protocol with only logarithmic communication, which is of course optimal:
If DB wants to avoid sending information proportional to the size of the database, then U
must somehow communicate information about what index is desired, which requires at least
a logarithmic amount of communication. However, with the recommended parameters for
security, the total communication is approximately O(log8 n).

3.3 Generalizations: Smooth Subgroups

More recently, Gentry and Ramzan [15] have generalized some of the fundamental ideas
behind these methods, creating protocols based on smooth subgroups, which are those that
have many small primes dividing their order. Somewhat similar to CMS [7], a list of primes
is chosen corresponding to the positions of the database, and a query for position i essentially
consists of a description of a group G such that |G| is divisible by pi. However, the work
of [15] is designed to retrieve blocks of data at a single time (CMS [7] must be repeatedly
executed to accomplish this functionality). Rather than repeatedly exponentiating by all
of the primes, the database is represented as an integer e such that when reduced mod pi,
the value is the i-th block of the database (such an integer always exists of course by the
Chinese Remainder Theorem). Now to recover the data (which is just e mod pi), a discrete
log computation can be made in the (small) subgroup of order pi.

4 PIR From any Trapdoor Permutation

In 2000, Kushilevitz and Ostrovsky [24] demonstrated that the existence of one-way trapdoor
permutations suffices to create a non-trivial PIR, where non-trivial simply means that the
total communication between the parties is strictly smaller than the size of the database.
Although the protocol requires multiple rounds of interaction, the basic construction remains
fairly simple in the case of an honest but curious server. In case of a malicious server the
construction is more complicated and the reader is referred to the original paper for details.
Here, we only illustrate the basic idea of the honest-but-curious case.

4.1 Preliminaries

For this construction, the existence of one way trapdoor permutations (f, f−1) is assumed,
as well as Goldreich-Levin hard core bits.

Another tool (used in the honest-but-curious case) is the universal one way hashing of
Naor and Yung [29]. For the dishonest case, universal way-way hash functions are replaced
with an interactive hashing protocol [33], and on top of that some additional machinery
is needed. However, for the honest but curious case the proof is far more simple. Recall
that universal one way hash functions satisfy a slightly weaker type of collision-resistance.

14

Basically, if one first picks any input x from the domain, and a then independently a hash
function h from a universal one way family, it is computationally infeasible to find x′ 6= x ∈
h−1(h(x)).

The PIR protocol we’ll discuss here uses universal one way hash functions which are 2 to 1
(i.e., for all y in the codomain, |h−1(y)| = 2) and each function will map {0, 1}k −→ {0, 1}k−1

for some integer k.

4.2 Outline of the Protocol

At a very high level, the protocol revolves around the following idea: The server takes an
n bit database and partitions it into consecutive blocks of length k (k will be the input
length to a trapdoor permutation f). It collapses every block of the database by one bit,
and sends this (slightly) reduced-size database back to the user. The user then selects and
sends to the server some information that will allow him to determine the one missing bit
of information for the block in which he or she is interested. Now, using communication
balancing techniques similar to what we’ve described in the introduction, we can hold on to
the constant advantage (below n) given to us by the server collapsing the one bit of every
database block. The trick, of course, is to avoid revealing information about which block the
user is interested in when recovering this last bit. The solution is quite simple. As mentioned,
the database collapses a bit of each database block before sending this information to the
user. There are many obvious ways to do this, for example just sending all but one bit of
each block. However, in these situations, the database knows exactly the two possibilities
that arise from the collapsed data sent to the user, as well as knowing the actual value in the
database. This would seemingly make it quite difficult for the user to determine which of the
two possibilities exist in the database without the database gaining information. So instead,
a method is devised in which the database collapses a bit of each block without knowing the
other possibility. This will enable the user to determine which possibility exists for a given
block without revealing what block he or she is interested in.

4.3 Sketch of Protocol Details

As we alluded to in the outline, we need to provide a way for the database to collapse a bit
of each block, but without knowing the other possibility. This is accomplished precisely via
a family F of universal one way hash functions, and in fact, the original construction of such
a family by Naor and Yung [29] is used. The important point, is that the only assumption
needed to build this family of universal one way hash functions was the existence of one-way
permutations, and furthermore, because they were constructed via one-way permutations,
a party holding the trapdoor can find collisions. To summarize, here are the important
properties we need from the family F :

1. Each function of F is efficiently computable.

2. Each function has the property of being 2 to 1.

3. Given only x, f(x) for f ∈ F , it is computationally infeasible to find x′ 6= x ∈ f−1(f(x))
without trapdoor information.

