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Abstract

A batch codeencodes a string into anm-tuple of strings, callebuckets
such that each batch @f bits from = can be decoded by reading at most
one (more generally;) bits from each bucket. Batch codes can be viewed
as relaxing several combinatorial objects, including exjeais and locally
decodable codes.

We initiate the study of these codes by presenting some remtisns,
connections with other problems, and lower bounds. We atsoashstrate
the usefulness of batch codes by presenting two types ofagiphs: trading
maximal load for storage in certain load-balancing scesa@nd amortiz-
ing the computational cost of private information retrigfRiR) and related
cryptographic protocols.
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1 Introduction

In this paper we introduce and study a new coding problemintiegest in which
is both purely theoretical and application-driven. Wetdbgrdescribing a general
application scenario.

Suppose that a large databasewdfems (say, bits) is to be distributed among
m devicest After the data has been distributed, a user chooses ansaytsinbset
(or batch of k items, which she would like to retrieve by reading the dateest
on the devices. Our goal is to minimize the worst-case maXioaa on any of the
m devices, where the load on a device is measured by the nurhbis cead from
it, while also minimizing the total amount of storage uded.

To illustrate the problem, consider the case= 3. A naive way to balance the
load would be to store a copy of the entire database in eadbedeVhis allows
to reduce the load by roughly a factor &f namely anyk-tuple of items may be
obtained by reading at mo$k /3] bits from each device. However, this solution
triples the total amount of storage relative to the origi@iabase, which may be
very expensive in the caseis large. A natural question is whether one can still
achieve a significant load-balancing effect while redu¢irgstorage requirements.
For instance, suppose that only a 50% increase in the site afriginal database
can be afforded (i.e., a total @f5n-bit storage). By how much can the maximal
load be reduced under this constraint?

For these parameters, no clever way of replicating indalidiata bits (or
“hashing” them to the three devices) can solve the problendedd, any such
replication scheme would leave at least6 bits that can only be found on one
particular device, say the first, and henceox n /6 there is a choice of items
which incurs a load of: on this devicé

In light of the above, we need to consider more general digidn schemes, in
which each stored bit may depend on more than one data bimplsiconstruction
proceeds as follows. Partition the database into two gars containingn /2 bits
each, and storé on the first deviceR on the second, ant® R on the third. Note
that the total storage ik.5n which satisfies our requirement. We argue that each
pair of itemsiy, i, can be retrieved by making at maste probe to each device.

The term “device” can refer either to ghysicaldevice, such as a server or a disk, or to a
completely virtual entity, as in the application we will debe in Section 1.3.

2Both our measure of load and the type of tradeoffs we considesimilar to Yao'sell-probe
model [33], which is commonly used to model time-storagddudfs in data structure problems.

30ne could argue that unless thatems areadversariallychosen, such a worst-case scenario
is very unlikely to occur. However, this is not the case wlieis small. More importantly, if the
queries are made gifferentusers, then it is realistic to assume that a large fractighetisers will
try to retrieve the same “popular” item, which has a high julity of being stored only on a single
device. Such a multi-user scenario will be addressed ingfaed.



Consider two cases. 1f, i5 reside in different parts of the database, then it clearly
suffices to read one bit from each of the first two devices. @nather hand, if
i1, 1o both reside in the same part, shythen one of them can be retrieved directly
from the first device, and the other by reading one bit fronhexi¢he other devices
and taking the exclusive-or of the two bits. Thus, the woeste maximal load can
be reduced tdk/2]. This achieves significant reduction in load with a reldyive
small penalty in storage.

1.1 Batch Codes

We abstract the problem above into a new notion we ciaditah codeand we give
several constructions for these new objects.

An (n, N, k, m,t) batch codeover an alphabeXt encodes a string € X" into
anm-tuple of stringsyy, ...,y € X* (also referred to abucket} of total length
N, such that for each-tuple (patch of distinct indicesiy, . .., i € [n], the entries
Zi,- .., can be decoded by reading at mbsymbols from each bucket. Note
that the buckets in this definition correspond to the deviceke above example,
the encoding lengtiV to the total storage, and the parameétirthe maximal load.
Borrowing from standard coding terminology, we will referit/N as therate of
the code.

When considering problems involving several parametens, tgpically fo-
cuses the attention on some “interesting” settings of thhiamaters. In this case,
we will mostly restrict our attention to a binary alphabeand to the case = 1,
namely at mosbnebit is read from each bucket. This case seems to most sharply
capture the essence of the problem and, as demonstrated, aotitions for this
case can also be meaningfully scaled to the general’dstsgeover, the case= 1
models scenarios where only a single access to each devideaaade at a time,
as is the case for the cryptographic application discuss&ection 1.3. From now
on, the term “batch code” (dn, N, k, m) batch code) will refer by default to the
above special case.

We will typically view n, k as the given parameters and try to minimi¥em
as a function of these parameters. Note that in our defatiihgeve must have
m > k. It is instructive to point out the following two (trivial)xreme types of
batch codes: (1¥(z) = («,,...,x), i.e., replicater in each bucket; in this
case we can use an optimal (i.e., m = k) but the ratel /k is very low. (2)
C(z) = (x1,22,...,x,), i.6., each bit oft is put in a separate bucket; in this case

“The decoding procedure in the above example can be viewe@k#®| repetitions of
decoding a batch code with parametdrs, 1.5n,2,3,1), yielding decoding with parameters
(n,1.5n,k,3, [k/2]).



the rate,1, is optimal butm is very large. Our goal is to obtain good intermediate
solutions which are close to being optimal in both aspects.

MULTISET BATCH CODES The load-balancing scenario described above involves
asingleuser. Itis natural to consider a scenario whedsstinct users, each holding
some query;, wish to directly retrieve data from the same devices. Thesgwo
main differences between this setting and the default oinst, Each selected item
z;; should be recovered from the bits read by jtte user alone, rather than from
all the bits that were read. Second, while previously ktgeries were assumed
to be distinct, this assumption cannot be made in the cusetting. Since the
indicesi; now form amultiset we use the terrmultiset batch codeo refer to such
a stronger type of batch code.

In defining multiset batch codes, we make the simplifyingiagstion that prior
to the decoding process the users can coordinate theinadtian arbitrary way;
we only “charge” for the bits they read.We note, however, that most of our
constructions can be modified to require little or no coartdon between the users
with a small degradation in performance.

Aside from their direct application in a multi-user scepnaan additional mo-
tivation for multiset batch codes is that their strongemgries make them easier
to manipulate and compose. Hence, this variant will be Usef@a building block
even in the single-user setting.

