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Abstract

A batch codeencodes a stringx into anm-tuple of strings, calledbuckets,
such that each batch ofk bits from x can be decoded by reading at most
one (more generally,t) bits from each bucket. Batch codes can be viewed
as relaxing several combinatorial objects, including expanders and locally
decodable codes.

We initiate the study of these codes by presenting some constructions,
connections with other problems, and lower bounds. We also demonstrate
the usefulness of batch codes by presenting two types of applications: trading
maximal load for storage in certain load-balancing scenarios, and amortiz-
ing the computational cost of private information retrieval (PIR) and related
cryptographic protocols.
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1 Introduction

In this paper we introduce and study a new coding problem, theinterest in which
is both purely theoretical and application-driven. We start by describing a general
application scenario.

Suppose that a large database ofn items (say, bits) is to be distributed among
m devices.1 After the data has been distributed, a user chooses an arbitrary subset
(or batch) of k items, which she would like to retrieve by reading the data stored
on the devices. Our goal is to minimize the worst-case maximal load on any of the
m devices, where the load on a device is measured by the number of bits read from
it, while also minimizing the total amount of storage used.2

To illustrate the problem, consider the casem = 3. A naive way to balance the
load would be to store a copy of the entire database in each device. This allows
to reduce the load by roughly a factor of3, namely anyk-tuple of items may be
obtained by reading at mostdk/3e bits from each device. However, this solution
triples the total amount of storage relative to the originaldatabase, which may be
very expensive in the casen is large. A natural question is whether one can still
achieve a significant load-balancing effect while reducingthe storage requirements.
For instance, suppose that only a 50% increase in the size of the original database
can be afforded (i.e., a total of1.5n-bit storage). By how much can the maximal
load be reduced under this constraint?

For these parameters, no clever way of replicating individual data bits (or
“hashing” them to the three devices) can solve the problem. Indeed, any such
replication scheme would leave at leastn/6 bits that can only be found on one
particular device, say the first, and hence fork ≤ n/6 there is a choice ofk items
which incurs a load ofk on this device.3

In light of the above, we need to consider more general distribution schemes, in
which each stored bit may depend on more than one data bit. A simple construction
proceeds as follows. Partition the database into two partsL,R containingn/2 bits
each, and storeL on the first device,R on the second, andL⊕R on the third. Note
that the total storage is1.5n which satisfies our requirement. We argue that each
pair of itemsi1, i2 can be retrieved by making at mostoneprobe to each device.

1The term “device” can refer either to aphysicaldevice, such as a server or a disk, or to a
completely virtual entity, as in the application we will describe in Section 1.3.

2Both our measure of load and the type of tradeoffs we considerare similar to Yao’scell-probe
model [33], which is commonly used to model time-storage tradeoffs in data structure problems.

3One could argue that unless thek items areadversariallychosen, such a worst-case scenario
is very unlikely to occur. However, this is not the case whenk is small. More importantly, if the
queries are made bydifferentusers, then it is realistic to assume that a large fraction ofthe users will
try to retrieve the same “popular” item, which has a high probability of being stored only on a single
device. Such a multi-user scenario will be addressed in the sequel.
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Consider two cases. Ifi1, i2 reside in different parts of the database, then it clearly
suffices to read one bit from each of the first two devices. On the other hand, if
i1, i2 both reside in the same part, sayL, then one of them can be retrieved directly
from the first device, and the other by reading one bit from each of the other devices
and taking the exclusive-or of the two bits. Thus, the worst-case maximal load can
be reduced todk/2e. This achieves significant reduction in load with a relatively
small penalty in storage.

1.1 Batch Codes

We abstract the problem above into a new notion we call abatch code, and we give
several constructions for these new objects.

An (n,N, k,m, t) batch codeover an alphabetΣ encodes a stringx ∈ Σn into
anm-tuple of stringsy1, . . . , ym ∈ Σ∗ (also referred to asbuckets) of total length
N , such that for eachk-tuple (batch) of distinct indicesi1, . . . , ik ∈ [n], the entries
xi1 , . . . , xik can be decoded by reading at mostt symbols from each bucket. Note
that the buckets in this definition correspond to the devicesin the above example,
the encoding lengthN to the total storage, and the parametert to the maximal load.
Borrowing from standard coding terminology, we will refer to n/N as therate of
the code.

When considering problems involving several parameters, one typically fo-
cuses the attention on some “interesting” settings of the parameters. In this case,
we will mostly restrict our attention to a binary alphabetΣ and to the caset = 1,
namely at mostonebit is read from each bucket. This case seems to most sharply
capture the essence of the problem and, as demonstrated above, solutions for this
case can also be meaningfully scaled to the general case.4 Moreover, the caset = 1
models scenarios where only a single access to each device can be made at a time,
as is the case for the cryptographic application discussed in Section 1.3. From now
on, the term “batch code” (or(n,N, k,m) batch code) will refer by default to the
above special case.

We will typically view n, k as the given parameters and try to minimizeN,m
as a function of these parameters. Note that in our default setting we must have
m ≥ k. It is instructive to point out the following two (trivial) extreme types of
batch codes: (1)C(x) = (x, x, . . . , x), i.e., replicatex in each bucket; in this
case we can use an optimalm (i.e., m = k) but the rate1/k is very low. (2)
C(x) = (x1, x2, . . . , xn), i.e., each bit ofx is put in a separate bucket; in this case

4The decoding procedure in the above example can be viewed asdk/2e repetitions of
decoding a batch code with parameters(n, 1.5n, 2, 3, 1), yielding decoding with parameters
(n, 1.5n, k, 3, dk/2e).
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the rate,1, is optimal butm is very large. Our goal is to obtain good intermediate
solutions which are close to being optimal in both aspects.

MULTISET BATCH CODES. The load-balancing scenario described above involves
asingleuser. It is natural to consider a scenario wherek distinct users, each holding
some queryij , wish to directly retrieve data from the same devices. Thereare two
main differences between this setting and the default one. First, each selected item
xij should be recovered from the bits read by thejth user alone, rather than from
all the bits that were read. Second, while previously thek queries were assumed
to be distinct, this assumption cannot be made in the currentsetting. Since the
indicesij now form amultiset, we use the termmultiset batch codeto refer to such
a stronger type of batch code.

In defining multiset batch codes, we make the simplifying assumption that prior
to the decoding process the users can coordinate their actions in an arbitrary way;
we only “charge” for the bits they read.5 We note, however, that most of our
constructions can be modified to require little or no coordination between the users
with a small degradation in performance.

Aside from their direct application in a multi-user scenario, an additional mo-
tivation for multiset batch codes is that their stronger properties make them easier
to manipulate and compose. Hence, this variant will be useful as a building block
even in the single-user setting.

