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Abstract

In many control-theory applications one can classify all possible states of the device by an infinite

state graph with polynomially-growing expansion. In orderfor a controller to control or estimate the

state of such a device, it must receive reliable communications from its sensors; if there is channel noise,

the encoding task is subject to a stringent real-time constraint. We show a constructive on-line error

correcting code that works for this class of applications. Our code is is computationally efficient and

enables on-line estimation and control in the presence of channel noise. It establishes a constructive

(and optimal-within-constants) analog, for control applications, of the Shannon coding theorem.
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1. Introduction

Motivation. In many automatic control applications, a device (an engine, a terrestrial or aerial mobile

robot, a sensor, etc.) communicates with a base station thatcontrols its actions. The communication

may be wireless or wired, synchronous or packet-based. Typically the devices have a limited set of

commands/ controls/ actions/ moves that they can execute. Actions by the devices combine with envi-

ronmental disturbances, to cause a change in the parametersdescribing the state of the system (such as

location, orientation, or temperature). Such devices needto communicate with the base station regarding

their current state and get further instructions. Examplesare numerous, and include remote mobility is-

sues (such as space or submarine exploration) and web-basedon-line control (such as camera and sensor

distributed control) [8, 5].

If the controller is physically remote from the sensors or actuators, information flow between them can

be subject to noise; if so, system performance depends upon encoding the transmissions against channel

noise. In control applications, the encoding of communications against channel noise faces a special

difficulty due to the need for real-time response to transmissions. The objective of the base station is to

learn as precisely as possible the current state of each device in its parameter space. Naturally, there is a

tradeoff between the amount of communication (and hence delay) and the accuracy and reliability of the

information known at the base station. It is therefore a challenge to perform the channel coding subject

to a channel capacity constraint.

The problem can be considered within a very general framework of interactive communication prob-

lems [10]; however, the best results in that literature remain nonconstructive. Fortunately, there is a

feature of the control application that makes it easier thangeneral interactive-communication problems,

since the controlled devices can typically be described with a finite-dimensional parameter space. (Ex-

ample: the location, orientation and engine RPM of an aerialdrone.) What characterizes a typical

parameter space is that the growth rate of the state space around any point is polynomially bounded.

At each step in its state-space the remote device wishes to send one (or a constant number) of bits to

the base station to indicate its position/configuration. Despite channel-noise, the objective of the base-

station is to determine, as accurately as possible, the location of the device in its state-space. Of course,

one cannot ask that the base station already have high certainty about the real value of any measured

bit, before a significant number of subsequent message bits have been received. More specifically, if the
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channel has a constant rate of stochastic noise, then the best one can hope for (on non-degenerate noisy

channels) is that the base station have probabilityexp(−Ω(n)) of estimating incorrectly a particular state

of a device, if all histories leading to that state diverge from the true history at leastn steps previously.

The meaningful question is: Can we achieve such a bound? Doing so demands that encoded characters

convey information across all time scales. This is exactly what we achieve in this paper in a constructive

fashion, as we explain below.

Problem statement and results. In this paper, we initiate the study of error-correcting codes for re-

mote control of devices that move in a finite-dimensional parameter space. All of the communication

systems we discuss share the following features. There is atleast one transmitter and one receiver. The

state of the transmitter at any timet is identified with a vertex (which we denotext) of a state graph

(which we denoteG); the graph (which may be directed or undirected and will typically have self-loops)

is known to both parties, as is the initial statex0 of the transmitter. In each round, the state of the trans-

mitter shifts to an out-neighbor of the previous state. The transmitter can then use the channel once; the

communicated character can depend upon the entire history of the transmitter. Our concern is the design

of an efficient code for these communications.

For nodesx, x′ ∈ G let dG be the length of a shortest path fromx to x′ in G. Let B(x, `) = {x′ :

dG(x, x′) ≤ `}. The growth ofG as a function of̀ is the supremum over allx of |B(x, `)|. If this is

bounded above by a polynomial iǹwe sayG has polynomial growth. Finite-dimensional grids have

polynomial growth. We suppose that the alphabet of the channel is a finite setS. S∗ denotes the set

of finite words overS. If the greatest out-degree or in-degree ofG is ∆, we say that therate of the

code isρ = (log ∆)/(log |S|). (We assume below that∆ ≥ 2.) We expressly avoid tailoring our results

to particular kinds of noisy channels. Our results are aimedat noisy but non-adversarial channels, in

particular discrete memoryless channels, for which we assume only that the capacity is proportional to

log |S|.

