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Abstract

In many control-theory applications one can classify alkpible states of the device by an infinite
state graph with polynomially-growing expansion. In ordier a controller to control or estimate the
state of such a device, it must receive reliable commurinatirom its sensors; if there is channel noise,
the encoding task is subject to a stringent real-time camstr We show a constructive on-line error
correcting code that works for this class of applicationsur@ode is is computationally efficient and
enables on-line estimation and control in the presence ahokl noise. It establishes a constructive

(and optimal-within-constants) analog, for control aggations, of the Shannon coding theorem.
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1. Introduction

Motivation. In many automatic control applications, a device (an engirterrestrial or aerial mobile
robot, a sensor, etc.) communicates with a base statiorctimatols its actions. The communication
may be wireless or wired, synchronous or packet-based. caipithe devices have a limited set of
commands/ controls/ actions/ moves that they can executgor’s by the devices combine with envi-
ronmental disturbances, to cause a change in the parandesasbing the state of the system (such as
location, orientation, or temperature). Such devices t@edmmunicate with the base station regarding
their current state and get further instructions. Examatesnumerous, and include remote mobility is-
sues (such as space or submarine exploration) and web-tvaded control (such as camera and sensor
distributed control) [8, 5].

If the controller is physically remote from the sensors duators, information flow between them can
be subject to noise; if so, system performance depends upmamg the transmissions against channel
noise. In control applications, the encoding of commuimndcest against channel noise faces a special
difficulty due to the need for real-time response to transiois. The objective of the base station is to
learn as precisely as possible the current state of eachadiemits parameter space. Naturally, there is a
tradeoff between the amount of communication (and hen@y§lahd the accuracy and reliability of the
information known at the base station. It is therefore alehgke to perform the channel coding subject
to a channel capacity constraint.

The problem can be considered within a very general framewbinteractive communication prob-
lems [10]; however, the best results in that literature ienm@nconstructive. Fortunately, there is a
feature of the control application that makes it easier ti@meral interactive-communication problems,
since the controlled devices can typically be describetl witinite-dimensional parameter space. (Ex-
ample: the location, orientation and engine RPM of an aehiahe.) What characterizes a typical
parameter space is that the growth rate of the state spasedany point is polynomially bounded.

At each step in its state-space the remote device wishesitbase (or a constant number) of bits to
the base station to indicate its position/configurationsjite channel-noise, the objective of the base-
station is to determine, as accurately as possible, théidocaf the device in its state-space. Of course,
one cannot ask that the base station already have highragrédiout the real value of any measured

bit, before a significant number of subsequent messageditstieen received. More specifically, if the



channel has a constant rate of stochastic noise, then thermsan hope for (on non-degenerate noisy
channels) is that the base station have probaleiityf —2(n)) of estimating incorrectly a particular state
of a device, if all histories leading to that state divergmrirthe true history at least steps previously.
The meaningful question is: Can we achieve such a bound?gBoiniemands that encoded characters
convey information across all time scales. This is exactiptwe achieve in this paper in a constructive

fashion, as we explain below.

Problem statement and results. In this paper, we initiate the study of error-correcting esdor re-
mote control of devices that move in a finite-dimensionabpater space. All of the communication
systems we discuss share the following features. Therdessitone transmitter and one receiver. The
state of the transmitter at any times identified with a vertex (which we denoig) of a state graph
(which we denoté&-); the graph (which may be directed or undirected and wilidglty have self-loops)

is known to both parties, as is the initial statgof the transmitter. In each round, the state of the trans-
mitter shifts to an out-neighbor of the previous state. Targmitter can then use the channel once; the
communicated character can depend upon the entire hidtdrg &ransmitter. Our concern is the design
of an efficient code for these communications.