1.2 Our Results

We have already insisted on minimal load per device – every batch is processed
with only one bitbeing read from each device. Therefore, the two quantities of
interest are: (1) Storage overhead, and (2) the number of devicesm (which must
be at leastk in our setting) . This leads to two fundamental existential questions
about batch codes: First, can we construct codes with arbitrarily low storage over-
head (rate1− ε) as the number of queriesk grows, but with the number of devices
m still being “feasible” in terms ofk? Second, can we construct codes with es-
sentially the optimal number of devices (m ≈ k) with storage overheado(k)? We
resolve both of these questions affirmatively, and also showa number of interest-
ing applications of batch codes and our constructions. Our techniques and precise
results are outlined below:

BATCH CODES FROM UNBALANCED EXPANDERS. In the above example we first
considered a replication-based approach, where each item may be replicated in a
carefully selected subset of buckets but no functions (e.g., linear combinations) of

5This is a reasonable assumption in some scenarios (e.g., if such a coordination is cheaper than
an access to the device, or if it can be done off-line).
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severalitems can be used. For the specific parameters of that exampleit was argued
that this restricted approach was essentially useless. However, this is not always
the case. We observe that if the assignment of items to buckets is specified by an
unbalanced expander graph(with a weak expansion property), then one obtains
a batch code with related parameters.6 Using random graphs of polynomial size
(where the random graph can be chosen and fixed “once and for all”), we obtain
batch codes with parametersN/n = O(log n) and m = O(k). This answers
Question 2 above affirmatively for non-multiset batch codes. The code can be
made explicit by using explicit constructions of expanders[31, 8], but with weaker
parameters.

This expander-based construction has someinherentlimitations. First, it can-
not be used for obtaining codes whose rate exceeds1/2 (unlessm = Ω(n)). Sec-
ond, even for achieving a smallerconstantrate, it is required thatm depend not
only on k but also onn (e.g., the random graph achieves rate1/3 with m =
k3/2n1/2). Third, this approach cannot be used to obtainmultisetbatch codes,
since it cannot handle the case where many users request the same item. These
limitations will be avoided by our other constructions.

THE SUBCUBE CODE. Our second batch code construction may be viewed as a
composition of (a generalization of) the code from the above“(L,R,L ⊕ R)” ex-
ample with itself. We refer to the resulting code as thesubcube code, as it admits
a nice combinatorial interpretation involving the subcubes of a hypercube. The
subcube code is amultisetbatch code, furthermore it can achieve an arbitrarily
high constant rate. Specifically, any constant rateρ < 1 can be realized with
m = kO(log log k). While the asymptotic dependence ofm on k will be improved
by subsequent constructions, the subcube code still yieldsour best results for some
small values ofk, and generally admits the simplest and most explicit batch decod-
ing procedure.

BATCH CODES FROM SMOOTH CODES. A q-querysmooth code(a close relative
of locally decodable codes[18]) maps a stringx to a codewordy such that each
symbol ofx can be decoded by probing at mostq random symbols iny, where
the probability of any particular symbol being probed is at mostq/|y|.7 We estab-
lish a two-way general relation between smooth codes and multiset batch codes.
In particular, any smooth code gives rise to batch codes withrelated parameters.
However, this connection is not sufficiently tight to yield the parameters we seek.
See Section 1.4 for further discussion.

6This is very different from the construction of standard error-correcting codes from expanders
(cf. [29]), in which the graph specifies parity-checks rather than a replication pattern.

7Using the more general terminology of [18], this is a(q, q, 1/2)-smooth code.
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BATCH CODES FROMREED-MULLER8 CODES. By exploiting the structure of
Reed-Muller codes (beyond their smoothness), we obtain batch codes with excel-
lent parameters. In particular, for any constantε > 0, we obtain a multiset batch
code with raten/N = Ω(1/kε) andm = k · log2+1/ε+o(1) k. Thus, the number of
devices is within a polylogarithmic factor from optimal, while the storage overhead
is onlykε – answering Question 2 above affirmatively formultisetbatch codes. Us-
ing Reed-Muller codes we also get multiset batch codes with raten/N = 1/(`!+ε)
andm = k1+1/(`−1)+o(1) for any constantε > 0 and integer̀ ≥ 2.

THE SUBSET CODE. The batch codes we have constructed so far either require
the rate to be below 1/2 (expander, Reed-Muller codes), or achieve high rates at
the expense of requiringm to be (slightly) super-polynomial ink (subcube codes).
Our final construction, which admits a natural interpretation in terms of the subset
lattice,9 avoids both of these deficiencies. Specifically, we get the following result,
answering Question 1 above in the affirmative:

For any constant rateρ < 1 there is a constantc > 1 such that for
everyk and sufficiently largen there is an(n,N, k,m) multiset batch
code withn/N ≥ ρ andm = O(kc).

In other words, one can insist on adding only an arbitrarily small percentage to the
original storage, yet reduce the load by any desired amountk using only poly(k)
devices.

The parameters of the different constructions are summarized in the following
table.

Code rate m multiset?

Expander 1/d < 1/2 O(k · (nk)1/(d−1)) No
Ω(1/ logn) O(k)

Subcube ρ < 1 kO(log log k) Yes
RM 1/`!− ε < 1/2 k · k1/(`−1)+o(1) Yes

Ω(1/kε) k · (log k)2+1/ε+o(1)

Subset ρ < 1 kO(1) Yes

NEGATIVE RESULTS. The focus of this paper has primarily been constructions
of batch codes and their applications (see below), but as with most interesting
combinatorial objects, finding optimal lower bounds is an intriguing open question.
We give some initial lower bounds (tight in some instances) based on elementary
combinatorial and information-theoretic arguments.

8A Reed-Muller code is one whose codewords correspond to all`-variate polynomials of total
degree at mostd over a finite fieldF , where|F | > d + 1.

9The subset code may be viewed as a subcode of thebinary Reed-Muller code. The latter,
however, does not suffice for our purposes.
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ADDITIONAL EFFICIENCY CONCERNS. While we have mainly focused on the
most basic efficiency measures of batch codes, there are several other natural mea-
sures to be considered. These include efficiency of encodingand decoding, amount
of coordination between the users in the multi-user setting(or thedistributedcom-
plexity of decoding), efficiency of handling online additions and deletions of queries,
average case performance, and so forth. We note that most of our solutions perform
favorably in most of these aspects.

1.3 Cryptographic Applications

In addition to their immediate application to the general load-balancing scenario
discussed above, batch codes are also motivated by the following cryptographic
problem. Aprivate information retrieval(PIR) protocol allows a user to retrieve
an itemi from a database of sizen while hiding i from the servers storing the
database. There are two main settings for PIR. In the information-theoretic set-
ting, there are two or more servers holding copies of the database and the default
privacy requirement is that eachindividual server learn no information abouti.
In the computational setting for PIR, there is typically only a single server hold-
ing the database and the privacy requirement is relaxed tocomputationalprivacy,
which should hold against computationally bounded serversand under some cryp-
tographic assumption.

The current state-of-the-art PIR protocols can achieve a very low communica-
tion complexity(cf. [9, 4, 20, 6]), but on the other hand they are inherently very
expensive in terms ofcomputationand requireΩ(n) operations on the servers’
part [5]. It is thus highly desirable toamortizethe computational cost of PIR over
k queries made by the user. An initial step in this direction was made in [5], where
it was shown that the computational cost of handling multiple queries in certain
PIR protocols can beslightly amortized by using fast matrix multiplication.