1.2 Our Results

We have already insisted on minimal load per device — evetghbia processed
with only one bitbeing read from each device. Therefore, the two quantities o
interest are: (1) Storage overhead, and (2) the number ddetew. (which must

be at leask: in our setting) . This leads to two fundamental existentiagiions
about batch codes: First, can we construct codes with aritytfow storage over-
head (ratd — ¢) as the number of queridsgrows, but with the number of devices
m still being “feasible” in terms ok? Second, can we construct codes with es-
sentially the optimal number of devices. (= k) with storage overheadk)? We
resolve both of these questions affirmatively, and also sh@awmber of interest-
ing applications of batch codes and our constructions. €altiques and precise
results are outlined below:

BATCH CODES FROM UNBALANCED EXPANDERS In the above example we first
considered a replication-based approach, where each iwyrbmreplicated in a
carefully selected subset of buckets but no functions,(ingar combinations) of

5This is a reasonable assumption in some scenarios (e.ggtifa coordination is cheaper than
an access to the device, or if it can be done off-line).



severaltems can be used. For the specific parameters of that exdmyale argued
that this restricted approach was essentially useless.etmwthis is not always
the case. We observe that if the assignment of items to auckspecified by an
unbalanced expander graplwith a weak expansion property), then one obtains
a batch code with related parametrslsing random graphs of polynomial size
(where the random graph can be chosen and fixed “once andprvat obtain
batch codes with parametefé/n = O(logn) andm = O(k). This answers
Question 2 above affirmatively for non-multiset batch cod@fe code can be
made explicit by using explicit constructions of expand@ds 8], but with weaker
parameters.

This expander-based construction has sarmherentlimitations. First, it can-
not be used for obtaining codes whose rate excéggigunlessm = Q(n)). Sec-
ond, even for achieving a smalleonstantrate, it is required thatn depend not
only on k but also onn (e.g., the random graph achieves raj@ with m =
k3/2n1/2). Third, this approach cannot be used to obtaiultisetbatch codes,
since it cannot handle the case where many users requesirtteitem. These
limitations will be avoided by our other constructions.

THE SUBCUBE CODE Our second batch code construction may be viewed as a
composition of (a generalization of) the code from the abigve R, L © R)” ex-
ample with itself. We refer to the resulting code as shiecube codeas it admits

a nice combinatorial interpretation involving the subailaé a hypercube. The
subcube code is multisetbatch code, furthermore it can achieve an arbitrarily
high constant rate. Specifically, any constant ratec 1 can be realized with

m = kOUoglogk) \While the asymptotic dependencerafon k will be improved

by subsequent constructions, the subcube code still yoeldbest results for some
small values of, and generally admits the simplest and most explicit bagdwod-

ing procedure.

BATCH CODES FROM SMOOTH CODESA g-querysmooth codda close relative
of locally decodable codeld8]) maps a string: to a codeword, such that each
symbol of z can be decoded by probing at mgstandom symbols iny, where
the probability of any particular symbol being probed is aisty /|y|.” We estab-
lish a two-way general relation between smooth codes antiseubatch codes.
In particular, any smooth code gives rise to batch codes witited parameters.
However, this connection is not sufficiently tight to yieltetparameters we seek.
See Section 1.4 for further discussion.

5This is very different from the construction of standardeiorrecting codes from expanders
(cf. [29]), in which the graph specifies parity-checks rativan a replication pattern.
"Using the more general terminology of [18], this ié@q, 1/2)-smooth code.



BATCH CODES FROMREED-MULLER® coDES By exploiting the structure of
Reed-Muller codes (beyond their smoothness), we obtarhlmtdes with excel-
lent parameters. In particular, for any constant 0, we obtain a multiset batch
code with raten/N = Q(1/k¢) andm = k - log?+t/<°(1) ;. Thus, the number of
devices is within a polylogarithmic factor from optimal, iléhthe storage overhead
is only k¢ —answering Question 2 above affirmatively foultisetbatch codes. Us-
ing Reed-Muller codes we also get multiset batch codes aténr/N = 1/(¢!+-¢)
andm = k!*+1/(=D+o(1) for any constant > 0 and integer > 2.

THE SUBSET CODE The batch codes we have constructed so far either require
the rate to be below 1/2 (expander, Reed-Muller codes), lnieae high rates at
the expense of requiring to be (slightly) super-polynomial ik (subcube codes).
Ouir final construction, which admits a natural interpretatin terms of the subset
lattice? avoids both of these deficiencies. Specifically, we get theviing result,
answering Question 1 above in the affirmative:

For any constant rate < 1 there is a constant > 1 such that for
everyk and sufficiently large: there is an(n, N, k, m) multiset batch
code withn/N > p andm = O(k°).

In other words, one can insist on adding only an arbitraral percentage to the
original storage, yet reduce the load by any desired ambwsing only polyk)
devices.

The parameters of the different constructions are sumetiizthe following
table.

[ Code | rate | m | multiset?]
Expander| 1/d<1/2 O(k - (nk)/(d=1) No
Q(1/logn) O(k)
Subcube p<1 O(ogTog k) Yes
RM | 1/01—€ <1/2| k- k/C DT Yes
Q(1/k*) k- (log k,)2+1 eFo(l)
Subset p <1 L0 Yes

NEGATIVE RESULTS The focus of this paper has primarily been constructions
of batch codes and their applications (see below), but ds mibst interesting
combinatorial objects, finding optimal lower bounds is argming open question.
We give some initial lower bounds (tight in some instancesgell on elementary
combinatorial and information-theoretic arguments.

8A Reed-Muller code is one whose codewords correspond téadtiate polynomials of total
degree at most over a finite fieldF’, where|F'| > d + 1.

9The subset code may be viewed as a subcode obitiery Reed-Muller code. The latter,
however, does not suffice for our purposes.



ADDITIONAL EFFICIENCY CONCERNS While we have mainly focused on the
most basic efficiency measures of batch codes, there arabetleer natural mea-
sures to be considered. These include efficiency of encadidglecoding, amount
of coordination between the users in the multi-user seftinghedistributedcom-
plexity of decoding), efficiency of handling online addit®and deletions of queries,
average case performance, and so forth. We note that most sélutions perform
favorably in most of these aspects.

1.3 Cryptographic Applications

In addition to their immediate application to the generaddpalancing scenario
discussed above, batch codes are also motivated by thevilafjccryptographic
problem. Aprivate information retrieva(PIR) protocol allows a user to retrieve
an itemi from a database of size while hiding i from the servers storing the
database. There are two main settings for PIR. In the infbom#heoretic set-
ting, there are two or more servers holding copies of thebdaa and the default
privacy requirement is that eaéhdividual server learn no information about
In the computational setting for PIR, there is typically yal single server hold-
ing the database and the privacy requirement is relaxedrtputationalprivacy,
which should hold against computationally bounded seraedsunder some cryp-
tographic assumption.

The current state-of-the-art PIR protocols can achieveralegr communica-
tion complexity(cf. [9, 4, 20, 6]), but on the other hand they are inherendyyv
expensive in terms ofomputationand requireQ2(n) operations on the servers’
part [5]. It is thus highly desirable tamortizethe computational cost of PIR over
k queries made by the user. An initial step in this directiors weade in [5], where
it was shown that the computational cost of handling mudtiglieries in certain
PIR protocols can bslightly amortized by using fast matrix multiplication.