Based upon the code and upon the history of communications, the receiver has at timet a guesŝxt of

the current state of the transmitter. (We understand the code to include the estimation procedure used by

the receiver.) We say that the code haserror exponentκ if P (dG(xt, x̂t) ≥ `) ≤ exp(−κ`) ∀t, `. We say

that the code istime-efficientif the encoding and expected decoding times are(log t)O(1). It is time-and-

space-efficientif the space required for encoding, and the expected space required for decoding, are also
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(log t)O(1).

We show the existence of asymptotically optimal error-correcting codes for every state graphG. Our

main result is theconstructionof a code for communication in finite-dimensional grid graphs that has

positive rate, positive error exponent, and is time-and-space-efficient. The method extends to other

graphs with polynomial growth which are fine discretizations of finite-dimensional manifolds. These

graphs are exactly the graphs that capture control applications and therefore our results are widely ap-

plicable for this entire class of problems.

Previous work. Existing error-correcting codes and error-correction forprotocols do not provide a

satisfactory answer for automatic control applications aswe elaborate below.

Existing error-correcting codes fall mainly into two classes: block codes and convolutional codes. In

a block code (with block-length, say,k), a time-stream of data is broken into segments of lengthk; after

an entire segment arrives at the encoder, it is transformed into a (somewhat longer) sequence of bits,

which are then sent across the channel.

With block codes it is possible to achieve very low probabilities of error (exponentially small ink)

with modest computational load (near-linear ink); however, there is a built-in delay ofk time units. This

violates the real-time performance requirement of an automatic control application.

Convolutional codes [17, 9, 3] avoid the delay drawback of block codes by performing ”on-line”

encoding, in which each bit of the input stream immediately starts influencing the encoded message bits,

and continues to do so until the end of a time interval of lengthk, called the constraint length of the code;

this interval, which in existing implementations is finite,is analogous to the block length of a block code.

The decoder can make an informed guess about a message bit very shortly after its arrival at the encoder,

and this guess can continue to be updated during the entire constraint length, with error probability

decreasing ultimately to a value exponentially small ink. Although this is the kind of code we would

like to use for control, the reason that existing convolutional codes cannot be used is that no efficient

constructions are known for convolutional codes with largeconstraint lengths (unlike the situation for

block codes). Indeed, while convolutional codes are heavily used in practice (e.g., for cell phones), those

codes have been intensively optimized thanks to their very short constraint lengths. The not-very-low

probability of error that is a corollary of short constraintlength is sufficient for an application in which

short bursts of noise are tolerated. However, it is not adequate for control applications in which system
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stability and performance depends upon preventing accumulation of errors over extended time periods.

Convolutional codes with long, and even infinite, constraint lengths do exist; however, not in a form

that we can use. The very first papers on convolutional codes show that randomized families of convo-

lutional codes have attractive properties; however, such afamily cannot be used without the crutch of a

supply of shared random bits at encoder and decoder. More recently, a class of explicit ”tree codes” was

introduced, which eliminates the need for public coins [11,12]. however, the existence proof for these

codes has not yet been matched by an effective construction,and for that reason, these codes too are not

yet available for use. (A similar situation reigned for block codes after Shannon’s existence proof for

asymptotically-good block codes [13] until explicit constructions were provided [6, 4].)

There has recently been substantial progress in information-theoretic and rate-distortion bounds for

control applications [16, 2, 14, 15, 7]; these works solve different problems than the one considered

here. There does not appear to be a prior code for our problem that is efficient in both computation and

communication.

Our work, therefore, should be understood as introducing a new family of convolutional codes with

infinite constraint length, suitable specifically to control applications but not to general-purpose com-

munication, and which manages to thereby avoid the technical difficulties that have prevented effective

construction of general-purpose convolutional codes withinfinite (or even long) constraint length.

2. Trajectory codes

Throughout,G is a graph with vertex setV , initial vertexx0 ∈ V , and edge setE ⊆ V × V . A

trajectoryγ of length|γ| = t and which begins at timet0 is a mapping from{t0, . . . , t0 + t} to V for

which all (γ(i), γ(i + 1)) ∈ E. If two trajectoriesγ, γ′ are of equal length, start at the same timet0, and

share the same start vertex (i.e.,γ(t0) = γ′(t0)), we writeγ ∼ γ′. The distanceτ between trajectories

γ ∼ γ′ of lengtht is τ(γ, γ′) = |{t0 < i ≤ t0 + t : γ(i) 6= γ′(i)}|.

