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Abstract. We consider the round complexity of multi-party computa-

tion in the presence of a static adversary who controls a majority of

the parties. Here, n players wish to securely compute some functionality

and up to n� 1 of these players may be arbitrarily malicious. Previous

protocols for this setting (when a broadcast channel is available) require

O(n) rounds. We present two protocols with improved round complex-

ity: The �rst assumes only the existence of trapdoor permutations and

dense cryptosystems, and achieves round complexity O(log n) based on a

proof scheduling technique of Chor and Rabin [13]; the second requires a

stronger hardness assumption (along with the non-black-box techniques

of Barak [2]) and achieves O(1) round complexity.

1 Introduction

Protocols for secure multi-party computation (mpc) allow a set of n parties

to evaluate a joint function of their inputs such that the function is evaluated

correctly and furthermore no information about any party's input | beyond

what is leaked by the output of the function | is revealed (a formal de�nition

is given in Section 2). Since the initial results showing that mpc was feasible

[34, 24, 7, 12], a number of works have focused on improving the eÆciency of

these protocols and in particular their round complexity (e.g., [1, 6, 29, 28, 22,

30, 15]). Known results for generic mpc secure against malicious adversaries in

the computational setting may be summarized as follows (results are stated for

the setting when a broadcast channel is available; we discuss the setting without

a broadcast channel in Section 2.1):

{ Secure two-party computation may be achieved in a constant number of

rounds by applying the compiler of Lindell [30] (based on earlier work of

Goldreich, Micali, and Wigderson [24]) to the constant-round protocol of

Yao [34] (which is secure against semi-honest adversaries).
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{ Secure mpc for honest majorities (i.e., when the number of corrupted players

is strictly less than n=2) may be achieved in a constant number of rounds

using the protocol of Beaver, Micali and Rogaway [6, 33].

{ Secure mpc with dishonest majority (i.e., where up to n� 1 players may be

corrupted) can be achieved in O(n) rounds using the protocols of Beaver,

Goldwasser, and Levin [5, 26]. (Actually, these works show a protocol requir-

ing O(k+n) rounds where k is the security parameter. Using the techniques

of [30], however, this may be improved to O(n).)

{ Canetti, et al. [11] give a protocol tolerating adaptive adversaries control-

ling a dishonest majority in a model in which a common random string is

assumed; the round complexity of this protocol depends on the depth of the

circuit for the function being computed, but is independent of n.

Note that the setting with a dishonest majority (t � n=2) requires a weaker

variant of the usual de�nition ofmpc. Even for the case n = 2, one cannot prevent

the adversary from aborting the protocol, or from possibly learning information

about the value of the function even when an abort occurs [24, 14].

Our Results.We focus on improving the round complexity of mpc when a ma-

jority of the players may be corrupted. We show two protocols for that setting

which have improved round complexity compared to previous work. Our �rst

protocol assumes the existence of trapdoor permutations and dense cryptosys-

tems, and achieves round complexity O(logn). Our second protocol runs in a

constant number of rounds, but requires slightly stronger hardness assumptions

as well as non-black-box proof techniques. We prove our results in the standard

model of a synchronous, complete network with a broadcast channel. Our results

can be extended to the setting when no broadcast channel is available, and give

improved round complexity there as well; see Section 2.1.

Our overall approach consists of two steps. We �rst consider the speci�c case

of the coin 
ipping functionality, and give protocols for securely computing this

functionality in the presence of a dishonest majority. We then note that mpc

of arbitrary functions can be reduced to the problem of secure coin 
ipping; in

fact, we show that any functionality can be computed in a constant number of

rounds following an execution of a secure coin-
ipping protocol.

Our main result, then, is to give two protocols with improved round complex-

ity for the speci�c case of coin 
ipping. The �rst, based on a proof scheduling

technique of Chor and Rabin [13], requires O(logn) rounds. (Interestingly, the
Chor-Rabin protocol itself does not seem suÆcient to implementmpc; we need to

�rst establish a common random string and then use that string for secure com-

putation.) Our second coin-
ipping protocol extends recent work of Barak [2];

speci�cally, we show how to modify his (asynchronous) two-party non-malleable

coin-
ipping protocol to obtain one which is secure even when composed in paral-

lel n times, and from there obtain a constant-round coin-
ipping protocol which

is secure in the (synchronous) multi-party setting. We may thus summarize our

results as follows (here, n is the number of players, k is the security parameter,

and we always assume a synchronous network with broadcast):



Theorem 1.1. There exist protocols for (n�1)-secure simulatable coin-
ipping
with the following properties:

1. O(logn) rounds, assuming one-way permutations.

2. O(1) rounds, assuming collision-free hashing, trapdoor permutations, and dense
cryptosystems secure against 2k

�

-size circuits. The proof uses a non-black-box
simulation.