15

4. With trapdoor information, it is feasible to find collisions in every function f ∈ F .

The protocol proceeds as follows:

The database is divided into blocks of size K, one of which the user is interested in.
Furthermore, the database is organized into pairs of blocks, denote them by zi,L and zi,R

(L,R standing for “left” and “right”). A query consists of two descriptions of universal one
way hash functions, fL, fR, to which the user has the trapdoors. Upon receipt of the query,
the database computes the values of fL(zi,L) and fR(zi,R) for each block of the database,
and returns these values to the user. The user, who has trapdoors, can compute both
possible pre-images (z, z′) that may correspond to the block of the database of interest.
It only remains to have the database communicate which one, while maintaining privacy.
This is accomplished via hardcore predicates. Without loss of generality, suppose the user
wishes to retrieve the left block, say zs,L. Then, the user selects two hardcore predicates,
rL, rR according to the conditions that rL(zs,L) 6= rL(z′s,L), yet rR(zs,R) = rR(z′s,R). These
predicates are sent to the database, who responds with rL(zi,L) ⊕ rR(zi,R) for every pair of
blocks. Now, regardless of the possibilities of the right block, the hardcore predicates will be
the same, hence the user can solve for the left hardcore predicate, and hence the left block,
as we assumed the predicates evaluated on the two choices to be distinct. This completes a
basic description of the protocol.

The descriptions of fL, fR, rL, rR are all O(K), which is the only communication from the
user to the database. The communication from the database to the user is easily seen to be
n− n

2K
bits in the initial round, and one more bit in the final response. Hence, the protocol

does achieve smaller than n communication, for n > O(k2). Next we argue that the protocol
is also secure. The only information sent to the database which contains any information
about what block the user is interested in, is that of the hardcore predicates, rL, rR. The
value of the hardcore predicates on the two possible pre-images of a hash value is exactly
what gives us the information regarding the user’s selection. We only need to show that
given such predicates, they do not reveal information about the selected block. Informally,
this is the right approach, as the definition of hardcore predicate states that the outcomes
are hard to predict better than random when only given the output of a function. Indeed,
as fairly straightforward hybrid argument shows, this is the case.

5 Conclusions

In this paper, we have given a general survey of Single-Database PIR and it’s many con-
nections to other cryptographic primitives. We also discussed several implementations of
single-database PIR, including a very generic construction from homomorphic encryption.
As well-studied as single database PIR seems to be, many open problems remain. For ex-
ample, reducing the communication complexity of a PIR protocol based on general trapdoor
permutations, as well as exploring the connections PIR has to other communication-efficient
protocols both in cryptography and complexity theory.

16

References

[1] D. Boneh, G. Crescenzo, R. Ostrovsky, G. Persiano. Public Key Encryption with
Keyword Search. EUROCRYPT 2004: 506-522

[2] D. Boneh E. Kushilevitzy R. Ostrovsky, W. Skeith Public Key Encryption that Allows
PIR Queries IACR E-print archive, 2007.

[3] G. Brassard, C. Crepeau and J.-M. Robert All-or-nothing disclosure of secrets In
Advances in Cryptology: Proceedings of Crypto ’86 Springer-Verlag, 1987, pp. 234-238.

[4] A. Beimel, Y. Ishai, E. Kushilevitz, and T. Malkin. One-way functions are essential for
single-server private information retrieval. In Proc. of the 31th Annu. ACM Symp. on
the Theory of Computing, 1999.

[5] C. Crépeau. Equivalence between two flavors of oblivious transfers. In Proc. of CRYPTO
’87, pages 350–354, 1988.

[6] Y. C. Chang. Single Database Private Information Retrieval with Logarithmic Com-
munication. ACISP 2004

[7] C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval
with polylogarithmic communication. In J. Stern, editor, Advances in Cryptology –
EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer Science, pages 402–414.
Springer, 1999.

[8] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval.
In Proc. of the 36th Annu. IEEE Symp. on Foundations of Computer Science, pages
41–51, 1995. Journal version: J. of the ACM, 45:965–981, 1998.

[9] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption:
improved definitions and efficient constructions. In ACM Conference on Computer and
Communications Security CCS 2006, pages 79-88, 2006.

[10] I. Damg̊ard, M. Jurik. A Generalisation, a Simplification and some Applications of
Paillier’s Probabilistic Public-Key System. In Public Key Cryptography (PKC 2001)

[11] G. DiCrescenzo, Y. Ishai, and R. Ostrovsky. Universal service-providers for database
private information retrieval. In Proc. of the 17th Annu. ACM Symp. on Principles of
Distributed Computing, pages 91–100, 1998. Full version in Journal of Cryptology 14(1):
37-74 (2001).