Batch codes can be used to obtain much better amortizaticgheofompu-
tational cost of PIR while only moderately increasing thmm) communication.
Specifically, an(n, N, k, m) batch code with bucket size$;, 1 < j < m, pro-
vides a reduction fronk-query PIR tom invocations of standard PIR on databases
(buckets) of sizeV;. Any nontrivial batch code, satisfyinﬁj}i1 N; < nk, im-
plies amortized savings to the time complexity. (This asssithat the database
has already been preprocessed to its batch encoding.)nhs tefrasymptotics, the
amortized savings are most appealing whkes large, e.g.k = n° for some con-
stant0 < € < 1. In this case one can combine the single-server PIR pratocol
of [20, 6] with our batch code constructions to get protodbbt are “essentially
optimal” with respect to both communication and computaticSpecifically, &
items can be privately retrieved usikgt*)) communication ana.!*°") compu-



tation. We stress that even wheérs a small constant, batch codes still allow to
obtain significant concrete savings. Also, the use of badcles applies to both the
information-theoretic and computational settings for PARd does not introduce
any error probability or privacy loss. The reader is refétieSection 5 for a more
detailed discussion of this application, including its g@arison to an alternative
hashing-based approach.

Our amortization results for PIR substantially improvephevious ones from [5].
In contrast to [5], however, they do not directly apply to tase where thé
queries originate from different users. They also do notyappthe “PIR with
preprocessing” model considered in [5], which allows toppoeess the database
but requires the savings to kick in immediately (startingmihe user’s first query).
Still, our techniques have an interesting corollary fos thetting as well, discussed
in Section 5.

ADDITIONAL CRYPTOGRAPHIC APPLICATIONS PIR can be a useful building
block in other cryptographic protocols. Hence, amortatiesults for PIR carry
over to various other protocol problems. For instance,gisfficient reductions to
k-query PIR[15, 24, 25, 11], one can get protocols(fpr-Oblivious-Transfef26,
12] which are essentially optimal with respectltoth time and communication.
Previous solutions to this problem achieather (essentially) optimal communi-
cation or (essentially) optimal computation, but not bathudtaneously. Signifi-
cant savings are also possible in other contexts where Rigeis (e.g., [10, 23, 13,
7]). Again, the reader is referred to Section 5 for more ¢tketai

1.4 Related Notions

Below we survey a few of the interesting relations betweedntbeodes and other
primitives.

RELATION WITH INFORMATION DISPERSAL Similarly to the application of era-
sure codes to information dispersal [27], batch codes alse hpplications to dis-
tributed data storage. However, the two problems diffehbinttheir main goal
(fault tolerance vs. load balancing) and in the type of datatich they cater: the
former can be meaningfully applied tosingle, largeitem, whereas batch codes
are most interesting in the casermény smalitems.

RELATION WITH RANDOMNESS CONDUCTORS The entropy smoothening prop-
erty of expanders, extractors, and similar objects (géimechunder the term “ran-
domness conductors” [8]) makes them intuitively relatedatch codes. In fact,
replication-based batch codes with= 1 areequivalentto unbalanced expanders
with expansion factor 1. However, when dropping the (vestrigtive) replica-
tion requirement, batch codes seem to no longer have areddguhe world of



randomness conductors.

RELATION WITH LOCALLY -DECODABLE/SMOOTH CODES As noted above, smooth
codes naturally give rise to batch codes. However, batchsadd smooth/locally-
decodable codes are very different objects. In particthar smoothness property
implies significant fault tolerance, whereas batch codeqaire virtually none (an
extreme example being the expander-based constructionlitively, smooth de-
coding requires a highlyandom probing pattern, whereas batch decoding only
require the existence anesuch good pattern for an-tuple of items. An addi-
tional separating example is given by high degoasary Reed-Muller codes. In
Section 3.5 we show that despite their superiority as smoottes, they cannot
achieve the batch decoding parameters we obtain via subdes.c

The relation of our problem to the last two notions is quiteliasting. First,
batch codes provide in some senssoanmon relaxatiorf expander-type objects
and smooth codes. While many other connections betweea tyyass of problems
exist (e.g., both can be constructed from multivariate paoigials [3, 32, 28] and
both are useful in the context of derandomization [1, 17 23(), we are not aware
of another problem whose formulation provides an almosttlirelaxation of these
two notions. Second, viewing (certain) expanders ass#icted class of batch
codes, whose performance can be improvedgdaeralization suggests that it
might be fruitful to investigate similar relaxations ofa&d notions, or to look for
additional applications of randomness conductors whichbemefit from a similar
relaxation.

2 Preliminaries

In this section we define the variants of batch codes we wilhberested in and
note some simple relations between the parameters. Wégiietining the default
notion of batch codes.

Definition 2.1 (batch code) An (n, N, k, m,t) batch code oveE is defined by an
encoding functior' : ¥ — (X*)™ (each output of which is calledfaucke} and
a decoding algorithmd such that:

e The total length of allm buckets isV (where the length of each bucket is
independent of);

e Foranyz € X" and{iy,...,ix} C [n], A(C(2),i1,...,0k) = (Tiy,-- -, Tiy)s
and A probes at most symbols from each bucket@z) (whose positions are
determined byy, ..., z).

We will sometimes refer to as thedatabase By default, we assume batch codes
to besystematici.e., the encoding should contain each symbat af some fixed

8



position. Finally, an(n, N, k, m) batch codés an(n, N, k,m, 1) batch code over
¥ ={0,1}.

For “multi-user” applications, it is natural to consideetfollowing stronger
variant of batch codes.

Definition 2.2 (multiset batch code) An (n, N, k,m) multiset batch codés an
(n, N, k,m) batch code satisfying the following additional requiremeor any
multisetiq, io, ..., i € [n]there is gpartitionof the buckets into subsefs, . .., S, C
[m] such that each iteme;;, j € [k], can be recovered by reading (at most) one
symbol from each bucket i%}. This can be naturally generalized to> 1.

The following special case of (multiset) batch codes wilplaticularly useful:

Definition 2.3 (primitive batch code) A primitive batch codes an (n, N, k,m)
batch code in which each bucket contains a single symbolyi.e m.

Note that primitive batch codes are trivial in the singletusase, but are non-
trivial for multiset batch codes because of multiple re¢qsidsr the same item.
Next, we give some simple relations between our defaultaghof the parameters
(X ={0,1},¢ = 1) and the general one.

Lemma 2.4 The following holds both for standard batch codes and fortiset
batch codes:

1. An (n, N, k,m,t) batch code (for an arbitraryt) implies an(n,tN, k,tm)
code (witht = 1).

2. An(n, N, k, m) batch code implies afn, N, tk, m,t) code and arin, N, k, [m/t] ,t)

code.