Batch codes can be used to obtain much better amortization ofthe compu-
tational cost of PIR while only moderately increasing the (low) communication.
Specifically, an(n,N, k,m) batch code with bucket sizesNj, 1 ≤ j ≤ m, pro-
vides a reduction fromk-query PIR tom invocations of standard PIR on databases
(buckets) of sizeNj . Any nontrivial batch code, satisfying

∑m
j=1 Nj � nk, im-

plies amortized savings to the time complexity. (This assumes that the database
has already been preprocessed to its batch encoding.) In terms of asymptotics, the
amortized savings are most appealing whenk is large, e.g.,k = nε for some con-
stant0 < ε < 1. In this case one can combine the single-server PIR protocols
of [20, 6] with our batch code constructions to get protocolsthat are “essentially
optimal” with respect to both communication and computation. Specifically,k
items can be privately retrieved usingk1+o(1) communication andn1+o(1) compu-
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tation. We stress that even whenk is a small constant, batch codes still allow to
obtain significant concrete savings. Also, the use of batch codes applies to both the
information-theoretic and computational settings for PIR, and does not introduce
any error probability or privacy loss. The reader is referred to Section 5 for a more
detailed discussion of this application, including its comparison to an alternative
hashing-based approach.

Our amortization results for PIR substantially improve theprevious ones from [5].
In contrast to [5], however, they do not directly apply to thecase where thek
queries originate from different users. They also do not apply to the “PIR with
preprocessing” model considered in [5], which allows to preprocess the database
but requires the savings to kick in immediately (starting with the user’s first query).
Still, our techniques have an interesting corollary for this setting as well, discussed
in Section 5.

ADDITIONAL CRYPTOGRAPHIC APPLICATIONS. PIR can be a useful building
block in other cryptographic protocols. Hence, amortization results for PIR carry
over to various other protocol problems. For instance, using efficient reductions to
k-query PIR [15, 24, 25, 11], one can get protocols for

(n
k

)

-Oblivious-Transfer[26,
12] which are essentially optimal with respect toboth time and communication.
Previous solutions to this problem achievedeither (essentially) optimal communi-
cation or (essentially) optimal computation, but not both simultaneously. Signifi-
cant savings are also possible in other contexts where PIR isused (e.g., [10, 23, 13,
7]). Again, the reader is referred to Section 5 for more details.

1.4 Related Notions

Below we survey a few of the interesting relations between batch codes and other
primitives.

RELATION WITH INFORMATION DISPERSAL. Similarly to the application of era-
sure codes to information dispersal [27], batch codes also have applications to dis-
tributed data storage. However, the two problems differ both in their main goal
(fault tolerance vs. load balancing) and in the type of data to which they cater: the
former can be meaningfully applied to asingle, largeitem, whereas batch codes
are most interesting in the case ofmany smallitems.

RELATION WITH RANDOMNESS CONDUCTORS. The entropy smoothening prop-
erty of expanders, extractors, and similar objects (generalized under the term “ran-
domness conductors” [8]) makes them intuitively related tobatch codes. In fact,
replication-based batch codes witht = 1 areequivalentto unbalanced expanders
with expansion factor 1. However, when dropping the (very restrictive) replica-
tion requirement, batch codes seem to no longer have analogues in the world of
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randomness conductors.

RELATION WITH LOCALLY -DECODABLE/SMOOTH CODES. As noted above, smooth
codes naturally give rise to batch codes. However, batch codes and smooth/locally-
decodable codes are very different objects. In particular,the smoothness property
implies significant fault tolerance, whereas batch codes require virtually none (an
extreme example being the expander-based construction). Intuitively, smooth de-
coding requires a highlyrandomprobing pattern, whereas batch decoding only
require the existence ofonesuch good pattern for anyk-tuple of items. An addi-
tional separating example is given by high degreebinary Reed-Muller codes. In
Section 3.5 we show that despite their superiority as smoothcodes, they cannot
achieve the batch decoding parameters we obtain via subset codes.

The relation of our problem to the last two notions is quite interesting. First,
batch codes provide in some sense acommon relaxationof expander-type objects
and smooth codes. While many other connections between these types of problems
exist (e.g., both can be constructed from multivariate polynomials [3, 32, 28] and
both are useful in the context of derandomization [1, 17, 30,21]), we are not aware
of another problem whose formulation provides an almost direct relaxation of these
two notions. Second, viewing (certain) expanders as arestrictedclass of batch
codes, whose performance can be improved viageneralization, suggests that it
might be fruitful to investigate similar relaxations of related notions, or to look for
additional applications of randomness conductors which can benefit from a similar
relaxation.

2 Preliminaries

In this section we define the variants of batch codes we will beinterested in and
note some simple relations between the parameters. We startby defining the default
notion of batch codes.

Definition 2.1 (batch code) An (n,N, k,m, t) batch code overΣ is defined by an
encoding functionC : Σn → (Σ∗)m (each output of which is called abucket) and
a decoding algorithmA such that:

• The total length of allm buckets isN (where the length of each bucket is
independent ofx);

• For anyx ∈ Σn and{i1, . . . , ik} ⊆ [n], A(C(x), i1, . . . , ik) = (xi1 , . . . , xik),
andA probes at mostt symbols from each bucket inC(x) (whose positions are
determined byi1, . . . , ik).

We will sometimes refer tox as thedatabase. By default, we assume batch codes
to besystematic, i.e., the encoding should contain each symbol ofx in some fixed
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position. Finally, an(n,N, k,m) batch codeis an(n,N, k,m, 1) batch code over
Σ = {0, 1}.

For “multi-user” applications, it is natural to consider the following stronger
variant of batch codes.

Definition 2.2 (multiset batch code) An (n,N, k,m) multiset batch codeis an
(n,N, k,m) batch code satisfying the following additional requirement. For any
multiseti1, i2, . . . , ik ∈ [n] there is apartitionof the buckets into subsetsS1, . . . , Sk ⊆
[m] such that each itemxij , j ∈ [k], can be recovered by reading (at most) one
symbol from each bucket inSj. This can be naturally generalized tot > 1.

The following special case of (multiset) batch codes will beparticularly useful:

Definition 2.3 (primitive batch code) A primitive batch codeis an (n,N, k,m)
batch code in which each bucket contains a single symbol, i.e. N = m.

Note that primitive batch codes are trivial in the single-user case, but are non-
trivial for multiset batch codes because of multiple requests for the same item.
Next, we give some simple relations between our default choice of the parameters
(Σ = {0, 1}, t = 1) and the general one.

Lemma 2.4 The following holds both for standard batch codes and for multiset
batch codes:

1. An (n,N, k,m, t) batch code (for an arbitraryt) implies an(n, tN, k, tm)
code (witht = 1).

2. An(n,N, k,m) batch code implies an(n,N, tk,m, t) code and an(n,N, k, dm/te , t)
code.

3. An (n,N, k,m) batch code implies an(n,N, k,m) code overΣ = {0, 1}w,
for an arbitrary w.

4. An (n,N, k,m) batch code overΣ = {0, 1}w implies a(wn,wN, k,wm)
code overΣ = {0, 1}.

3 Constructions

In this section we describe our different batch code constructions. Due to lack of
space, some of the proofs have been omitted from this extended abstract and can
be found in the full version.
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3.1 Batch Codes from Unbalanced Expanders

Consider the case of “replication-based” batch codes, where each bit of the encod-
ing is a physical bit ofx. Then, we may represent the code as a bipartite graph,
where then vertices on the left correspond to the data bits, them vertices on the
right correspond to the buckets, and there is an edge if the bit is in the correspond-
ing bucket; in this caseN is the number of edges. By Hall’s theorem, the graph
represents an(n,N, k,m) batch code if and only if each setS of at mostk vertices
on the left has at least|S| neighbors on the right. In the following we use standard
probabilistic arguments to estimate the tradeoffs betweenthe parameters we can
get using this approach.