For nodesr, 2’ € G let di be the length of a shortest path franto 2’ in G. Let B(x, () = {a :
dg(z,2") < £}. The growth ofG as a function of is the supremum over all of |B(z, ¢)|. If this is
bounded above by a polynomial inwe sayG has polynomial growth. Finite-dimensional grids have
polynomial growth. We suppose that the alphabet of the atlaisra finite setS. S* denotes the set
of finite words overS. If the greatest out-degree or in-degree(bis A, we say that theate of the
code isp = (log A)/(log |S]). (We assume below that > 2.) We expressly avoid tailoring our results
to particular kinds of noisy channels. Our results are aienoisy but non-adversarial channels, in
particular discrete memoryless channels, for which werassonly that the capacity is proportional to
log |S|.

Based upon the code and upon the history of communicatioaseteiver has at timea guess:; of
the current state of the transmitter. (We understand the tmohclude the estimation procedure used by
the receiver.) We say that the code lkea®r exponent if P(dg(x;, 2;) > ) < exp(—rl) Vt, (. We say
that the code itime-efficienif the encoding and expected decoding times(argt)°(1). It is time-and-

space-efficient the space required for encoding, and the expected spgoeed for decoding, are also
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(logt)°W).

We show the existence of asymptotically optimal error-ecting codes for every state gragh Our
main result is theonstructionof a code for communication in finite-dimensional grid graphat has
positive rate, positive error exponent, and is time-amatspefficient. The method extends to other
graphs with polynomial growth which are fine discretizasiaf finite-dimensional manifolds. These
graphs are exactly the graphs that capture control applicatind therefore our results are widely ap-

plicable for this entire class of problems.

Previous work. Existing error-correcting codes and error-correctiongostocols do not provide a
satisfactory answer for automatic control applicationsa®laborate below.

Existing error-correcting codes fall mainly into two classblock codes and convolutional codes. In
a block code (with block-length, sa¥), a time-stream of data is broken into segments of lehgditer
an entire segment arrives at the encoder, it is transformedai (somewhat longer) sequence of bits,
which are then sent across the channel.

With block codes it is possible to achieve very low probaieii of error (exponentially small ih)
with modest computational load (near-lineakinhowever, there is a built-in delay &ftime units. This
violates the real-time performance requirement of an aatmngontrol application.

Convolutional codes [17, 9, 3] avoid the delay drawback afcklcodes by performing "on-line”
encoding, in which each bit of the input stream immediat#dyts influencing the encoded message bits,
and continues to do so until the end of a time interval of IeiAgtalled the constraint length of the code;
this interval, which in existing implementations is finiteanalogous to the block length of a block code.
The decoder can make an informed guess about a messageylshoety after its arrival at the encoder,
and this guess can continue to be updated during the entirgtramt length, with error probability
decreasing ultimately to a value exponentially smalkinAlthough this is the kind of code we would
like to use for control, the reason that existing convolugilocodes cannot be used is that no efficient
constructions are known for convolutional codes with lazgastraint lengths (unlike the situation for
block codes). Indeed, while convolutional codes are hgagiéd in practice (e.g., for cell phones), those
codes have been intensively optimized thanks to their ieoytonstraint lengths. The not-very-low
probability of error that is a corollary of short constraiemgth is sufficient for an application in which

short bursts of noise are tolerated. However, it is not adexfor control applications in which system
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stability and performance depends upon preventing ac@tionlof errors over extended time periods.

Convolutional codes with long, and even infinite, constréngths do exist; however, not in a form
that we can use. The very first papers on convolutional codes that randomized families of convo-
lutional codes have attractive properties; however, suemay cannot be used without the crutch of a
supply of shared random bits at encoder and decoder. Maogattgca class of explicit "tree codes” was
introduced, which eliminates the need for public coins [12], however, the existence proof for these
codes has not yet been matched by an effective construetioifor that reason, these codes too are not
yet available for use. (A similar situation reigned for lkamdes after Shannon’s existence proof for
asymptotically-good block codes [13] until explicit consitions were provided [6, 4].)

There has recently been substantial progress in informdtieoretic and rate-distortion bounds for
control applications [16, 2, 14, 15, 7]; these works solviéedent problems than the one considered
here. There does not appear to be a prior code for our prolilanistefficient in both computation and
communication.