3. An(n, N, k,m) batch code implies atwn, N, k, m) code overy. = {0,1}",
for an arbitrary w.

4. An (n, N, k,m) batch code ovek = {0,1}"* implies a(wn,wN, k,wm)
code overx = {0, 1}.

3 Constructions

In this section we describe our different batch code cons8tms. Due to lack of
space, some of the proofs have been omitted from this extealostract and can
be found in the full version.



3.1 Batch Codes from Unbalanced Expanders

Consider the case of “replication-based” batch codes, evbach bit of the encod-
ing is a physical bit ofz. Then, we may represent the code as a bipartite graph,
where then vertices on the left correspond to the data bits,thgertices on the
right correspond to the buckets, and there is an edge if the ioi the correspond-

ing bucket; in this casé&V is the number of edges. By Hall's theorem, the graph
represents atm, N, k, m) batch code if and only if each s&tof at mostk vertices

on the left has at lea$t| neighbors on the right. In the following we use standard
probabilistic arguments to estimate the tradeoffs betwberparameters we can
get using this approach.

Parameters. Fix parameters:, k,d. The expander will have. vertices on the
left vertex setd, andm (to be specified) on the right vertex sBt The graph is
constructed as follows. For each vertex A on the left, the following procedure
is repeated! times: Choose a uniformly selected element B, and add the
edge(u, v) to the graph. (If it already exists do nothing.) A standarénrbound
analysis gives the following:

Theorem 3.1 Letm > k - (nk)/(@=1) . ¢, Then, with probability at least —
t=2(d=1) the neighborhood of every sefs— A such that S| < k contains at least
|S| vertices inB.

Remark 3.2 We make several remarks concerning the expander-basedaappr
to batch codes:

1. For the single-user case, the expander-based approaath (s equivalent to
the replication-based approach) offers several practidahntages. For in-
stance, once a good constant-degree expander graph is treeéncoding
function can be computed in linear time, and only a constanthyer of bits in
the encoding need to be updated for any change in a singlé bit o

2. Whend is constant, the value of. in the above analysis depends not only on
k, but also onn. We note that this is not an artifact of the analysis, but an
inherent limitation.

3. The above bound can be made fully explicikiis a constant, because the
expansion properties can be checked in polynomial time.

4. We call the reader’s attention to the following settingpaframeters: Let
d = O((1/e)lognk), in which case we obtaimm = (1 + ¢)k. Note that
this is only possible because of our very weak expansionnament. A loss-
less expander, for instance, would trivially require > (1 — €)dk. Thus,
it is important to make use of the weak expansion conditiogegboptimal
parameters.

10



5. Known explicit constructions of unbalanced expandegfdyvarious interest-
ing settings of parameters, though all of these are quitiedar optimal:

e The explicit construction of unbalanced expanders of [8ledrem 7.3,
yieldsd = 20glosn)” andm = O (kd).

e The explicit construction of unbalanced expanders of [Itjgeorem 3,
yields two possible settings of parameters: {1 log®n for some con-
stantc > 1, andm = 206" which is superpolynomial ik; (2)
d = 2(08logn)? ‘andm = k°, for some constant > 1.

3.2 The Subcube Code

Expander-based batch codes have two inherent limitatibes: rate cannot exceed
1/2 and they cannot satisfy the stronger multiset property. \&l& describe a
simple (and fully explicit) batch code construction whicincovercome both of
these limitations.

The underlying idea is to recursively apply thel; R, L @ R)” encoding de-
scribed in the introduction. For instance, suppose thah efdhe 3 buckets is
again encoded using the same encoding function. The maguakide ha$ buckets
of sizen/4 each. Now, a batch df = 4 items can be decoded as follows. First,
arbitrarily partition them into two pairs and for each pairdfiithe positions in the
“high-level” buckets that need to be read for decoding tlag.p(Note that the
high-level buckets are just logical entities and are not phthe final encoding.)
Combining the two pairs, at most two items need to be read #aah high-level
bucket. We can now apply again the same procedure, decdungair in each
high level bucket by probing at most one position in each ef ¢brresponding
low-level buckets. Hence we get a (multiset) code with= (9/4)n, k = 4, and
m = 9. In what follows we formally describe a generalization aétidea.

Here and in the following, it will be useful to first construet'gadget” batch
code for a small database of sizg and then extend it to a larger code attaining the
same rate. The following simple lemma crucially relies amitiultiset property of
the code, and does not apply to the default notion of batcksod

Lemma 3.3 (Gadget lemma)Let Cyy be an(ng, Ny, k, m) multiset batch code.
Then, for any positive integerthere is an(n, N, k, m) multiset batch cod€’ with
n =rngand N = rNy. We denote the resulting codéby (r - Cy).

Let ¢ denote a parameter which, for fixedk, will allow to trade between the
rate and the number of buckets.

Lemma 3.4 For any integerd > 2 andn, there is a primitive(n, N, k, m) multi-
set batch cod€, withn =¢, N =m =/¢+1, andk = 2.

11



Proof:  The encoding function of, is defined byC,(x) = (x1, 2, ..., x4, 21D
x2 @ ... D xy). To decode a multiseltiy, i2 } we distinguish between two cases. If
i1 # i9, then the two bits can be directly read from the two corredpanbuckets
(and there is no need to read bits from the remaining buckEt®)a pair of iden-
tical bits{:, i}, one of them can be read directly from thk bucket, and the other
can be decoded by taking the exclusive-or of the bits in theanmeing buckets. O

To make this construction general, we should extend it talledarger database
sizen and number of querigls. Lemma 3.3 can be used for increasing the database
size using the same number of buckets. Towards handlingrlaajues ofk, we
define the following composition operator for batch codes.

Lemma 3.5 (Composition lemma)LetC, be an(ny, N1, k1, m) batch code and
Cy an (n2, Na, ko, mo) batch code such that the length of each bucket'ins ns
(in particular, Ny = mqng). Then, there is arin, N, k, m) batch codeC' with

n =n1, N = miNa, k = k1ke, andm = mime. Moreover, ifC; and Cy are
multisetbatch codes then so &, and if all buckets of’; have the same size then
this is also the case far'. We will use the notatio6; ® Cs to denote the composed
codeC.

To construct a batch code with general parameters we first compose the
codeC/ with itself log, k times, obtaining a primitive code with parametexs k,
and then apply Lemma 3.3 with= [n/ng].