Parameters. Fix parametersn, k, d. The expander will haven vertices on the
left vertex setA, andm (to be specified) on the right vertex setB. The graph is
constructed as follows. For each vertexu ∈ A on the left, the following procedure
is repeatedd times: Choose a uniformly selected elementv ∈ B, and add the
edge(u, v) to the graph. (If it already exists do nothing.) A standard union bound
analysis gives the following:

Theorem 3.1 Let m ≥ k · (nk)1/(d−1) · t. Then, with probability at least1 −
t−2(d−1), the neighborhood of every setsS ⊂ A such that|S| ≤ k contains at least
|S| vertices inB.

Remark 3.2 We make several remarks concerning the expander-based approach
to batch codes:

1. For the single-user case, the expander-based approach (which is equivalent to
the replication-based approach) offers several practicaladvantages. For in-
stance, once a good constant-degree expander graph is fixed,the encoding
function can be computed in linear time, and only a constant number of bits in
the encoding need to be updated for any change in a single bit of x.

2. Whend is constant, the value ofm in the above analysis depends not only on
k, but also onn. We note that this is not an artifact of the analysis, but an
inherent limitation.

3. The above bound can be made fully explicit ifk is a constant, because the
expansion properties can be checked in polynomial time.

4. We call the reader’s attention to the following setting ofparameters: Let
d = O((1/ε) log nk), in which case we obtainm = (1 + ε)k. Note that
this is only possible because of our very weak expansion requirement. A loss-
less expander, for instance, would trivially requirem ≥ (1 − ε)dk. Thus,
it is important to make use of the weak expansion condition toget optimal
parameters.
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5. Known explicit constructions of unbalanced expanders yield various interest-
ing settings of parameters, though all of these are quite farfrom optimal:

• The explicit construction of unbalanced expanders of [8], Theorem 7.3,
yieldsd = 2(log log n)3 andm = O(kd).

• The explicit construction of unbalanced expanders of [31],Theorem 3,
yields two possible settings of parameters: (1)d = logc n for some con-
stantc > 1, andm = 2(log k)1+ε

, which is superpolynomial ink; (2)
d = 2(log log n)2 , andm = kc, for some constantc > 1.

3.2 The Subcube Code

Expander-based batch codes have two inherent limitations:their rate cannot exceed
1/2 and they cannot satisfy the stronger multiset property. We now describe a
simple (and fully explicit) batch code construction which can overcome both of
these limitations.

The underlying idea is to recursively apply the “(L,R,L ⊕ R)” encoding de-
scribed in the introduction. For instance, suppose that each of the 3 buckets is
again encoded using the same encoding function. The resulting code has9 buckets
of sizen/4 each. Now, a batch ofk = 4 items can be decoded as follows. First,
arbitrarily partition them into two pairs and for each pair find the positions in the
“high-level” buckets that need to be read for decoding this pair. (Note that the
high-level buckets are just logical entities and are not part of the final encoding.)
Combining the two pairs, at most two items need to be read fromeach high-level
bucket. We can now apply again the same procedure, decoding the pair in each
high level bucket by probing at most one position in each of the corresponding
low-level buckets. Hence we get a (multiset) code withN = (9/4)n, k = 4, and
m = 9. In what follows we formally describe a generalization of this idea.

Here and in the following, it will be useful to first constructa “gadget” batch
code for a small database of sizen0, and then extend it to a larger code attaining the
same rate. The following simple lemma crucially relies on the multiset property of
the code, and does not apply to the default notion of batch codes.

Lemma 3.3 (Gadget lemma)Let C0 be an(n0, N0, k,m) multiset batch code.
Then, for any positive integerr there is an(n,N, k,m) multiset batch codeC with
n = rn0 andN = rN0. We denote the resulting codeC by (r · C0).

Let ` denote a parameter which, for fixedn, k, will allow to trade between the
rate and the number of buckets.

Lemma 3.4 For any integers̀ ≥ 2 andn, there is a primitive(n,N, k,m) multi-
set batch codeC` with n = `, N = m = ` + 1, andk = 2.

11



Proof: The encoding function ofC` is defined byC`(x) = (x1, x2, . . . , x`, x1⊕
x2 ⊕ . . .⊕ x`). To decode a multiset{i1, i2} we distinguish between two cases. If
i1 6= i2, then the two bits can be directly read from the two corresponding buckets
(and there is no need to read bits from the remaining buckets). For a pair of iden-
tical bits{i, i}, one of them can be read directly from theith bucket, and the other
can be decoded by taking the exclusive-or of the bits in the remaining buckets. 2

To make this construction general, we should extend it to handle larger database
sizen and number of queriesk. Lemma 3.3 can be used for increasing the database
size using the same number of buckets. Towards handling larger values ofk, we
define the following composition operator for batch codes.

Lemma 3.5 (Composition lemma)LetC1 be an(n1, N1, k1,m1) batch code and
C2 an (n2, N2, k2,m2) batch code such that the length of each bucket inC1 is n2

(in particular, N1 = m1n2). Then, there is an(n,N, k,m) batch codeC with
n = n1, N = m1N2, k = k1k2, andm = m1m2. Moreover, ifC1 andC2 are
multisetbatch codes then so isC, and if all buckets ofC2 have the same size then
this is also the case forC. We will use the notationC1⊗C2 to denote the composed
codeC.

To construct a batch code with general parametersk, n, we first compose the
codeC` with itself log2 k times, obtaining a primitive code with parametersn0, k,
and then apply Lemma 3.3 withr = dn/n0e.

Lemma 3.6 For any integers̀ ≥ 2 andd ≥ 1 there is a (primitive) multiset batch
codeCd

` with n = `d, N = m = (` + 1)d, andk = 2d.

Proof: C
d
` is defined inductively as follows:C1

` = C`, andC
d
` = (` ·Cd−1

` ) ⊗
C` (where ‘·’ is the gadget operator from Lemma 3.3 and ‘⊗’ is the composition
operator from Lemma 3.5). It can be easily verified by induction ond that this
composition is well defined and thatC

d
` has the required parameters. 2

In the full version we give a combinatorial interpretation of C
d
` in terms of the

subcubes of the hypercube[`]d. UsingC
d
` with d = log2 k as a gadget and applying

Lemma 3.3, we get:

Theorem 3.7 For any integersk, n and ` ≥ 2 there is an explicit multiset batch
code with parametersm = (` + 1)dlog2 ke ≈ klog2(`+1) andN =

⌈

n/`d
⌉

· m ≈
klog2(1+1/`) · n.