Theorem 1.2. For any poly-time function f , there exist (n�1)-secure protocols
for computing f with the following properties:

1. O(logn) rounds, assuming trapdoor permutations and dense cryptosystems.

2. O(1) rounds, assuming collision-free hashing, trapdoor permutations, and dense
cryptosystems secure against 2k

�

-size circuits. The proof uses a non-black-box
simulation.

Note that information-theoretically secure protocols are impossible in our

setting: generic mpc protocols tolerating t � n=2 imply the existence of two-

party oblivious transfer protocols, which require computational assumptions [29].

In Section 2 we specify our model and de�nition of mpc. Section 3 shows

how to achieve coin 
ipping in logarithmic rounds; the constant-round protocol

is explained in Section 4. Section 5 shows how to achieve mpc for arbitrary

functionalities given a protocol for secure coin 
ipping.

2 De�nitions

Our de�nition of security for mpc is taken from the works of Canetti [8] and

Goldwasser and Lindell [27], which in turn follow a long line of work on de�ning

security of protocols (e.g., [24, 26, 31, 4, 23]). More recently, a stronger de�nition

of universally composable (uc) computation has been proposed [9]; however, uc-

mpc is known to be impossible in the presence of a dishonest majority without

the prior assumption of a common random string [10]. Since we wish to avoid a

setup assumption of this form (indeed, we give explicit protocols for obtaining a

common random string), we do not use the uc framework directly. Nonetheless,

some of the protocols we use as building blocks were proven secure in the uc

framework, a fact which highlights the utility of such de�nitions.

2.1 Network Model

Formal de�nitions of security are given below, but we provide an overview of

our model and de�nition of security here. We consider a system of n parties

who interact in a synchronous manner. Each pair of parties is connected by

a perfect (authenticated, secret, unjammable) point-to-point channel, and we

also assume a broadcast channel to which all players have access. This channel

provides authenticity (i.e., that a given broadcast message originated from a

particular party) and also ensures that all parties receive the same message even



if the broadcasting party is dishonest. Messages sent on any of these channels

are delivered in the same round they are sent.

We assume a static adversary who corrupts up to n� 1 of the players before

execution of the protocol. The adversary is active, and corrupted parties may

behave in an arbitrary manner. Although the adversary may not delay or block

messages from honest parties, we do make the standard rushing assumption: i.e.,

the adversary sees all messages sent by honest players to corrupted players at a

given round i (including broadcast messages) before sending its own messages for

round i. Finally, we considercomputational security only and therefore restrict

our attention to adversaries running in probabilistic, polynomial time.

Although we assume a broadcast channel, our techniques yield protocols

with improved round complexity even when broadcast is not available. When

only point-to-point links are assumed, broadcast may be implemented using an

O(t)-round authenticated Byzantine agreement protocol (where t < n players

are dishonest) [18]; this protocol assumes a pre-existing public-key infrastruc-

ture (PKI) but in our context a PKI may be constructed \from scratch" in

O(t) rounds without a�ecting overall security of the protocol [20] (this relies

on the fact that the adversary is allowed to abort when controlling a dishon-

est majority). Thus, when broadcast is unavailable our techniques reduce the

round complexity of known mpc protocols from O(tn) to O(t logn) using our

�rst coin-
ipping protocol, or O(t) using our second coin-
ipping protocol. (For

a weaker version of mpc in which the honest players need not agree on whether

or not the protocol aborted [27], only a constant increase in round complexity is

necessary over the broadcast-based protocols given here [27].) The assumption

of a broadcast channel is therefore made for simplicity of exposition only.