Our work, therefore, should be understood as introducingvafamily of convolutional codes with
infinite constraint length, suitable specifically to coh@pplications but not to general-purpose com-
munication, and which manages to thereby avoid the techdiifizulties that have prevented effective

construction of general-purpose convolutional codes withite (or even long) constraint length.

2. Trajectory codes

Throughout,G is a graph with vertex sét, initial vertexxz, € V, and edge sekl C V x V. A
trajectory~ of length|vy| = ¢ and which begins at timg is a mapping from{ty, ..., %, + t} to V for
which all (v(i),v(i + 1)) € E. If two trajectoriesy, 1" are of equal length, start at the same tityeand
share the same start vertex (i-(to) = +'(t0)), we writey ~ ~/. The distance between trajectories
v~ oflengtht is 7(y,7') = [{to <i <to +1: (i) # 7 ()}.

A trajectory codeis a mappingy : V x {1,2,...} — S, extended to a mapping from trajec-
tories to .S* by concatenation:x(y) = (x(v(to + 1)),...,x(v(to + t))). Hamming distance be-
tween equal-length words ifi* is denotedh. Therelative distanceof the code is defined to he =
inf, . {h(x(7), x(7v))/7(v,7)}. A finite-time trajectory code is defined similarly by a mappiy :
Vx{l1,2,....,T} — 8S.



We say that the code asymptotically goodf it has both positive rate and positive relative distance

Lemma 1. If the ¢'th character of an asymptotically good code with alphaSetan be computed in
time and spacélogt)°") then the code can be converted into another asymptoticaltylgode that

has positive error exponent and is time-and-space-efticien

Proof. The conversion is by simple repetition (the alphabet of i node isS* for constant:), and
serves only to improve the error exponent. For sufficientbhherror exponent, decoding by max-
likelihood matching is exponentially unlikely to need taexine trajectories far away from that decoded

in the previous round. Hence the expected time and space abthputation iglog t)°), O

Our task therefore is to construct an asymptotically goajgttory code. The first problem is to show
that such codes exist (Section 3). Interestingly, the onbppwe know is non-constructive; however,
with the aid of this proof we provide a constructive and tiarel-space-efficient finite-time code for

grids. (Section 4).

Comparison with tree-codes It is instructive to compare the present work with that ore ttedes. In
the terminology of the present paper, [11, 12] used the pobtoee of a given noiseless communication
protocol in the role of our grap&; the tree code used in that work for a noisy-communicati@atqaol

is what we call the trajectory code dnx {1,2,...}. The existence proof provided in that work relies
on the tree structure of the graph, and does not apply to the gemeral case considered here. However,
the purpose of the generalizationnist just handling more difficult communication problems; theea
thatG is a tree is, in fact, the most difficult one. (Using tree coelegbles eventual reconstruction of the
entire history of the transmitter, not only reconstructida good estimate of the current state.) Instead,
the purpose in our paper is to obtain a computationally g¥fesolution using the special assumption
that G has polynomial growth. This assumption is motivated by rapplications, withG being a
discretization of the finite-dimensional parameter spdah® system. Thus, we circumvent the need
to construct an explicit tree code and show that a differedeavhich that works for the entire class of

polynomial-growth graphs is sufficient.



3. Existence of asymptotically good trajectory codes

Theorem 2. Every graphGG possesses an asymptotically good trajectory code. Furbes, every

0 < lis feasible as the relative distance of an asymptoticallycdjcode.

Proof. To achieve positive rate we must labék {1,2, ...} with an alphabef of sizeA°)). Consider
choosing each label independently and uniformly. A codeiokd in this way is almost-surely not
asymptotically good. Nonetheless this probability spaelme used for an existence proof.

Consider at first the finite-graph, finite-time restrictidittee problem taB (zo, 7)) x {1, 2, ..., T}. Fix
any desired relative distance boundf v = (v, v2) consists of two trajectories such that~ ~, and
which share only their common start vertex (i1, 72) = |11]), then we refer toy as a pair of “twins”
and write[y| = |y andhx(v) = h(x(71), x(72)). Note thatinf,, ., (h(x(11), x(12))/7(71,72)) =
infwins ~ (Rx(7)/|7])- For a pair of twingy let A, be the event thatx(vy)/|v| < 6. There is a positive
for which P(A.,) < |S]~<hl.