By setting` = O(log k), the rate of the code can be made arbitrarily close to
1. Specifically:

12



Corollary 3.8 For any constantρ < 1 and integerk there is an integerm(=
kOρ(log log k)) such that for all sufficiently largen there is an(n,N, k,m) multiset
batch code withn/N ≥ ρ.

In the following sections we will be able to achieve a constant rate withm
being polynomial ink.

3.3 Batch Codes from Smooth Codes

The notion of smooth decoding arose from the context oflocally-decodableerror-
correcting codes [18]. Intuitively, a smooth code is one where any input symbol
can be decoded by looking at a small subset of symbols, such that every symbol in
the encoding is looked at with roughly the same probability.Formally, aq-query
smooth code overΣ is defined by an encoding functionC : Σn → Σm together
with a randomized, non-adaptive decoding procedureD satisfying the following
requirement. For allx ∈ Σn and indicesi ∈ [n], we have thatDC(x)(i) always
reads at mostq symbols ofC(x) and correctly outputsxi. Moreover, for each
j ∈ [m] the probability ofC(x)j being read byDC(x)(i) is at mostq/m. We
will also considerexpectedq-query smooth codes, where the expected (rather than
worst-case) number of queries made byD is bounded byq. In contrast to most of
the literature on locally-decodable codes, we will typically be interested in smooth
codes whereq is quite large (say,q = O(nc) for some0 < c < 1).

We suggest two simple generic approaches for converting a smooth code into a
primitive multiset batch code. In fact, both approaches do not modify the encoding
function, and only make an oracle use of the smooth decoder.

The first approach applies the following greedy strategy. The batch decoder
processes the items sequentially. For each itemij , the smooth decoder is repeatedly
invoked until it produces aq-tuple of queries that have not yet been used. The
batch decoder reads the corresponding symbols and recoversxij . This process
continues until allk items have been successfully decoded. This approach yields
the following theorem:

Theorem 3.9 Let C : Σn → Σm be aq-query smooth code. ThenC describes a
primitive multiset batch code with the same parameters as the smooth code, where
k =

⌊

m/q2
⌋

.

The gap betweenk = m/q2 andk = m/q (the best one could hope for) is
significant whenq is large. In particular, it makes Theorem 3.9 totally useless
whenq > m1/2. In the next sections, we will see two cases where this gap canbe
narrowed down using specific properties of the underlying codes, and one where it
cannot.

13



When Theorem 3.9 cannot be used at all, the following alternative decoding
strategy may be used. The batch decoder independently invokes the smooth de-
coder on each of thek items. Call such an experimentt-successful if no symbol is
requested more thant times. Using a Chernoff bound and a union bound one can
estimate the minimalt for which the experiment ist-successful with positive prob-
ability. For sucht, the code may be viewed as a primitive(n,m, k,m, t) multiset
batch code, which can be converted into a standard batch codeusing Lemma 2.4
and Lemma 3.3. An unfortunate byproduct of this conversion is that it decreases
the rate of the code by a factor oft. Hence, the current approach is unsuitable
for obtaining constant-rate batch codes witht = 1. An analysis of the second
approach, applied to a typical range of parameters, gives the following.

Theorem 3.10 Let C : Σn → Σm be aq-query smooth code. Then, for anyk
such thatkq/m > log m, the codeC describes a primitive(n,m, k,m, t) multiset
batch code overΣ with t = kq/m+2(kq log m/m)1/2. Hence for the samet there
is also a primitive(n, tm, k, tm) multiset batch code.

Remark 3.11 Both of the above batch decoding algorithms (correspondingto The-
orems 3.9, 3.10) are described as randomized Las-Vegas algorithms. However, they
can be derandomized using limited independence. The same holds for randomized
decoding algorithms that will be presented in the next sections.

We end this section by noting a weak converse of Theorem 3.9. The decod-
ing procedure of an(n,m, k,m) primitive multiset batch code gives rise to an
expected(m/k)-query smooth decoding procedure: to smoothly decodexi, run
the batch decoder on the multiset{i, i, . . . , i}, and pick a random setSj of buck-
ets from thek disjoint sets allowing to decodexi. We stress though that even the
specific notion of aprimitive multisetbatch code is quite loosely related to smooth
codes. Moreover, for general (non-primitive) batch codes,the above converse of
Theorem 3.9 is essentially vacuous.

3.4 Batch Codes from Reed-Muller Codes

Reed-Muller (multivariate polynomial) codes are a well known example for smooth
codes. Hence, one can apply the generic transformations from the previous section
to get batch codes with related parameters. We will show thattheir special structure
can be used to obtain significantly better batch decoding procedures.

Let ` denote the number of variables, where` ≥ 2, andd a bound on the total
degree of the polynomials we consider. We useF to denote the field over which
the code will be defined, where|F | ≥ d + 2. We assume by default that|F | is not
much larger thand + 2 (e.g.,|F | = 2dlog2(d+2)e).

14



Recall that the Reed-Muller (RM) code is defined as the evaluation of all degree
d polynomials on all|F |` evaluation points. Each such polynomial can be defined
not only by picking (arbitrary) coefficients for each of the

(`+d
d

)

monomials of
degree at mostd, but also by picking (arbitrary) values of the polynomial evaluated
at some specified subsetS of

(`+d
d

)

points inF `. The existence of such a subset
of F ` is a simple consequence of the linear independence of the monomials of
degree at mostd, when viewed as vectors of their evaluations onF `. Thus, we
associate then =

(`+d
d

)

input values with the evaluations of a degree (at most)d
polynomial at the points inS. Note that this yields a systematic code of length
m = |F |` = (αd)`. We refer to this code as an(`, d, F ) RM code. For any
constant̀ , the rate of the(`, d, F ) RM code is roughly1/`! and its degree satisfies
d = Θ(m1/`).

We start by quoting the standard smoothness property of RM codes.

Lemma 3.12 Any(`, d, F ) RM code (with|F | ≥ d + 2) is a q-query smooth code
with q = d + 1.

Our first goal is to maximize the rate. Hence, we would like to use ` = 2
variables. However, in this case Lemma 3.12 gives smooth decoding with q =
Θ(m1/2), and so Theorem 3.9 can only support a constantk. The following spe-
cialized batch decoding procedure gets around this barrierand, more generally, ob-
tains better asymptotic bounds onm in terms ofk when` is small. The high-level
geometric idea is to decode each target point using a random line passing through
this point, where by slightly increasing the field size one can afford to “delete” all
intersections between different lines. This yields the following theorem.

Theorem 3.13 For any constantsβ, ε > 0, an (`, d, F ) RM code with|F | = αd,
whereα = 1 + β(1 + ε) and d = ω(` log d), defines a primitive multiset batch
code overF with parametersn =

(`+d
d

)

, m = N = (αd)`, andk = βd(αd)`−2.

PARAMETERS ACHIEVED. The improved analysis yields the following for the
case wherè is constant: Letβ, ε be set to arbitrarily small constants. The rate of
the code then will be arbitrarily close to(1/`!). On the other hand,m = O(k ·
k1/(`−1)). In particular, this code is interesting even for the bivariate case. Again
using Lemma 3.3, we obtain codes with rate arbitrarily closeto 1/2, andm =
O(k2). Note that the alphabet size for these codes isq = O(log |F |) = O(log k).
The alphabet can be turned to binary using Lemma 2.4, increasing m by a factor
of q = O(log k).