2.2 Secure Multi-Party Computation and Coin-Flipping

Following the outline of [8, 27], we de�ne an ideal model of computation and a

real model of computation, and require that any adversary in the real model can

be emulated (in the speci�c sense described below) by an adversary in the ideal

model. Our randomized function f to be computed by the n parties is denoted by

f : (f0; 1g�)
n
! (f0; 1g�)

n
where f = (f1; : : : ; fn); that is, for a vector of inputs

x = (x1; : : : ; xn), the output is a vector of values (f1(x); : : : ; fn(x)). Note that
we may also view f as a deterministic function on n+ 1 inputs, where the �nal

input represents the random coins used in evaluating f . In a given execution of

the protocol we assume that all inputs have length k, the security parameter.

Ideal model. In the ideal model there is a trusted party which computes the

desired functionality based on the inputs handed to it by the players. Let I � [n]
denote the set of players corrupted by the adversary. Then an execution in the

ideal model proceeds as follows [23] (this particular de�nition is called secure
computation with unanimous abort and no fairness in the taxonomy of [27]):

Inputs Each party i has input xi. We represent the vector of inputs by x.
Send inputs to trusted party Honest parties always send their inputs to the

trusted party. Corrupted parties, on the other hand, may decide to abort or



to send modi�ed values to the trusted party. Let x0 denote the vector of

inputs received by the trusted party.

Trusted party sends results to adversary If x0 is a valid input (i.e., no par-

ties aborted in the previous round), the trusted party generates uniformly-

distributed random coins, computes f(x0) = (y1; : : : ; yn), and sends yi to
party Pi for all i 2 I . In case a party aborted in the previous round, the

trusted party sends ? to all parties.

Trusted party sends results to honest players The adversary, depending

on its view up to this point, may decide to abort the protocol. In this case,

the trusted party sends ? to the honest players. Otherwise, the trusted party

sends yi to party Pi for each i =2 I .
Outputs An honest party Pi always outputs the response yi it received from

the trusted party. Corrupted parties output ?, by convention. The adversary
outputs an arbitrary function of its entire view throughout the execution of

the protocol.

For a given adversary A, the execution of f in the ideal model on input x

(denoted idealf;A(x)) is de�ned as the vector of the outputs of the parties along

with the output of the adversary resulting from the process above.

Real model. As described in Section 2.1, we assume a synchronous network

with rushing. Honest parties follow all instructions of the prescribed protocol,

while corrupted parties are coordinated by a single adversary and may behave

arbitrarily. At the conclusion of the protocol, honest parties compute their output

as prescribed by the protocol, while corrupted parties output ?. Without loss

of generality, we assume the adversary outputs exactly its entire view of the

execution of the protocol. For a given adversary B and protocol� for computing

f , the execution of � in the real model on input x (denoted real�;B(x)) is

de�ned as the vector of outputs of the parties along with the output of the

adversary resulting from the above process.

Having de�ned these models, we now de�ne what is meant by a secure pro-

tocol. (Note: By probabilistic polynomial time (ppt), we mean a probabilistic

Turing machine with non-uniform advice whose running time is bounded by a

polynomial in the security parameter k. By expected probabilistic polynomial time
(eppt), we mean a Turing machine whose expected running time is bounded by

some polynomial, for all inputs.)

De�nition 2.1 ([8]). Let f and � be as above. Protocol � is a t-secure protocol
for computing f if for every ppt adversary A corrupting at most t players in
the real model, there exists an eppt adversary S corrupting at most t players in
the ideal model, such that:

fidealf;S(x)g
x2(f0;1g�)n

c
� freal�;A(x)g

x2(f0;1g�)n :

As mentioned in the Introduction, our protocols for mpc proceed in the

following way: First, a common random string is generated using a coin-
ipping

protocol; next, the resulting string is used by the parties for the remainder of



their execution. Thus, using a simple composition result, we may construct our

protocols for (n�1)-secure mpc in two steps: (1) construct an (n�1)-secure coin-

ipping protocol (i.e., a protocol computing the functionality f(1m; : : : ; 1m) 7!
Um, where Um denotes the uniform distribution over f0; 1gm); and (2) construct

an (n�1)-secure protocol for evaluating any functionality in the common random

string model (i.e., where all parties are �rst given a uniformly-distributed string

of the appropriate length). Step (1) is discussed in Sections 3 and 4, and step

(2) and the composition theorem are discussed in Section 5.