A trajectory codeis a mappingχ : V × {1, 2, . . .} → S, extended to a mapping from trajec-

tories to S∗ by concatenation:χ(γ) = (χ(γ(t0 + 1)), . . . , χ(γ(t0 + t))). Hamming distance be-

tween equal-length words inS∗ is denotedh. The relative distanceof the code is defined to beδ =

infγ∼γ′{h(χ(γ), χ(γ′))/τ(γ, γ′)}. A finite-time trajectory code is defined similarly by a mapping χ :

V × {1, 2, . . . , T} → S.
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We say that the code isasymptotically goodif it has both positive rateρ and positive relative distance

δ.

Lemma 1. If the t’th character of an asymptotically good code with alphabetS can be computed in

time and space(log t)O(1) then the code can be converted into another asymptotically good code that

has positive error exponent and is time-and-space-efficient.

Proof. The conversion is by simple repetition (the alphabet of the new code isSk for constantk), and

serves only to improve the error exponent. For sufficiently high error exponent, decoding by max-

likelihood matching is exponentially unlikely to need to examine trajectories far away from that decoded

in the previous round. Hence the expected time and space of the computation is(log t)O(1).

Our task therefore is to construct an asymptotically good trajectory code. The first problem is to show

that such codes exist (Section 3). Interestingly, the only proof we know is non-constructive; however,

with the aid of this proof we provide a constructive and time-and-space-efficient finite-time code for

grids. (Section 4).

Comparison with tree-codes It is instructive to compare the present work with that on tree codes. In

the terminology of the present paper, [11, 12] used the protocol tree of a given noiseless communication

protocol in the role of our graphG; the tree code used in that work for a noisy-communication protocol

is what we call the trajectory code onV × {1, 2, . . .}. The existence proof provided in that work relies

on the tree structure of the graph, and does not apply to the more general case considered here. However,

the purpose of the generalization isnot just handling more difficult communication problems; the case

thatG is a tree is, in fact, the most difficult one. (Using tree codesenables eventual reconstruction of the

entire history of the transmitter, not only reconstructionof a good estimate of the current state.) Instead,

the purpose in our paper is to obtain a computationally effective solution using the special assumption

thatG has polynomial growth. This assumption is motivated by control applications, withG being a

discretization of the finite-dimensional parameter space of the system. Thus, we circumvent the need

to construct an explicit tree code and show that a different code which that works for the entire class of

polynomial-growth graphs is sufficient.
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3. Existence of asymptotically good trajectory codes

Theorem 2. Every graphG possesses an asymptotically good trajectory code. Furthermore, every

δ < 1 is feasible as the relative distance of an asymptotically good code.

Proof. To achieve positive rate we must labelV ×{1, 2, . . .} with an alphabetS of size∆O(1). Consider

choosing each label independently and uniformly. A code obtained in this way is almost-surely not

asymptotically good. Nonetheless this probability space can be used for an existence proof.

Consider at first the finite-graph, finite-time restriction of the problem toB(x0, T )×{1, 2, . . . , T}. Fix

any desired relative distance boundδ. If γ = (γ1, γ2) consists of two trajectories such thatγ1 ∼ γ2 and

which share only their common start vertex (i.e.,τ(γ1, γ2) = |γ1|), then we refer toγ as a pair of “twins”

and write|γ| = |γ1| andhχ(γ) = h(χ(γ1), χ(γ2)). Note thatinfγ1∼γ2(h(χ(γ1), χ(γ2))/τ(γ1, γ2)) =

inftwins γ(hχ(γ)/|γ|). For a pair of twinsγ let Aγ be the event thathχ(γ)/|γ| < δ. There is a positivec

for whichP (Aγ) ≤ |S|−c|γ|.

For twins γ = (γ1, γ2) let Nγ = {twins β = (β1, β2) : ∃ε1, ε2 ∈ {1, 2}, j1, j2 > 0 such that

γε1(j1) = βε2(j2)}.

Observe thatAγ is independent of the random variable(Aβ)β /∈Nγ
.

The Lovász local lemma [1] ensures that
⋂

Aγ 6= ∅ provided that there exist nonnegative reals0 ≤

xγ < 1 for which

xγ

∏

β∈Nγ

(1 − xβ) ≥ P (Aγ).