Finally, by combining Lemma 3.12 with Theorem 3.10 one gets codes with
sub-constant rate, but wherem can be made very close tok:
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Theorem 3.14 An (`, d, F ) RM code defines a primitive multiset batch code over
F with parametersn =

(`+d
d

)

, m = N = (αd)`, k = Ω((m log m)/d), and
t = log m.

PARAMETERS ACHIEVED. Suppose we set parameters as follows:` = ε log n
log log n

andd = O(log1+1/ε n). Then the theorem above, together with Lemma 3.3, yields
a multiset batch code withN = O(n · kε), m = O(k · log1+1/ε k), and t =
(1 + ε) log k. If we reducet to 1 using Lemma 2.4, we obtain multiset batch codes
with N = O(n · kε log k), andm = O(k · log2+1/ε k). Note that the alphabet size
for these codes isO(log |F |) = O(log log k). Using Lemma 2.4, the alphabet can
be turned to binary, increasingm by a factor ofO(log log k).

3.5 The Subset Code

In this section we describe our final construction of batch codes. In contrast to
all previous constructions, it will simultaneously achieve an arbitrary constant rate
and keepm polynomial ink.

Let `, w be parameters, where0 < w < `. A typical choice of parameters will
be w = α` for some constant0 < α < 1/2. While we are primarily interested
in codes over the binary alphabet, it will be convenient to view the alphabet as an
arbitrary Abelian groupΣ (whereΣ = Z2 by default).

The(`, w) subset codeis a primitive batch code withn =
( `
w

)

andN = m =
∑w

j=0

(`
j

)

. We index each data item by a unique setT ∈
([`]

w

)

and each bucket
by a unique subsetS ⊆ [`] of size at mostw. The content of bucketS is defined
by: YS

def
=

∑

T⊇S, |T |=w xT . That is, each bucket receives the sum (or exclusive-
or) of the data items labelled by its supersets. Before describing a batch decoding
procedure for the subset code, it will be instructive to analyze its performance as a
smooth code.

Definition 3.15 For anyT ∈
(

[`]
w

)

andT ′ ⊆ T , let LT,T ′
def
= {S ⊆ [`] : S ∩ T =

T ′ ∧ |S| ≤ w}. We will sometimes refer toLT,T ′ as thespacedefined by the point
T and thedirectionT ′.

The following lemma follows immediately from the definition.

Lemma 3.16 If T ′, T ′′ are distinct subsets ofT , thenLT,T ′ ∩ LT,T ′′ = ∅.

The following lemma is crucial for establishing the smoothness property of the
subset code.

Lemma 3.17 For any T ∈
([`]

w

)

and T ′ ⊆ T , the itemxT can be decoded by
reading all valuesYS such thatS ∈ LT,T ′ .
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Proof: Using the inclusion-exclusion principle, one may expressxT as a func-
tion of YT ′ and the valuesYS such thatT ′ ⊂ S 6⊆ T as follows:

xT = YT ′ −
∑

j1 6∈T

YT ′∪{j1} +
∑

j1<j2, j1,j2 6∈T

YT ′∪{j1,j2} − (1)

. . . +(−1)w−|T ′|
∑

j1<...<jw−|T ′|, jh 6∈T

YT ′∪{j1,...,jw−|T ′|}

Note that the subsetsS involved in the right hand side of Eq. (1) are precisely those
in LT,T ′ . 2

Lemma 3.18 The(`, w) subset code is anexpected(m/2w)-query smooth code,
wherem =

∑w
j=0

( `
w

)

.

Proof: From the previous two lemmas, for each itemxT there are2w disjoint
spacesLT,T ′ of valuesYS , from each of whichxT can be decoded. The smooth
decoder can now proceed by pickingT ′ ⊂ T at random, reading all the valuesYS

such thatS ∈ LT,T ′ , and recoveringxT from the values read. Since the spaces
LT,T ′ form a perfect tiling of all setsS ⊂ [`] such that|S| ≤ w, the expected
number of queries is exactlym/2w. 2

We now look at the asymptotic parameters achieved by the subset code. Let
H(·) denote the binary entropy function. Setw = α` for some0 < α < 1/2.
(Choosingα < 1/2 is necessary to ensure constant rate.) Using the approximation
∑w

j=0

(`
j

)

≈ 2H(α)` and the inequality
( `
w−1

)

≤ w
`−w

( `
w

)

we get:

Claim 3.19 For any constant0 < α < 1/2, the (`, w = α`) subset code has
lengthm ≈ 2H(α)` and raten/m ≥ 1 − α/(1 − α). It is an expectedq-query
smooth code withq ≈ m1−α/H(α).

It follows that we cannot apply the generic transformationsfrom Section 3.3 to
get batch codes with a constant rate, regardless of the relation betweenk andm.
Theorem 3.9 cannot be applied becauseq > m1/2 (and moreover,q is theexpected
number of queries). Theorem 3.10 cannot be applied because it results in codes
with sub-constant rates.

BATCH DECODING THE SUBSET CODE. Given a multisetT1, . . . , Tk of items to
be decoded, we would like to assign to eachTj a directionT ′

j ⊆ Tj such that the
spacesLT1,T ′

1
, . . . , LTk,T ′

k
will be pairwise disjoint. One approach that comes to

mind is to pick the directionsT ′
j uniformly at random independently of each other.

However, it is easy to verify that ifTa, Tb are disjoint (or even nearly disjoint)
thenLTa,T ′

a
andLTb,T ′

b
will intersect with high probability. Another reasonable

approach would be to greedily assign to each itemTj a directionT ′
j of the highest
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available weight, such that no point in the spaceLTj ,T ′
j

has been used before. (The

advantage of heavy setsT ′
j is the small size of the corresponding spaces.) This

approach as well is too crude, since it may cause adjacent sets to totally block
each other at an early stage of the process. However, these two approaches provide
the intuition we need for our solution. The former approach works well whenever
the sets are “not too far” from each other, whereas the latterapproach works well
whenever the sets are “not too close” to each other.

We combine the two approaches by picking each direction independently at
random from a distribution which is biased towards heavy directions. Specifically,
let eachT ′

j be obtained fromTj by selecting each element with probability3/4.
We analyze the probability that the spacesLTa,T ′

a
andLTb,T

′
b

intersect by first con-
sidering the case whereTa, Tb are close, and then the case they are far.

Lemma 3.20 Suppose|Ta ∩Tb| ≤ w/3. ThenPr[LTa,T ′
a
∩LTb,T

′
b
6= ∅] = 2−Ω(w).

Proof: The random variable|T ′
a ∪ T ′

b| is larger than a binomial variable with
5w/3 trials and success probability3/4. By Chernoff’s bound,Pr[|T ′

a ∪ T ′
b|] ≤

w] < 2−Ω(w). The lemma follows by noting that whenever|T ′
a ∪ T ′

b| > w, the
spacesLTa,T ′

a
andLTb,T ′

b
must be disjoint. 2

Lemma 3.21 Suppose|Ta ∩Tb| > w/3. ThenPr[LTa,T ′
a
∩LTb,T

′
b
6= ∅] = 2−Ω(w).