For twinsy = (y1,72) let N, = {twins 8 = (41,02) : Je1,e2 € {1,2}, 51,752 > 0 such that
Ver (J1) = Bes (J2) }-

Observe that\, is independent of the random varialolés) s¢ . -

The Lovasz local lemma [1] ensures tifiatd, # () provided that there exist nonnegative re@ls

x, < 1 for which

o, [] (-2 = P(A,).

BEN,

Observe that{3 : 3 € N, |B| = £}| < 4|y|¢A%. Forc to be determined set, = A=, Now,

vy ] (0= ag) 2 AT (1= Aneyihiea,
/=1

BENy

A sufficiently largec ensures that foA > 2,1 — A=¢¢ > o207 g

oo
> A—¢hl HG—SA*”MZA% _
=1

— ANl g—8hI D, A=t
A sufficiently largec’ ensures that foA > 2, >°2° (A=) < 2. So
> A—¢ =161
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SinceP(A,) < |S|~<1, the hypotheses of the local lemma are met with an alphalszef V),

To extend the proof to the general case we apply a standargaminess argument (see [1]). For
any T, the trajectory codes oB(xz, 7)) x {1,2,...,T} ensured by the above argument form a finite
nonempty set. Le€’; denote the set of codes dhx {1, 2, ...} which restrict to one of the trajectory
codes onB(xy,T) x {1,2,...,T}. Cr is a nonempty set that is closed in the product topology on
SVx{1.2--} Note thatC; C Cy_+; the intersection of the sets; for any finite number of indice¥ is
therefore nonempty. The s€},., Cr is the desired set of trajectory codes with relative distandy
Tychonoff’s TheoremS"*{1:2--} is compact. Thereforf),_ Cr # 0. O

4. Construction of trajectory codes for grids

We now construct an asymptotically good and time-and-spé#c@ent finite-time trajectory code, of
any desired relative distanée< 1, for a grid graph of arbitrary finite dimensieh

Let P, denote the path of length with vertices labeled—n/2+1,...,n/2}. LetG be the graph on
vertex set/,, ; = {—n/2 + 1,...,n/2}% with an edge from{u, .. ., u4) to (v, ..., vg) if Ju; —v;] <1
for all 7. For simplicity we describe the construction for a time bawofin/2. So our task is to construct
atrajectory code : V,, 4 x {1,...,n/2} — S of relative distance.

The idea is to combine recursion with use of an explicit blooe. Set; € O(logn). (n, needs
only to be large enough to accommodate codewords of the ldod& described below.) Létbe the

least even integer greater or equalﬁg@ + 4. For simplicity assume thatn; dividesn.
4.1. Recursive construction

The block code: Ley : V,, o — R} (for a finite alphabef;) be an asymptotically good block code
of relative distancél + ¢)/2, in which encoding and decoding can be performed in bizr?l@. Rewrite
nasamapping; : V,ax{1,...,n1/2} — Ry, sothatforr € V, 4, n(z) = (ni(x,1),...,m(x,n1/2)).

The recursive code: Let; : Vi, a x {1,...,kny/2} — S; (for a finite alphabef,) be a trajectory
code of relative distancd + §)/2.

The basic idea is to covéf, ; x {1,...,n/2} by overlapping “shingles”. Each shingle is “placed” at

a specifiedc € V,, 4 x {0,...,n/2 — 1}, and is the following mapping:



d
Oy <H{xl —kniy/2+1,... 2+ k:nl/2}> X
i=1

X({L‘d+1 + 1,...,[L‘d+1 +kn1/2) — Sl X Rl

Ur(?/) =
= (Xl(y - 37)7 771(551, -, X4, (3/d+1 — X441 mod nl)))