Observe that|{β : β ∈ Nγ, |β| = `}| ≤ 4|γ|`∆2`. Forc′ to be determined setxγ = ∆−c′|γ|. Now,

xγ

∏

β∈Nγ

(1 − xβ) ≥ ∆−c′|γ|
∞
∏

`=1

(1 − ∆−c′`)4|γ|`∆2`

.

A sufficiently largec′ ensures that for∆ ≥ 2, 1 − ∆−c′` ≥ e−2∆−c′`

. So

. . . ≥ ∆−c′|γ|
∞
∏

`=1

e−8∆−c′`|γ|`∆2`

=

= ∆−c′|γ|e−8|γ|
�

∞

`=1 `∆(2−c′)`

.

A sufficiently largec′ ensures that for∆ ≥ 2,
∑∞

`=1 `∆(2−c′)` ≤ 2. So

. . . ≥ ∆−c′|γ|e−16|γ|.
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SinceP (Aγ) ≤ |S|−c|γ|, the hypotheses of the local lemma are met with an alphabet ofsize∆O(1).

To extend the proof to the general case we apply a standard compactness argument (see [1]). For

anyT , the trajectory codes onB(x0, T ) × {1, 2, . . . , T} ensured by the above argument form a finite

nonempty set. LetCT denote the set of codes onV × {1, 2, . . .} which restrict to one of the trajectory

codes onB(x0, T ) × {1, 2, . . . , T}. CT is a nonempty set that is closed in the product topology on

SV ×{1,2,...}. Note thatCT ⊆ CT−1; the intersection of the setsCT for any finite number of indicesT is

therefore nonempty. The set
⋂

t∈N
CT is the desired set of trajectory codes with relative distance δ. By

Tychonoff’s Theorem,SV ×{1,2,...} is compact. Therefore
⋂

t∈N
CT 6= ∅.

4. Construction of trajectory codes for grids

We now construct an asymptotically good and time-and-space-efficient finite-time trajectory code, of

any desired relative distanceδ < 1, for a grid graph of arbitrary finite dimensiond.

Let Pn denote the path of lengthn, with vertices labeled{−n/2+1, . . . , n/2}. LetG be the graph on

vertex setVn,d = {−n/2 + 1, . . . , n/2}d with an edge from(u1, . . . , ud) to (v1, . . . , vd) if |ui − vi| ≤ 1

for all i. For simplicity we describe the construction for a time bound of n/2. So our task is to construct

a trajectory codeχ : Vn,d × {1, . . . , n/2} → S of relative distanceδ.

The idea is to combine recursion with use of an explicit blockcode. Setn1 ∈ Θ(log n). (n1 needs

only to be large enough to accommodate codewords of the blockcode described below.) Letk be the

least even integer greater or equal to12
1−δ

+ 4. For simplicity assume thatkn1 dividesn.

4.1. Recursive construction

The block code: Letη : Vn,d → Rn1
1 (for a finite alphabetR1) be an asymptotically good block code

of relative distance(1 + δ)/2, in which encoding and decoding can be performed in timen
O(1)
1 . Rewrite

η as a mappingη1 : Vn,d×{1, . . . , n1/2} → R1, so that forx ∈ Vn,d, η(x) = (η1(x, 1), . . . , η1(x, n1/2)).

The recursive code: Letχ1 : Vkn1,d × {1, . . . , kn1/2} → S1 (for a finite alphabetS1) be a trajectory

code of relative distance(1 + δ)/2.

The basic idea is to coverVn,d × {1, . . . , n/2} by overlapping “shingles”. Each shingle is “placed” at

a specifiedx ∈ Vn,d × {0, . . . , n/2 − 1}, and is the following mapping:
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σx :

(

d
∏

i=1

{xi − kn1/2 + 1, . . . , xi + kn1/2}

)

×

×(xd+1 + 1, . . . , xd+1 + kn1/2) → S1 × R1

σx(y) =

= (χ1(y − x), η1(x1, . . . , xd, (yd+1 − xd+1 mod n1)))

The cover ofVn,d × {1, . . . , n/2} by overlapping shingles will be described by a union of several

covers, each of which is a tiling (a cover by nonoverlapping shingles). Each tiling is associated with a

vector(a1, . . . , ad+1) ∈ {−k/2 + 1, . . . , k/2}d × {0, . . . , k − 1}. (Strictly speaking each tiling may fail

to be a cover but only due to edge effects which we gloss over.)The collection of shingles associated

with the label(a1, . . . , ad+1) consists of those placed atx of the form

x = n1(kz1 + a1, . . . , kzd+1 + ad+1),

for all (z1, . . . , zd+1) of the form

(z1, . . . , zd+1) ∈ {−n/(2kn1) + 1, . . . , n/(2kn1)}
d×

×{1, . . . , n/(2kn1)}

The tiling labeled(a1, . . . , ad+1) therefore defines a mapping

χa1,...,ad+1
: Vn,d × {1, . . . , n/2} → S1 × R1

by restriction (except possibly near the boundaries due to fencepost errors).