[12] G. Di Crescenzo, T. Malkin, and R. Ostrovsky. Single-database private information
retrieval implies oblivious transfer. In Advances in Cryptology - EUROCRYPT 2000,
122-138.

[13] S. Dziembowski, U. Maurer On Generating the Initial Key in the Bounded-Storage
Model. EUROCRYPT 2004: 126-137

[14] S. Even, O. Goldreich and A. Lempel A Randomized Protocol for Signing Contracts
Communications of the ACM, Vol 28, 1985, pp. 637-447.

17

[15] C. Gentry and Z. Ramzan. Single Database Private Information Retrieval with Constant
Communication Rate. ICALP 2005, LNCS 3580, pp. 803815, 2005.

[16] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy in private
information retrieval schemes. In Proc. of the 30th Annu. ACM Symp. on the Theory
of Computing, pages 151–160, 1998.

[17] S. Goldwasser and S. Micali. Probabilistic encryption. In J. Comp. Sys. Sci, 28(1):270–
299, 1984.

[18] O. Goldreich, R Ostrovsky. Software Protection and Simulation on Oblivious RAMs.
J. ACM 43(3): 431-473 (1996)

[19] Y. Ishai, E. Kushilevitz, R. Ostrovsky Sufficient Conditions for Collision-Resistant
Hashing. TCC 2005: 445-456

[20] Y. Ishai, E. Kushilevitz, R. Ostrovsky and A. Sahai. Batch codes and their applications.
STOC 2004: 262-271

[21] Y. Ishai, E. Kushilevitz, R. Ostrovsky and A. Sahai. Cryptography from Anonymity.
FOCS 2006: 239-248

[22] D. Harnik, M Naor On the Compressibility of NP Instances and Cryptographic Appli-
cations. FOCS 2006: 719-728

[23] E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database,
computationally-private information retrieval. In Proc. of the 38th Annu. IEEE Symp.
on Foundations of Computer Science, pages 364–373, 1997.

[24] E. Kushilevitz and R. Ostrovsky. One-Way Trapdoor Permutations Are Sufficient for
Non-trivial Single-Server Private Information Retrieval. EUROCRYPT 2000: 104-121

[25] H. Lipmaa. An Oblivious Transfer Protocol with Log-Squared Communication. ISC
2005: 314-328

[26] R. Meier, B. Przydatek On Robust Combiners for Private Information Retrieval and
Other Primitives. CRYPTO 2006: 555-569

[27] M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation. In Proc. of the
31th Annu. ACM Symp. on the Theory of Computing, pages 245–254, 1999.

[28] M. Naor, K. Nissim: Communication Complexity and Secure Function Evaluation
Electronic Colloquium on Computational Complexity (ECCC) 8(062): (2001)

[29] M. Naor, M. Yung. Universal One-Way Hash Functions and their Cryptographic Ap-
plications In Proceedings of the Twenty First Annual ACM Symposium on Theory of
Computing. (May 15–17 1989: Seattle, WA, USA)

[30] R. Ostrovsky and V. Shoup. Private information storage. In Proc. of the 29th Annu.
ACM Symp. on the Theory of Computing, pages 294–303, 1997.

18

[31] R. Ostrovsky and W. Skeith. Private Searching on Streaming Data. In Advances in
Cryptology – CRYPTO 2005

[32] R. Ostrovsky and W. Skeith. Algebraic Lower Bounds for Computing on Encrypted
Data. In ECCC, Electronic Colloquium on Computational Complexity

[33] R. Ostrovsky, R. Venkatesan, and M. Yung. Fair games against an all-powerful adver-
sary. Presented at DIMACS Complexity and Cryptography workshop, October 1990,
Princeton. Prelim. version in Proc. of the Sequences II workshop 1991, Springer-Verlag,
pp. 418-429. Final version in AMS DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science, Vol. 13 Distributed Computing and Cryptography, Jin-Yi Cai,
editor, pp. 155-169. AMS, 1993.

[34] P. Paillier. Public Key Cryptosystems based on CompositeDegree Residue Classes.
Advances in Cryptology - EUROCRYPT 99, LNCS volume 1592, pp. 223-238. Springer
Verlag, 1999.

[35] M. O. Rabin How to exchange secrets by oblivious transfer Technical Memo TR-81,
Aiken Computation Laboratory, Harvard University, 1981.

[36] Y. Tauman Kalai, R. Raz: Succinct Non-Interactive Zero-Knowledge Proofs with Pre-
processing for LOGSNP. FOCS 2006: 355-366

19