The cover ofV, 4 x {1,...,n/2} by overlapping shingles will be described by a union of salver
covers, each of which is a tiling (a cover by nonoverlappiniggles). Each tiling is associated with a
vector(ay, ...,aq1) € {—k/2+1,...,k/2}¢ x {0,..., k — 1}. (Strictly speaking each tiling may fail
to be a cover but only due to edge effects which we gloss oVdre) collection of shingles associated

with the label(ay, . . ., aq441) consists of those placed abf the form
x=mni(kz1 + a1,..., kzqgr1 + age1),
forall (z,...,z24.1) Of the form
(21, ., 2a41) € {—n/(2kny) +1,...,n/(2kny)}*x

x{1,...,n/(2kny)}
The tiling labeled ay, . . ., a4, 1) therefore defines a mapping

ZdeX {1,,71/2}—>51 X Ry

by restriction (except possibly near the boundaries duentodpost errors).

The trajectory codg is the concatenation of the codes associated with each difitigs:

X(y) = (Xal ----- aq41 (y))a1

Observe that the number of labels concatenated at eaclx \eHE !,

Lemma 3. y achieves relative distande



Proof. Consider any twingy,+’). Lett = || and lett, be the starting time of the pair of trajectories.

If t < (k — 4)ny/2 then the pair(~y,~’) is contained entirely within a shingle. This implies relati
distance at leagtl + 9)/2.

Otherwise, partition the time periofd,, ¢, + ] into consecutive blocks of the following lengths:
ly,my, by, ma, ..., 0r_1,m;_1,¢; (for L to be determined), by the following rule. (Definge= t, +
> (b +my).)

Supposé,, my, ..., ¢;_1,m;_1 have already been defined. $gt= min{t + to — t;_1, (k — 4)n,/2}.

If ; +t;_1 =t +ty, setL = i and halt. (It may happen thét = 0 but only if L = i.) Otherwise
setm; to bet + to — ¢; — t;_; if the following set is nonempty, and otherwise to be its fadement:
{m >0:dg(y(tios + € +m), v (tioy + € +m)) < 2n;}. (It may happen thak, = 0.)

Sincet > (k —4)ny/2, L > 2. Observe that for each ¢; = (k — 4)n,/2, except that;, may be
smaller.

We show that within each of the blocks, the Hamming distarete/éen they and+’ codewords is at
least—n; + (1 +0)¢;/2 or —ny + (1 + §)m; /2, as the case may be.

We begin with the #n; type” blocks. For the duration of such a block, the trajaetoare separated
by graph distance at leagh,. In each time segment of length, aligned with the shingles of the
construction, the two trajectories pass through distindiegvords of), and experience relative distance
(1+0)/2. The first and last time segments can be incomplete and drerkefss efficient, but the total
number of shared characters due to these two time segmdydansled by(1 — §)n;, which we upper
bound byn,.

Next we treat the £; type” blocks, with the following “virtual trajectory” arguent. Choose a vertex
y = (y1,...,Ya) € Vpa such that bothig(y,v(ti—1)) < ny anddg(y,7/'(ti-1)) < ny. Definey €
Voa xA{L,...,n/2} by § = (y1,...,v4 ti-1 — n1). Construct a trajectory with start timet,_; — n;
and length?; + n, by having it start at/(¢;_1 — ny) = g, reachy(t;_1) = ~(t;_1), and thereafter be
identical toy until time ¢;,_; + ¢;. Similarly construct a disjoint trajectory with start timet;_; — n,
and length?; + n,; which starts aty/(¢t,_; — ny) = g, reachesy'(t,_1) = ~(t;_1)’, and thereafter is
identical to~' until time ¢;,_; + ¢;. Observe that and4’ are twins of length at most — 2)n, /2, so
there is a shingle entirely containing them. Hence the Hargrdistance between their words is at least

(¢; + nq1)(1 + 0)/2, and therefore the Hamming distance between the segmentsmd’ is at least
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—ny 4+ (6 +n1)(14+6)/2 > —ny + (1 +6)/2.