Lemma 3.6 For any integerd > 2 andd > 1 there is a (primitive) multiset batch
codeC¢ withn = ¢4, N = m = (¢ + 1), andk = 2%

Proof:  C{is defined inductively as followsC} = C;, andC{ = (¢- C¢ 1) ®
C, (where *' is the gadget operator from Lemma 3.3 aml is the composition
operator from Lemma 3.5). It can be easily verified by indarcton d that this
composition is well defined and th@ has the required parameters. O

In the full version we give a combinatorial interpretatidrﬁf} in terms of the
subcubes of the hypercup@“. UsingC¢ with d = log, k as a gadget and applying
Lemma 3.3, we get:

Theorem 3.7 For any integersk,n and ¢ > 2 there is an explicit multiset batch
code with parameters: = (¢ + 1)[1°82#] ~ glog20+1) and N = [n/¢4] - m ~
Elogo(141/6)

By setting? = O(log k), the rate of the code can be made arbitrarily close to
1. Specifically:
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Corollary 3.8 For any constantp < 1 and integerk there is an integem (=
kOr(oglogk)) sych that for all sufficiently large there is an(n, N, k, m) multiset
batch code witl /N > p.

In the following sections we will be able to achieve a constate withm
being polynomial irk.

3.3 Batch Codes from Smooth Codes

The notion of smooth decoding arose from the contexocdlly-decodablesrror-
correcting codes [18]. Intuitively, a smooth code is one rghany input symbol
can be decoded by looking at a small subset of symbols, satlevkry symbol in
the encoding is looked at with roughly the same probabilgrmally, ag-query
smooth code oveX is defined by an encoding functiari : X" — X" together
with a randomized, non-adaptive decoding procedursatisfying the following
requirement. For alk € X" and indicesi € [n], we have thaD®®) (i) always
reads at mosfy symbols ofC(x) and correctly outputs:;. Moreover, for each
j € [m] the probability ofC(z); being read byD®®) (i) is at mostg/m. We
will also considerexpected;-query smooth codes, where the expected (rather than
worst-case) number of queries madelbys bounded by,. In contrast to most of
the literature on locally-decodable codes, we will typicéle interested in smooth
codes where is quite large (say; = O(n°) for some0 < ¢ < 1).

We suggest two simple generic approaches for convertingoatbntode into a
primitive multiset batch code. In fact, both approaches atomodify the encoding
function, and only make an oracle use of the smooth decoder.

The first approach applies the following greedy strategye Batch decoder
processes the items sequentially. For each itethe smooth decoder is repeatedly
invoked until it produces @-tuple of queries that have not yet been used. The
batch decoder reads the corresponding symbols and receyershis process
continues until allk items have been successfully decoded. This approach yields
the following theorem:

Theorem 3.9 LetC : ™ — 3™ be ag-query smooth code. Ther describes a
primitive multiset batch code with the same parameters asthooth code, where

k= Lm/qzj.

The gap betweek = m/q? andk = m/q (the best one could hope for) is
significant wheryg is large. In particular, it makes Theorem 3.9 totally useles
wheng > m!/2. In the next sections, we will see two cases where this gajpean
narrowed down using specific properties of the underlyindespand one where it
cannot.
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When Theorem 3.9 cannot be used at all, the following altemmalecoding
strategy may be used. The batch decoder independentlyasvible smooth de-
coder on each of the items. Call such an experimetisuccessful if no symbol is
requested more thantimes. Using a Chernoff bound and a union bound one can
estimate the minimailfor which the experiment is-successful with positive prob-
ability. For sucht, the code may be viewed as a primitie, m, k, m, t) multiset
batch code, which can be converted into a standard batchusidg Lemma 2.4
and Lemma 3.3. An unfortunate byproduct of this conversiothat it decreases
the rate of the code by a factor of Hence, the current approach is unsuitable
for obtaining constant-rate batch codes wita= 1. An analysis of the second
approach, applied to a typical range of parameters, givefotlowing.

Theorem 3.10Let C : ¥ — X™ be ag-query smooth code. Then, for ahy
such thatkq/m > log m, the code” describes a primitivén, m, k, m, t) multiset
batch code oveE with t = kq/m +2(kqlog m/m)'/2. Hence for the samethere
is also a primitive(n, tm, k, tm) multiset batch code.

Remark 3.11 Both of the above batch decoding algorithms (corresponidifidne-
orems 3.9, 3.10) are described as randomized Las-Vegatlaige. However, they
can be derandomized using limited independence. The salaefloo randomized
decoding algorithms that will be presented in the next sasti

We end this section by noting a weak converse of Theorem 3@ decod-
ing procedure of arin, m, k, m) primitive multiset batch code gives rise to an
expected'm/k)-query smooth decoding procedure: to smoothly decadeun
the batch decoder on the multisgt i, ... ,:}, and pick a random set; of buck-
ets from thek disjoint sets allowing to decode;. We stress though that even the
specific notion of grimitive multisetbatch code is quite loosely related to smooth
codes. Moreover, for general (non-primitive) batch codies,above converse of
Theorem 3.9 is essentially vacuous.

3.4 Batch Codes from Reed-Muller Codes

Reed-Muller (multivariate polynomial) codes are a well\mexample for smooth
codes. Hence, one can apply the generic transformationstfre previous section
to get batch codes with related parameters. We will showthiedt special structure
can be used to obtain significantly better batch decodinggohares.

Let ¢ denote the number of variables, whére 2, andd a bound on the total
degree of the polynomials we consider. We iS¢ denote the field over which
the code will be defined, whefé'| > d + 2. We assume by default thgf| is not
much larger tham + 2 (e.g.,|F| = 2/lg2(d+2)T),
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Recall that the Reed-Muller (RM) code is defined as the etialuaf all degree
d polynomials on all F|* evaluation points. Each such polynomial can be defined
not only by picking (arbitrary) coefficients for each of tl(@;d) monomials of
degree at most, but also by picking (arbitrary) values of the polynomiahieated
at some specified subsgtof (ngd) points in FX. The existence of such a subset
of F* is a simple consequence of the linear independence of themiats of
degree at mosi, when viewed as vectors of their evaluationsh Thus, we
associate the = (ng) input values with the evaluations of a degree (at mast)
polynomial at the points irt. Note that this yields a systematic code of length
m = |F|' = (ad)’. We refer to this code as aff,d, F) RM code. For any
constant, the rate of thé/, d, F') RM code is roughlyl /¢! and its degree satisfies
d = 0(m!/h).

We start by quoting the standard smoothness property of RM<o

Lemma 3.12 Any (¢, d, F') RM code (with F'| > d + 2) is ag-query smooth code
withg = d + 1.

Our first goal is to maximize the rate. Hence, we would like $@ &1 = 2
variables. However, in this case Lemma 3.12 gives smoothdieg with ¢ =
©(m'/?), and so Theorem 3.9 can only support a constarithe following spe-
cialized batch decoding procedure gets around this baamigrmore generally, ob-
tains better asymptotic bounds onin terms ofk when/ is small. The high-level
geometric idea is to decode each target point using a ranishenpassing through
this point, where by slightly increasing the field size one afford to “delete” all
intersections between different lines. This yields théofeing theorem.