Proof: For the spacesLTa,T ′
a

andLTb,T
′
b

to intersect, the setsT ′
a andT ′

b must
contain precisely the same elements from the intersectionTa ∩Tb. The probability
of the latter event is clearly bounded by2−Ω(w). 2

By combining Lemmas 3.20, 3.21 and taking the union over all
(

k
2

)

bad events
we may conclude that there is an efficient (Las-Vegas) algorithm for batch decoding
k = 2Ω(w) items . Substituting the code parameters we get:

Theorem 3.22 For any0 < α < 1/2, k, and sufficiently largè, the(`, w = α`)
subset code is a primitive multiset batch code withm ≈ 2H(α)`, rate n/m ≥
1 − α/(1 − α), and batch sizek = 2Ω(w) = mΩ(α/H(α)).

Finally, using Lemma 3.3 we obtain non-primitive codes withan arbitrarily high
constant rate andm = poly(k).

Corollary 3.23 For everyρ < 1 there is somec > 1 such that for everyk and
sufficiently largen there is an(n,N, k,m) multiset batch code with raten/N ≥ ρ
andm = O(kc).
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3.5.1 Relation with binary Reed Muller codes

The subset code may be viewed as a subcode of the binary Reed-Muller code.
Specifically, whenΣ = Z2 the(`, w) subset code is defined by the`-variate poly-
nomials overZ2 whose monomials all containexactlyd = `−w distinct variables
(rather thanat mostd variables). Because of this restriction, one can truncate all
evaluation points of weight less thand.

It is thus natural to compare the performance of subset codesto binary RM
codes. It is implicit in a recent work of Alon et al. [2] that the binary Reed-Muller
code defined by all̀ -variate polynomials of degree (at most)d is (2d+1 − 2)-
smooth. However, we show that whend > `/2 (which is necessary for achieving
rate above1/2) any systematic10 binary RM code cannot be batch decoded.

Claim 3.24 Let C be a systematic binary Reed Muller code defined by`-variate
degree-d polynomials whered > `/2. Then, viewed as a primitive multiset batch
code,C does not support decoding evenk = 3 items.

Proof: Let px denote the polynomial encodingx. Let i ∈ [n] andv ∈ Z`
2

be such that for allx we havepx(v) = xi. (Suchi exist sinceC is systematic.)
Let S1, S2, S3 denote the disjoint subsets of evaluation points used for decoding
the multiset{i, i, i}. By linearity we may assume wlog that for eachSj, the bit
xi can be decoded by taking thesum(overZ2) of the evaluations ofpx on points
in Sj, and by disjointness of the sets we may assume thatv 6∈ S1 ∪ S2. Let
S′

1 = S1 ∪ {v} andS′
2 = S2 ∪ {v}. It follows that the characteristic vectors of

S′
1, S

′
2 are codewords in the dual code, hence each contains the evaluations of a

degree-(` − d − 1) polynomial on all points inZ`
2. (The dual code of a binary

`-variate RM code of degreed is a binary`-variate RM code of degreè− d − 1,
cf. [22].) Let q1, q2 denote the polynomials of the dual code corresponding to
S′

1, S
′
2. SinceS′

1 ∩ S′
2 = {v} the polynomialq1q2 must evaluate to1 on v and to

0 on all other points. Note that the unique polynomial satisfying this has degreè.
But sinced > `/2, the degree ofq1q2 must be less thaǹ– a contradiction. 2

4 Negative Results

In the full version of this paper we obtain several simple lower bounds for batch
codes, some of which are tight for their setting of parameters. Summarizing, our
bounds cover the following cases:

10Recall that a code is systematic if each entry ofx appears in some fixed position of the encoding.
In fact, it suffices in the following thatsomeentry ofx appear as an entry of the encoding.
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• First, we show a general bound formultisetbatch codes, relating their rate
andk to the minimum distance of the batch code treated as an error-correcting
code. Then, we go on to study cases whenm is close tok:

• We show that if one is only willing to havem = k servers, then the trivial
N = nk bound is essentially optimal.

• For multisetbatch codes, we observe (trivially) thatN ≥ (2k − m)n holds.
For the special case of exactly one additional server (m = k + 1), we further
improve this bound toN ≥ (k − 1/2)n, and show that this is tight. In partic-
ular, this shows that the simple “(L,R,L ⊕ R)” batch code mentioned in the
introduction is optimal for the casem = 3, k = 2.

• All our constructions of multiset batch codes go throughprimitivebatch codes.
However, we show that this isnotwithout loss of generality, because for prim-
itive codes, a stronger bound holds. In general, in order to haveN < kn, we
show thatm ≥ b(3k + 1)/2c. This is also tight, and the resulting primitive
batch code for this value ofm hasN/n = 1

2b(3k + 1)/2c.
All formal statements and proofs can be found in the full version. Below we

give a representative lower bound proof, establishing the tightness of the “(L,R,L⊕
R)” construction from the Introduction.

Theorem 4.1 LetC be an(n,N, 2, 3) multiset batch code. Then,N ≥ 1.5n.

Proof: We consider only multisets of two identical queriesi. For each such
pair, the decoder should recoverxi from two disjoint subsets of buckets. Hence,
for eachi there is a bucketbi, such thatxi can be decoded in two possible ways:
(1) by reading one bit frombi; (2) by reading one bit from each of the remaining
buckets.

For j = 1, 2, 3, let nj count the number of indicesi such thatbi = j. Let X be
a uniformly distributed string (from{0, 1}n) andXj its restriction to the bitsi such
thatbi = j. Note thatH(Xj) = nj. Let (B1, B2, B3) denote the joint distribution
C(X), whereBj is the content of bucketj.

We are now ready to derive the lower bound. We have assumed that all bits in
X1 can be recovered fromB2, B3. SinceX1 is independent ofX2,X3, we have:

n1 ≤ H(B2B3 | X2X3) (2)

= H(B2 | X2X3) + H(B3 | B2X2X3)

≤ H(B2 | X2) + H(B3 | X3)

Similarly,
n2 ≤ H(B1 | X1) + H(B3 | X3) (3)
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and
n3 ≤ H(B1 | X1) + H(B2 | X2) (4)

Summing Eq. 2,3,4, we have:

n = n1 + n2 + n3 ≤ 2





3
∑

j=1

H(Bj | Xj)



 (5)

Finally, since

H(Bj) = I(Bj ; Xj) + H(Bj | Xj) = nj + H(Bj | Xj)

by summing overj and substituting Eq. 5 we get:

H(B1) + H(B2) + H(B3) ≥ 1.5n

as required. 2

5 Cryptographic Applications

In this section we describe the application of batch codes for amortizing the time
complexity of private information retrieval (PIR),

(n
1

)

-OT, and related cryptographic
protocol problems. We refer the reader to Section 1.3 for background on the PIR
problem and relevant previous work.

Amortized PIR. Recall that a PIR protocol allows a userU to retrieve thei-th
bit (more generally, thei-th item) from a databasex of length n while keeping
the valuei private. (The following discussion applies to both the computational
setting for PIR, where typically there is only a single server holding x, and the
information-theoretic setting wherex is held by several servers.) We consider the
(n
k

)

-PIR problem where the user is interested in retrievingk bits from then-bit
string x. This problem can obviously be solved by picking an arbitrary PIR pro-
tocol P and invoking it (independently)k times. The complexity of the resulting
protocol isk times that ofP; in particular, the servers’ time complexity is at least
k ·n. Our goal is to obtain significant savings in the time complexity in comparison
to the above naive solution, while only moderately increasing the communication
complexity.