The trajectory codeχ is the concatenation of the codes associated with each of thetilings:

χ(y) =
(

χa1,...,ad+1
(y)
)

a1,...,ad+1

Observe that the number of labels concatenated at each vertex is kd+1.

Lemma 3. χ achieves relative distanceδ.
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Proof. Consider any twins(γ, γ′). Let t = |γ| and lett0 be the starting time of the pair of trajectories.

If t ≤ (k − 4)n1/2 then the pair(γ, γ′) is contained entirely within a shingle. This implies relative

distance at least(1 + δ)/2.

Otherwise, partition the time period[t0, t0 + t] into consecutive blocks of the following lengths:

`1, m1, `2, m2, . . . , `L−1, mL−1, `L (for L to be determined), by the following rule. (Defineti = t0 +
∑i

j=1(`j + mj).)

Supposè1, m1, . . . , `i−1, mi−1 have already been defined. Set`i = min{t + t0 − ti−1, (k − 4)n1/2}.

If `i + ti−1 = t + t0, setL = i and halt. (It may happen that`i = 0 but only if L = i.) Otherwise

setmi to bet + t0 − `i − ti−1 if the following set is nonempty, and otherwise to be its least element:

{m ≥ 0 : dG(γ(ti−1 + `i + m), γ′(ti−1 + `i + m)) ≤ 2n1}. (It may happen thatmi = 0.)

Sincet > (k − 4)n1/2, L ≥ 2. Observe that for eachi, `i = (k − 4)n1/2, except that̀ L may be

smaller.

We show that within each of the blocks, the Hamming distance between theγ andγ′ codewords is at

least−n1 + (1 + δ)`i/2 or−n1 + (1 + δ)mi/2, as the case may be.

We begin with the “mi type” blocks. For the duration of such a block, the trajectories are separated

by graph distance at least2n1. In each time segment of lengthn1, aligned with the shingles of the

construction, the two trajectories pass through distinct codewords ofη, and experience relative distance

(1 + δ)/2. The first and last time segments can be incomplete and therefore less efficient, but the total

number of shared characters due to these two time segments isbounded by(1 − δ)n1, which we upper

bound byn1.

Next we treat the “̀i type” blocks, with the following “virtual trajectory” argument. Choose a vertex

y = (y1, . . . , yd) ∈ Vn,d such that bothdG(y, γ(ti−1)) ≤ n1 anddG(y, γ′(ti−1)) ≤ n1. Define ỹ ∈

Vn,d × {1, . . . , n/2} by ỹ = (y1, . . . , yd, ti−1 − n1). Construct a trajectorỹγ with start timeti−1 − n1

and length̀ i + n1 by having it start at̃γ(ti−1 − n1) = ỹ, reachγ̃(ti−1) = γ(ti−1), and thereafter be

identical toγ until time ti−1 + `i. Similarly construct a disjoint trajectorỹγ′ with start timeti−1 − n1

and length̀ i + n1 which starts at̃γ′(ti−1 − n1) = ỹ, reaches̃γ′(ti−1) = γ(ti−1)
′, and thereafter is

identical toγ′ until time ti−1 + `i. Observe that̃γ and γ̃′ are twins of length at most(k − 2)n1/2, so

there is a shingle entirely containing them. Hence the Hamming distance between their words is at least

(`i + n1)(1 + δ)/2, and therefore the Hamming distance between the segments ofγ andγ′ is at least
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−n1 + (`i + n1)(1 + δ)/2 ≥ −n1 + `i(1 + δ)/2.

Combining the contribution of all time segments, we find thatthe Hamming distance between the

two words is at least−(2L − 1)n1 + (1 + δ)t/2. Note thatt ≥ (L − 1)(k − 4)n1/2. Recalling that

n1 < 2t/(k − 4), this implies that(2L − 1)n1 < 6t/(k − 4). Hence the Hamming distance is greater

thant(1+δ
2

− 6
k−4

) ≥ tδ.