Theorem 3.13 For any constantg, e > 0, an (¢, d, F') RM code with F'| = ad,
wherea = 1+ (1 + €¢) andd = w(¢logd), defines a primitive multiset batch
code overF with parametersy = (“1%), m = N = (ad)’, andk = Bd(ad)’ 2.
PARAMETERS ACHIEVED. The improved analysis yields the following for the
case wheré is constant: Lep, e be set to arbitrarily small constants. The rate of
the code then will be arbitrarily close {d/¢!). On the other handyn = O(k -
k'/(¢=1))In particular, this code is interesting even for the biaticase. Again
using Lemma 3.3, we obtain codes with rate arbitrarily clwse /2, andm =
O(k?). Note that the alphabet size for these codesdis O(log |F|) = O(log k).
The alphabet can be turned to binary using Lemma 2.4, iniageas by a factor
of ¢ = O(log k).

Finally, by combining Lemma 3.12 with Theorem 3.10 one getdes with
sub-constant rate, but whee can be made very close o
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Theorem 3.14 An (¢,d, F') RM code defines a primitive multiset batch code over
F with parameters: = (“/), m = N = (ad)!, k = Q((mlogm)/d), and

t = log m.

PARAMETERS ACHIEVED. Suppose we set parameters as folloWs= 1§ghf§gnn
andd = O(log! /¢ n). Then the theorem above, together with Lemma 3.3, yields
a multiset batch code withh = O(n - k), m = O(k - log'*Y/k), andt =
(1+¢)logk. If we reducet to 1 using Lemma 2.4, we obtain multiset batch codes
with N = O(n - k¢ log k), andm = O(k - log>"'/* k). Note that the alphabet size
for these codes i©(log | F'|) = O(loglog k). Using Lemma 2.4, the alphabet can
be turned to binary, increasing by a factor ofO (log log k).

3.5 The Subset Code

In this section we describe our final construction of batctieso In contrast to
all previous constructions, it will simultaneously aclgean arbitrary constant rate
and keepn polynomial ink.

Let/, w be parameters, whefe< w < £. A typical choice of parameters will
bew = af for some constant < « < 1/2. While we are primarily interested
in codes over the binary alphabet, it will be convenient mwthe alphabet as an
arbitrary Abelian grouft (whereX = Z5 by default).

The (¢,w) subset codés a primitive batch code with = (‘) andN = m =

>4 (5). We index each data item by a unique #ete (1)) and each bucket
by a unique subsef C [/] of size at mostw. The content of bucke$ is defined
def

by: Ys = > 7o, 1= @7- That is, each bucket receives the sum (or exclusive-
or) of the data items labelled by its supersets. Before diagra batch decoding
procedure for the subset code, it will be instructive to gralits performance as a
smooth code.

Definition 3.15 For any7 € () and7" C T, let Ly £ {SC )] : SNT =

T" A |S| < w}. We will sometimes refer tby 7+ as thespacedefined by the point
T and thedirection7”.

The following lemma follows immediately from the definition
Lemma 3.16 If T/, 7" are distinct subsets af, thenLy 7 N Ly v = 0.

The following lemma is crucial for establishing the smoatssm property of the
subset code.

Lemma 3.17 For any T € ([wg]) and T’ C T, the itemzy can be decoded by
reading all valuesys such thatS € Ly 7v.
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Proof:  Using the inclusion-exclusion principle, one may expregss a func-
tion of Y7~ and the value¥’s such thatl” ¢ S ¢ T as follows:

er=Yr = Y Yrugay+ Y Yruge - @
J1€T Jj1<j2, j1,Jj2&T

+(_1)W7|T | Z YT’U{jl,---,jw_rT/r}

j1<"'<jw7\T/\= jhgT

Note that the subsefsinvolved in the right hand side of Eq. (1) are precisely those
in LT,T/- (]

Lemma 3.18 The (¢, w) subset code is aaxpected m/2")-query smooth code,
wherem = Y% (£).

Proof: ~ From the previous two lemmas, for each item there are2* disjoint
spacesLy 7 of valuesYs, from each of whiche can be decoded. The smooth
decoder can now proceed by pickifiy C T at random, reading all the valu&s
such thatS € Lt 7, and recoveringer from the values read. Since the spaces
Ly form a perfect tiling of all sets§ C [¢] such that|S| < w, the expected
number of queries is exacthy /2%. O

We now look at the asymptotic parameters achieved by theesgbosle. Let
H(-) denote the binary entropy function. Set= o/ for some0 < o < 1/2.
(Choosinga < 1/2is necessary to ensure constant rate.) Using the approgimat
>4 (5) ~ 2H(@) and the inequality,* ;) < 725 (1) we get:

w

Claim 3.19 For any constan) < « < 1/2, the (/,w = af) subset code has
lengthm ~ 27(®)¢ and raten/m > 1 — a/(1 — a). It is an expected-query
smooth code with ~ m!~/H()

It follows that we cannot apply the generic transformatiémasn Section 3.3 to
get batch codes with a constant rate, regardless of théorelaétweenk andm.
Theorem 3.9 cannot be applied becagse m'/? (and moreovery is theexpected
number of queries). Theorem 3.10 cannot be applied becaussuits in codes
with sub-constant rates.

BATCH DECODING THE SUBSET CODE Given a multisefly, ..., T} of items to

be decoded, we would like to assign to edgha directionT’; C T such that the
spacesLr, 7v,..., Lt ! will be pairwise disjoint. One approach that comes to
mind is to p|ck the drrectlon? uniformly at random independently of each other.
However, it is easy to verlfy that i, T, are disjoint (or even nearly disjoint)
then Lz, 7+ and Ly, T will intersect with high probability. Another reasonable
approach would be to greedily assign to each ifgna dlrectlonT’ of the highest
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available weight, such that no point in the spai@gT; has been used before. (The

advantage of heavy sef§ is the small size of the corresponding spaces.) This
approach as well is too crude, since it may cause adjacestieebtally block
each other at an early stage of the process. However, thessptwoaches provide
the intuition we need for our solution. The former approadiks well whenever
the sets are “not too far” from each other, whereas the lafiproach works well
whenever the sets are “not too close” to each other.

We combine the two approaches by picking each directionpedéently at
random from a distribution which is biased towards heavgdlions. Specifically,
let eachTJf be obtained front; by selecting each element with probability4.
We analyze the probability that the spades 7 andLTb,Té intersect by first con-
sidering the case whef®,, T, are close, and then the case they are far.