Combining the contribution of all time segments, we find tthet Hamming distance between the
two words is at least-(2L — 1)n; + (1 + §)t/2. Note thatt > (L — 1)(k — 4)n,/2. Recalling that
ny < 2t/(k — 4), this implies that2L — 1)n; < 6t/(k — 4). Hence the Hamming distance is greater
thant(2 — £) > 0. O

4.2. The code

What is left unstated by the above construction, is how tliege on the shingles is constructed. The
two extreme options are to pursue the whole constructiomseely, or to construct; by exhaustive
search. The former option is unsatisfactory because oflgt@bet blow-up at each level of recursion.
The latter option requires a one-tim&(-time computation. Once; has been constructed, local

M, hence achieving time-efficiency. In order to also achieve

look-up can be performed in timeg
space-efficiency, we implement just one more level of reonrsconstructingy; out of a codey, for
shingles of sizéog log n, which is itself constructed by exhaustive search in timg€V) n. Recall that
by time-and-space efficient construction we mean that fgnamtex in the state-space graph, we can

computey in time and space polynomial in the length of the vertex labblus, we have:

Theorem 4. The above construction gfusingy. is time-and-space efficient, and achieves any required

relative distance < 1.

Proof. The relative distance guarantee follows from section 4é;donstruction efficiency follows by

combining the construction of section 4.1 with the douldedrsion of section 4.2. O

5. Trajectory codes have an efficient verification procedure

In this section we show how to explicitly verify the distarpreperty of any trajectory code using dy-
namic programming. This is in sharp contrast to tree coaesylhich no such efficient verification pro-
cedure is known. Existence of an efficient verification pohge is important because our construction
in the previous section has large constants. Using brandfhaund methods along with the verification

procedure might lead in practice to codes with better consthan are proven by our analysis.
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Let G = (V, E) be a graph with polynomial growth rage We show an algorithm that verifies that a
finite time trajectory codg : V' x {1,2,...,T} — S has relative distance at leastThe running time
of the algorithm is polynomial if".

The algorithm is a simple dynamic program. The dynamic @ogning tableD is indexed by quin-
tuples. Valid quintupleéz, y, z, to, t) are those for whicky, y, z € V, to +t < T, and there exists a pair
of twin trajectoriesv, ') which begin at time, atx, and such that at timg + ¢, v ends aty while +/
ends at:. (In other words:|y| = |Y/| = t, y(to) = ' (to) = x, y(to +t) = y, ¥ (toc +t) = 2, and for
everyi > to, v(i) # +'(i).) We compute

D(x7y727t07t>: min h(X(V)vX(’V))'

twins 7,7y’

Notice that the size ab can be loosely upper bounded g(T"))>T? which is polynomial inl". Clearly,
upon completion of the computation 6f, the relative distance of the code can be verified by checking
if

D(z,y, z,ty,t) > dt,
for all valid quintupleqz, y, z, to, t).

The tableD is computed by induction over For¢ = 0 the valid quintuples aréz, x, z, ¢y, 0) such
thatt, < T and there is a length trajectory starting at, and ending at.. For such valid quintuples
we setD(z, z,z,ty,0) = 0. Fort > 0, suppose we already computed all the valid entries of tha for
(x,y, z,tg,t —1). For everyty, < T —t and for every three distinct nodesy, = € B(xy, 1) we compute
the following. Lets € {0, 1} be the indicator ok (y, to + t) # x(z,t, + t). Consider all pairs of nodes
Y,z suchthaty’,y), (¢, z) € Eand(x,y’, 2, to,t — 1) is a valid quintuple. If no such pair exists, then

(x,y, z,to, ) Is not a valid quintuple. Otherwise, put
D(z,y,zto,t) = +min{D(z,y, 2, to,t — 1)}.
y/’z/

This completes the description of the dynamic program.

Theorem 5. The dynamic program takes p@ly) time to execute, and it correctly computfegr, y, z, to, t)

for all valid quintuples(z, y, z, to, t).

Proof. The number of quintuples, v, z, to, t) (valid or not) that are checked is at m@B{(x,, T')|3T? <

(p(T))*T. The number of pairg’, 2’ that need to be examined in order to compbte;, v, z, to, t) is at
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most twice the maximum in-degree in the subgraph inducefay, 7). The proof of correctness is a

trivial induction ont. L
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