Since our main contributions are our protocols for coin 
ipping (achieving

(n�1)-secure mpc in the common random string model is relatively straightfor-

ward), and since the de�nition of security simpli�es considerably in this case, we

present a stand-alone de�nition here. Note that the de�nition does not reduce
to the most simplistic notion of coin-
ipping in which we simply have a guar-

antee that the output of the protocol is indistinguishable from random. Instead,

it must be that a simulator can produce a view which is indistinguishable from

that of the real adversary, but where the outcome has been forced to be a partic-

ular random string provided by an outside party. 1 Thus, we refer to the notion

as \simulatable coin 
ipping" (even though this is precisely the same notion as

(n� 1)-secure evaluation of the coin-
ipping functionality).

De�nition 2.2 (Simulatable Coin Flipping). A protocol � is a simulatable

coin-
ipping protocol if it is an (n�1)-secure protocol realizing the coin-
ipping
functionality. That is, for every ppt adversary A corrupting at most n�1 parties,
there is an eppt machine SA such that the outcomes of the following experiments
are computationally indistinguishable (as a function of k):

real(1k; 1m) ideal(1k; 1m)

c; V iewA  real�;A(1
k; 1m) c0  f0; 1gm

~c; V iew  SA(c
0; 1k; 1m)

Output (c; V iewA) If ~c 2 fc0;?g, Output (~c; V iew)
Else Output fail

Here we parse the result of running protocol � with adversary A (denoted
real�;A(1

k; 1m)) as a pair (c; V iewA) where c 2 f0; 1g
m [ f?g is the outcome

and V iewA is the adversary's view of the computation.

3 Simulatable Coin-Flipping in O(logn) Rounds

In order to construct a simulatable coin-
ipping protocol, we will use a protocol

in which all pairs of players can prove statements (in zero-knowledge) to each

other. More precisely, suppose that each player Pi has a (publicly known) state-
ment xi and each honest player also has private input wi (where wi is a witness
for xi). We would like a protocol in which each player Pi proves that xi is true
(and that furthermore, Pi knows a witness); upon completion of this protocol, all

1 A related notion of simulatable bit-commitment was considered in [32].



honest players should accept the result if and only if all players have successfully

completed their proofs.

The naive approach to solving this problem is to have every (ordered) pair

of players Pi; Pj simultaneously execute some constant-round zero-knowledge

proof of knowledge in which Pi proves knowledge of wi to Pj . However, such
an approach does not work (in general) due to the potential malleability of the

proof system. Namely, it is possible that an adversary controlling Pj could divert
a proof being given to Pj by Pi and hence prove a false statement (or, at least,

one for which Pj does not explicitly know a witness) to Pk. In particular, this is

always possible without some mechanism to prevent simple copying of proofs.

An alternate approach | one taken by previous work in the case of dishonest

majority [5, 26] | is to have each pair of parties execute their proofs sequentially
over a total of n \stages" of the protocol. In stage i, player Pi proves knowledge
(in parallel) to all other players. This clearly avoids the malleability problem

discussed above, but results in an O(n)-round protocol.

In fact, the issue of proof scheduling was previously dealt with by Chor and

Rabin [13] in the context ofmutually independent commitments. They proposed a
scheduling strategy which results in a round complexity of O(logn). The schedul-
ing guarantees that at any given time, no player is playing both the prover and

the veri�er. Moreover, every player eventually proves to every other player. This

means that no matter what set of players is controlled by the adversary, he will

eventually have to prove all his statements to some honest player. We present

the Chor-Rabin (cr) scheduling strategy in Protocol 1.

To use cr scheduling in our context, we will require a zero-knowledge argu-

ment of knowledge (ZKAK) which satis�es two additional properties (informally):

Public veri�ability: A third party who views a transcript of an execution of the

proof should be able to determine in polynomial time whether or not an

honest veri�er would have accepted.
Parallel composability In our application, n=2 copies of the proof system will

be run synchronously and in parallel. We require the existence of: (1) a

simulator that can simulate the view of a dishonest veri�er executing n=2
copies of the proof system in parallel with independent provers; and (2) a

witness extractor that can extract a witness for each proof from a malicious

prover who is executing n=2 proofs in parallel with independent veri�ers.

Although not all ZKAKs satisfy both the above properties [25], the 5-round

ZKAK of Feige and Shamir [19] (which only requires one-way functions) does.