Lemma 3.20 SupposeT, N Tj| < w/3. ThenPr[Ly, 77 N Ly, 77 # 0] = 9—Q(w)

Proof: ~ The random variabléT,, U T}| is larger than a binomial variable with
5w/3 trials and success probabili/4. By Chernoff’s boundPr[|T) U T}|] <
w] < 27%)_ The lemma follows by noting that whenev?, U T}| > w, the
spaced.r, 1 andLTb’Tg must be disjoint. O

Lemma 3.21 SupposeT, N1, > w/3. ThenPr[Ly, 1y N Ly, 17 # 0] = 9—Q(w)

Proof:  For the spaced.r, r» and LT,,,T,; to intersect, the sets, and7; must
contain precisely the same elements from the interse@jom7;. The probability
of the latter event is clearly bounded By(+). O

By combining Lemmas 3.20, 3.21 and taking the union ove@e)lbad events
we may conclude that there is an efficient (Las-Vegas) algorfor batch decoding
k = 2) jtems . Substituting the code parameters we get:

Theorem 3.22 For any0 < « < 1/2, k, and sufficiently largé, the (¢, w = /)
subset code is a primitive multiset batch code with~ 27()¢ rate n/m >
1 —a/(1 — a), and batch sizé = 29(®) = ypSHe/H()),

Finally, using Lemma 3.3 we obtain non-primitive codes wdtharbitrarily high
constant rate angh = poly(k).

Corollary 3.23 For everyp < 1 there is some > 1 such that for every: and
sufficiently largen there is an(n, N, k, m) multiset batch code with rate/N > p
andm = O(k°).
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3.5.1 Relation with binary Reed Muller codes

The subset code may be viewed as a subcode of the binary Reks-Mode.
Specifically, wher®: = Z, the (¢, w) subset code is defined by theariate poly-
nomials overZ, whose monomials all contaiexactlyd = ¢ — w distinct variables
(rather tharmat mostd variables). Because of this restriction, one can trunchte a
evaluation points of weight less than

It is thus natural to compare the performance of subset ctmbfary RM
codes. Itis implicit in a recent work of Alon et al. [2] thatethinary Reed-Muller
code defined by all-variate polynomials of degree (at most)is (2¢+1 — 2)-
smooth. However, we show that when> ¢/2 (which is necessary for achieving
rate above /2) any systemat® binary RM code cannot be batch decoded.

Claim 3.24 Let C be a systematic binary Reed Muller code defined-bgiriate
degreed polynomials wherel > ¢/2. Then, viewed as a primitive multiset batch
code,C does not support decoding evien= 3 items.

Proof: Let p, denote the polynomial encoding Leti € [n] andv € Z%
be such that for alk: we havep,(v) = x;. (Suchi exist sinceC' is systematic.)
Let S1, S5, S3 denote the disjoint subsets of evaluation points used foodiag
the multiset{s,7,i}. By linearity we may assume wlog that for ea6l the bit
x; can be decoded by taking teem(over Z;) of the evaluations of,, on points
in S;, and by disjointness of the sets we may assumehat S; U So>. Let
St = S;U{v} andS, = Sy U {v}. It follows that the characteristic vectors of
Si, S5 are codewords in the dual code, hence each contains theatoaki of a
degreet/ — d — 1) polynomial on all points inZ. (The dual code of a binary
(-variate RM code of degregis a binary/-variate RM code of degree— d — 1,

cf. [22].) Let ¢1,¢> denote the polynomials of the dual code corresponding to
S, S4. SinceS] N S, = {v} the polynomialg; g2 must evaluate td onv and to

0 on all other points. Note that the unique polynomial saigf\this has degreé
But sinced > ¢/2, the degree of;¢» must be less thah— a contradiction. O

4 Negative Results

In the full version of this paper we obtain several simpledowounds for batch
codes, some of which are tight for their setting of paranset&ummarizing, our
bounds cover the following cases:

10Recall that a code is systematic if each entry: @ppears in some fixed position of the encoding.
In fact, it suffices in the following thagomeentry ofx appear as an entry of the encoding.
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e First, we show a general bound forultisetbatch codes, relating their rate
andk to the minimum distance of the batch code treated as an eoreecting
code. Then, we go on to study cases wheis close tok:

e We show that if one is only willing to have: = k servers, then the trivial
N = nk bound is essentially optimal.

e For multisetbatch codes, we observe (trivially) that > (2k — m)n holds.
For the special case of exactly one additional servee( k + 1), we further
improve this bound tav > (k — 1/2)n, and show that this is tight. In partic-
ular, this shows that the simpl¢E, R, L © R)” batch code mentioned in the
introduction is optimal for the case = 3,k = 2.

e All our constructions of multiset batch codes go thropgmitive batch codes.
However, we show that this it without loss of generality, because for prim-
itive codes, a stronger bound holds. In general, in ordeat@ V < kn, we
show thatm > [(3k + 1)/2]. This is also tight, and the resulting primitive
batch code for this value of hasN/n = | (3k + 1)/2].

All formal statements and proofs can be found in the full ieers Below we
give a representative lower bound proof, establishingitfriess of the(L, R, L®
R)” construction from the Introduction.

Theorem 4.1 LetC be an(n, N, 2, 3) multiset batch code. TheN > 1.5n.

Proof:  We consider only multisets of two identical queriesFor each such
pair, the decoder should recovey from two disjoint subsets of buckets. Hence,
for eachi there is a buckeb;, such that; can be decoded in two possible ways:
(1) by reading one bit fron;; (2) by reading one bit from each of the remaining
buckets.

Forj = 1,2, 3, letn; count the number of indicessuch thab; = j. Let X be
a uniformly distributed string (from0, 1}") and.X; its restriction to the bits such
thatb; = j. Note thatH (X;) = n;. Let(B1, B2, B3) denote the joint distribution
C(X), whereB; is the content of bucket

We are now ready to derive the lower bound. We have assumeditiéts in
X7 can be recovered fromB,, Bs. SinceX; is independent ok, X3, we have:

n1 S H(B2B3 | X2X3) (2)
= H(B2 ‘ X2X3) + H(Bg ’ BQX2X3)
< H(B:|X3)+ H(Bs| X3)
Similarly,
ny < H(By | X1) + H(B3 | X3) 3
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and

Summing Eq. 2,3,4, we have:

3
n=ni+ny+n3<2|> H(B;|X;) (5)
j=1

Finally, since
H(Bj) = 1(Bj ; X;) + H(Bj | Xj) =n; + H(B;j | X;)
by summing over and substituting Eq. 5 we get:

as required. O

5 Cryptographic Applications

In this section we describe the application of batch codesifwortizing the time
complexity of private information retrieval (PIR()’{)—OT, and related cryptographic
protocol problems. We refer the reader to Section 1.3 fokdpazind on the PIR
problem and relevant previous work.

Amortized PIR. Recall that a PIR protocol allows a uddrto retrieve thei-th

bit (more generally, thé-th item) from a database of lengthn while keeping
the valuei private. (The following discussion applies to both the catagional
setting for PIR, where typically there is only a single serelding x, and the
information-theoretic setting wheneis held by several servers.) We consider the
(})-PIR problem where the user is interested in retrievingits from then-bit
string z. This problem can obviously be solved by picking an arbjtfalR pro-
tocol P and invoking it (independently} times. The complexity of the resulting
protocol isk times that ofP; in particular, the servers’ time complexity is at least
k-n. Our goal is to obtain significant savings in the time comipyer comparison

to the above naive solution, while only moderately incnegdhe communication
complexity.