4.2. The code

What is left unstated by the above construction, is how the codeχ1 on the shingles is constructed. The

two extreme options are to pursue the whole construction recursively, or to constructχ1 by exhaustive

search. The former option is unsatisfactory because of the alphabet blow-up at each level of recursion.

The latter option requires a one-timenO(1)-time computation. Onceχ1 has been constructed, local

look-up can be performed in timelogO(1) n, hence achieving time-efficiency. In order to also achieve

space-efficiency, we implement just one more level of recursion, constructingχ1 out of a codeχ2 for

shingles of sizelog log n, which is itself constructed by exhaustive search in timelogO(1) n. Recall that

by time-and-space efficient construction we mean that for any vertex in the state-space graph, we can

computeχ in time and space polynomial in the length of the vertex label. Thus, we have:

Theorem 4. The above construction ofχ usingχ2 is time-and-space efficient, and achieves any required

relative distanceδ < 1.

Proof. The relative distance guarantee follows from section 4.1; the construction efficiency follows by

combining the construction of section 4.1 with the double-recursion of section 4.2.

5. Trajectory codes have an efficient verification procedure

In this section we show how to explicitly verify the distanceproperty of any trajectory code using dy-

namic programming. This is in sharp contrast to tree codes, for which no such efficient verification pro-

cedure is known. Existence of an efficient verification procedure is important because our construction

in the previous section has large constants. Using branch-and-bound methods along with the verification

procedure might lead in practice to codes with better constants than are proven by our analysis.
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Let G = (V, E) be a graph with polynomial growth ratep. We show an algorithm that verifies that a

finite time trajectory codeχ : V × {1, 2, . . . , T} → S has relative distance at leastδ. The running time

of the algorithm is polynomial inT .

The algorithm is a simple dynamic program. The dynamic programming tableD is indexed by quin-

tuples. Valid quintuples(x, y, z, t0, t) are those for whichx, y, z ∈ V , t0 + t ≤ T , and there exists a pair

of twin trajectories(γ, γ′) which begin at timet0 atx, and such that at timet0 + t, γ ends aty while γ′

ends atz. (In other words:|γ| = |γ′| = t, γ(t0) = γ′(t0) = x, γ(t0 + t) = y, γ′(t0 + t) = z, and for

everyi > t0, γ(i) 6= γ′(i).) We compute

D(x, y, z, t0, t) = min
twins γ,γ′

h(χ(γ), χ(γ′)).

Notice that the size ofD can be loosely upper bounded by(p(T ))3T 2 which is polynomial inT . Clearly,

upon completion of the computation ofD, the relative distance of the code can be verified by checking

if

D(x, y, z, t0, t) ≥ δt,

for all valid quintuples(x, y, z, t0, t).

The tableD is computed by induction overt. For t = 0 the valid quintuples are(x, x, x, t0, 0) such

that t0 ≤ T and there is a lengtht0 trajectory starting atx0 and ending atx. For such valid quintuples

we setD(x, x, x, t0, 0) = 0. For t > 0, suppose we already computed all the valid entries of the form

(x, y, z, t0, t−1). For everyt0 ≤ T − t and for every three distinct nodesx, y, z ∈ B(x0, T ) we compute

the following. Letε ∈ {0, 1} be the indicator ofχ(y, t0 + t) 6= χ(z, t0 + t). Consider all pairs of nodes

y′, z′ such that(y′, y), (z′, z) ∈ E and(x, y′, z′, t0, t− 1) is a valid quintuple. If no such pair exists, then

(x, y, z, t0, t) is not a valid quintuple. Otherwise, put

D(x, y, z, t0, t) = ε + min
y′,z′

{D(x, y′, z′, t0, t − 1)}.

This completes the description of the dynamic program.

Theorem 5.The dynamic program takes poly(T ) time to execute, and it correctly computesD(x, y, z, t0, t)

for all valid quintuples(x, y, z, t0, t).

Proof. The number of quintuples(x, y, z, t0, t) (valid or not) that are checked is at most|B(x0, T )|3T 2 ≤

(p(T ))3T 2. The number of pairsy′, z′ that need to be examined in order to computeD(x, y, z, t0, t) is at

12



most twice the maximum in-degree in the subgraph induced byB(x0, T ). The proof of correctness is a

trivial induction ont.
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