We start by observing that such an amortization can be achieved usinghashing.
This can be done with various choices of parameters; we outline a typical solution
of this kind. The user, holding indicesi1, . . . , ik of items it would like to retrieve,
picks at random a hash functionh : [n] → [k] from an appropriate familyH. (The
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choice ofh is independent of the indicesi1, . . . , ik.) It sendsh to the server(s)
and from now on both the user and the server(s) useh as a random partition of
the indices ofx into k buckets of size (roughly)n/k. This ensures that, except
with probability2−Ω(σ), the number of items hashed to any particular bucket is at
mostσ log k. Next, to retrieve thek indices ofx, the user applies the PIR protocol
P to each bucketσ log k times. Except for2−Ω(σ) probability, it will be able to
retrieve allk items. It is not hard to see that the above hashing-based solution
indeed achieves the desired amortization effect: the totalsize of all databases on
which we invoke PIR is onlyσ log k · n, in comparison tokn in the naive solution.

The above hashing-based method has several disadvantages.First, even if the
original PIR scheme is perfectly correct, the amortized scheme is not. (Alter-
natively, it is possible to modify this solution so that perfect correctness will be
achieved, but at the expense of losing perfect privacy.) Second, the computational
overhead over a single PIR invocation involves a multiplicative factor ofσ log k
– this is undesirable in general, and in particular makes this solution useless for
small values ofk. Finally, for efficiency reasons it might be necessary to reuseh,
e.g., to let the server pick it once and apply it to the database in a preprocessing
stage; however, for any fixedh there is (an efficiently computable) set of queries
for which the scheme will fail.

Below, we show thatbatch codesprovide a general reduction from
(n
k

)

-PIR to
standard

(

n
1

)

-PIR which allows to avoid the above disadvantages. More specifi-
cally, to solve the

(

n
k

)

-PIR problem, we fix some(n,N, k,m) batch code which
will be used by the server(s) to encode the databasex. The user, given thek indices
i1, . . . , ik that it wants to retrieve, applies the code’s batch-decoding procedure to
that set; however, rather than directly read one bit from each bucket, it applies the
PIR protocolP on each bucket to retrieve the bit it needs from it while keeping the
identity of this bit private. Denoting byC(n) andT (n) the communication and
time complexity of the underlying PIR protocolP and byN1, . . . , Nm the sizes of
buckets created by the batch code, the communication complexity of this solution
is

∑m
i=1 C(Ni) and its time complexity is

∑m
i=1 T (Ni).11 This reduction isperfect

in the sense that it does not introduce any error nor compromise privacy. Hence, it
can be applied to both information-theoretic and computational PIR protocols.

Batch codes may also be applied towards amortizing thecommunication com-
plexity of PIR. This implies significant asymptotic savings in the information-
theoretic setting, but is less significant in the computational setting (since there
the communication complexity of retrieving a single item depends very mildly on

11For the purpose of this analysis, we ignore the computational overhead incurred by the encoding
and decoding procedures. It is important to note though thatencoding is applied tox only once (as
long as the database is not changed) and that the cost of decoding, including the decision of which
bit to read from each bucket, is quite small in our constructions.
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n).

Two additional consequences for PIR.In addition to the direct application of
batch codes to amortizing the cost of PIR, our techniques (specifically, the con-
structions of very short smooth codes) have two qualitatively interesting applica-
tions to PIR. The first is to PIR with preprocessing. In the model considered in [5],
the servers preprocess the database in order to reduce the time it takes to answer
a user’s query. In contrast to the question of amortized PIR considered here, the
savings in the time complexity should apply to each single query (rather than to
a batch of queries together). The goal in this model is to minimize time, extra
storage (in excess ofn), and communication. The subset code construction yields
the following interesting corollary: there exist PIR protocols with preprocessing in
which all three quantities aresimultaneouslysublinear.

The idea is the following. LetC(x) be the(`, w) subset-encoding of the
databasex. It follows from the proof of Lemma 3.18 that the code isperfectly
smooth, in the sense that its smooth decoding procedure probes each bit in the en-
coding withexactlythe same probability. Hence, one can obtain PIR protocol with
preprocessing as follows. At the preprocessing stage, compute C(x) and store a
singlebit of the encoding at each server. (Note that this approach is radically dif-
ferent from the one in [5], where at leastn bits are stored at each of a small number
of servers.) Applying the smooth decoding procedure, the user approaches only
the servers storing the bits it needs to read. Thus, the communication complexity
is equal to the query complexity of the decoder. Privacy follows directly from the
perfect smoothness requirement: each individual server isapproached with equal
probability, independently of the retrieved itemi.

By Lemma 3.18, the expected number of bits read by the smooth decoder isq =
m/2w, wherem =

∑w
j=0

(`
j

)

is the length of the code (or the total storage). Also,

n =
( `
w

)

is the length of the database. By an appropriate choice of parameters (e.g.,
w =

√
`) we have sublinear extra storage (m =

∑w
j=0

(

`
j

)

= (1 + o(1))n), and
sublinear communication complexity and time complexity (q = m/2w = o(n)).

Another interesting corollary is that sublinear-communication information-theoretic
PIR is possible even when the total number of bits stored at the servers is signif-
icantly smaller than2n. In all previous information-theoretic protocols from the
literature, each server stores at leastn bits of data (even when these bits are not nec-
essarily physical bits ofx [14, 5]), hence the minimal amount of possible storage
is at least2n.

Applications to Oblivious Transfer and to other protocol problems.
(n
k

)

-OT
(k-out-of-n Oblivious Transfer) strengthen

(n
k

)

-PIR by requiring that the user does
not learn any information aboutx other than thek (physical) bits that it chose
to retrieve [26, 12, 16]. Note that the above reduction from

(

n
k

)

-PIR to
(

n
1

)

-PIR
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(using batch codes) cannot be directly applied for reducing
(

n
k

)

-OT to
(

n
1

)

-OT,
since it allows the user to getm bits of information (rather thank), and even these
are not necessarily physical bits ofx. However, it is possible to obtain similar
amortization for

(n
k

)

-OT by using efficient reductions from this primitive to
(n
k

)

-
PIR (e.g., using [15, 24, 25, 19, 11]). Thus, the application of batch codes carries
over to the

(n
k

)

-OT primitive as well.
PIR is a useful building blocks in other cryptographic protocols. In particular,

PIR has been used for various special-purpose secure computation tasks such as
keyword search [10], distance approximations [13], statistical queries [7], and even
for generally compiling a class of communication-efficientprotocols into secure
ones [23]. Most of these applications can benefit from the amortization results we
obtain for PIR, at least in certain scenarios. For instance,in the keyword search
application the cost of searching several keywords by the same user is amortized
to the same extent as for the underlying PIR primitive.

Acknowledgements. We thank Amos Beimel and the anonymous reviewers for
helpful comments.
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