We start by observing that such an amortization can be asthigsinghashing
This can be done with various choices of parameters; weneudlitypical solution
of this kind. The user, holding indices, . . . , i;, of items it would like to retrieve,
picks at random a hash functién: [n] — [k] from an appropriate familg{. (The
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choice ofh is independent of the indices, . ..,i;.) It sendsh to the server(s)
and from now on both the user and the server(s)/uss a random partition of
the indices ofr into k& buckets of size (roughly)/k. This ensures that, except
with probability 2-%(?), the number of items hashed to any particular bucket is at
mosto log k. Next, to retrieve thé indices ofx, the user applies the PIR protocol
P to each bucket log k times. Except fo2—(?) probability, it will be able to
retrieve allk items. It is not hard to see that the above hashing-basedicsolu
indeed achieves the desired amortization effect: the sital of all databases on
which we invoke PIR is only log & - n, in comparison td&n in the naive solution.

The above hashing-based method has several disadvankggseven if the
original PIR scheme is perfectly correct, the amortizedeseh is not. (Alter-
natively, it is possible to modify this solution so that patf correctness will be
achieved, but at the expense of losing perfect privacy.p&kahe computational
overhead over a single PIR invocation involves a multipheafactor of o log k
— this is undesirable in general, and in particular makes ghlution useless for
small values ok. Finally, for efficiency reasons it might be necessary tsedy
e.g., to let the server pick it once and apply it to the dataldasa preprocessing
stage; however, for any fixed there is (an efficiently computable) set of queries
for which the scheme will fail.

Below, we show thabatch codegrovide a general reduction fro(@f)—PIR to
standard(’)-PIR which allows to avoid the above disadvantages. More specifi-
cally, to solve the(Z)—PIR problem, we fix somén, N, k,m) batch code which
will be used by the server(s) to encode the datalkad3de user, given the indices
i1,...,1 that it wants to retrieve, applies the code’s batch-deapgimcedure to
that set; however, rather than directly read one bit fronhdarket, it applies the
PIR protocolP on each bucket to retrieve the bit it needs from it while kegghe
identity of this bit private. Denoting by’'(n) and7'(n) the communication and
time complexity of the underlying PIR protocBland byNy, ..., N, the sizes of
buckets created by the batch code, the communication caitypté this solution
is> " C(V;) and its time complexity i3, T'(N;).1! This reduction iperfect
in the sense that it does not introduce any error nor com@@ivacy. Hence, it
can be applied to both information-theoretic and compontati PIR protocols.

Batch codes may also be applied towards amortizingtilemunication com-
plexity of PIR. This implies significant asymptotic savings in théofmation-
theoretic setting, but is less significant in the computeticsetting (since there
the communication complexity of retrieving a single itenpeeds very mildly on

For the purpose of this analysis, we ignore the computatmrerthead incurred by the encoding
and decoding procedures. It is important to note thougheheabding is applied t@ only once (as
long as the database is not changed) and that the cost ofidgcattluding the decision of which
bit to read from each bucket, is quite small in our constomgi
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Two additional consequences for PIRIn addition to the direct application of
batch codes to amortizing the cost of PIR, our techniquesc({Bpally, the con-
structions of very short smooth codes) have two qualitBtirgeresting applica-
tions to PIR. The first is to PIR with preprocessing. In the sladnsidered in [5],
the servers preprocess the database in order to reducerhé takes to answer
a user’s query. In contrast to the question of amortized Rifsiclered here, the
savings in the time complexity should apply to each singlergyrather than to
a batch of queries together). The goal in this model is to mire time, extra
storage (in excess of), and communication. The subset code construction yields
the following interesting corollary: there exist PIR protds with preprocessing in
which all three quantities agmultaneouslgublinear.

The idea is the following. LeC(z) be the(¢,w) subset-encoding of the
databaser. It follows from the proof of Lemma 3.18 that the codepisrfectly
smooth, in the sense that its smooth decoding procedur@gedrh bit in the en-
coding withexactlythe same probability. Hence, one can obtain PIR protocdi wit
preprocessing as follows. At the preprocessing stage, otendp(x) and store a
singlebit of the encoding at each server. (Note that this appraacadically dif-
ferent from the one in [5], where at leasbits are stored at each of a small number
of servers.) Applying the smooth decoding procedure, tlee approaches only
the servers storing the bits it needs to read. Thus, the cancation complexity
is equal to the query complexity of the decoder. Privacyofed directly from the
perfect smoothness requirement: each individual senappsoached with equal
probability, independently of the retrieved iteém

By Lemma 3.18, the expected number of bits read by the smeatbder is; =
m/2%, wherem = Z;.”:O (f) is the length of the code (or the total storage). Also,
n= (f)) is the length of the database. By an appropriate choice ahpeters (e.g.,

w = V/f) we have sublinear extra storage (= > i (f) = (1 + o(1))n), and
sublinear communication complexity and time complexity=m /2% = o(n)).

Another interesting corollary is that sublinear-commatimn information-theoretic
PIR is possible even when the total number of bits storedeat#nvers is signif-
icantly smaller thar2n. In all previous information-theoretic protocols from the
literature, each server stores at leabits of data (even when these bits are not nec-
essarily physical bits of [14, 5]), hence the minimal amount of possible storage
is at leasn.

Applications to Oblivious Transfer and to other protocol problems. (7)-OT
(k-out-of-n Oblivious Transfer) strengthe(rjg)-PIR by requiring that the user does
not learn any information about other than thek (physical) bits that it chose
to retrieve [26, 12, 16]. Note that the above reduction frigPIR to (})-PIR
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(using batch codes) cannot be directly applied for redugigOT to (7)-OT,
since it allows the user to get bits of information (rather thah), and even these
are not necessarily physical bits of However, it is possible to obtain similar
amortization for(}})-OT by using efficient reductions from this primitive {3)-
PIR (e.g., using [15, 24, 25, 19, 11]). Thus, the applicationatth codes carries
over to the(},)-OT primitive as well.

PIR is a useful building blocks in other cryptographic poutis. In particular,
PIR has been used for various special-purpose secure catigputasks such as
keyword search [10], distance approximations [13], diatisqueries [7], and even
for generally compiling a class of communication-efficigmbtocols into secure
ones [23]. Most of these applications can benefit from theramadion results we
obtain for PIR, at least in certain scenarios. For instaircéhe keyword search
application the cost of searching several keywords by theesaser is amortized
to the same extent as for the underlying PIR primitive.

Acknowledgements. We thank Amos Beimel and the anonymous reviewers for
helpful comments.
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