Chor and Rabin [13] proved that when the fxig are commitments and the

fwig are the corresponding decommitments, their proof-scheduling technique

guarantees mutually independent commitments. However, to use the protocol

as a module in a larger protocol (i.e., as in a gmw-style compiler from the

honest-but-curious model to the malicious model [24]), a more sophisticated

notion of security is necessary. Speci�cally, it is tempting to try to prove that cr

scheduling realizes the ideal functionality of mutually independent proofs, that
is, the functionality in which all players hand their pair (xi; wi) to a trusted

party who broadcasts only the list of players who supplied valid pairs.



Protocol 1 (Chor-Rabin proof scheduling).

Inputs: Player i holds (wi; x1; :::; xn).

For i = 1; ::; n, let c
(1)

i ; :::; c
(r)
i denote the r = dlog ne-bit binary representation of i.

Let Bluet =
n
i : c

(t)
i = 0

o
and Redt =

n
i : c

(t)
i = 1

o
.

Let (P; V ) denote a constant-round publicly veri�able, parallel-composable ZKAK.

1. For t = 1; :::; r = dlog ne, repeat: O(n2) pairs of proofs in parallel.

(a) 8i 2 Bluet; j 2 Redt: Pi runs P (xi; wi), Pj runs V .

(b) (After all proofs of (a) are �nished)

8i 2 Bluet; j 2 Redt: Pj runs P (xj; wj), Pi runs V .

All messages are sent over the broadcast channel. If any proof between any pair of

parties fails, all players abort immediately.

It seems that the cr protocol does not satisfy this stronger property. Suppose
the players use a malleable zk proof system for which it is possible, given access

to a prover for either x1 or x2, to prove knowledge of a witness for the statement

x1 _ x2. (Arti�cial examples of such systems can be constructed.2) Consider

an execution of the protocol for which only P1 and P2 are honest. Player P3

is never proving to both P1 and P2 simultaneously|only ever to one or the

other. Moreover, when P3 is proving to P1, then P2 is proving to some other

corrupted player, and similarly when P3 is proving to P2. Thus, P3 could claim

the statement x1 _ x2 without ever knowing an actual witness, and successfully

pass all the proving stages.

Nevertheless, the cr scheduling protocol does satisfy very strong properties

when the adversary controls all but one player, and this is suÆcient for our

purposes. The formulation of the property as it appears here is inspired by the

notion of witness-extended emulation, due to Lindell [30].

Lemma 3.1 (Chor-Rabin Scheduling). When Chor-Rabin scheduling is in-
stantiated with any parallel-composable, publicly veri�able ZKAK we have:

Completeness: If all players are honest, and R(xi; wi) = 1 for all i, then all
players will accept the output of the protocol.

Simulatability: For a machine A, let Ax;r denote the adversary with inputs x =

(x1; :::; xn) and random tape r.

2 Consider the standard zk protocol for Graph Isomorphism of (G0; G1). Prover sends

H and then Veri�er asks for the isomorphism H $ Gb, for random b. The proof for

(G0; G1) _ (G
0
0; G

0
1) works as follows: Prover sends H;H 0, Veri�er replies with a bit

b, and Prover shows isomorphisms H $ Gb1 and H 0 $ G0
b2

such that b = b1� b2. A

cheating intermediary who has access to a prover for (G0; G1) or (G
0
0; G

0
1) can fake

a proof for (G0; G1) _ (G
0
0; G

0
1). A similar modi�cation of Blum's Hamitonian Path

proof system also works.



There is a simulator S with inputs 1k;x and oracle access to Ax;r and two
outputs: a protocol view V and a list of potential witnesses w = (w1; :::; wn).
For any ppt adversary A who controls all but one player Pi, S is eppt and:

1. When (9wi s.t. R(xi; wi) = 1), the simulator's output is computationally
indistinguishable from the view of A in an interaction with the honest

Pi. For all x: V
c
� viewA;Pi(x; r).

2. When the simulated transcript is accepting, the simulator is almost cer-
tain to extract a witness for xj , for all j 6= i:
Pr[acceptPi(V ) and (9j 6= i : R(xi; wi) = 0)] < negl(k).

Proof. Completeness of the protocol follows directly from the completeness of

the ZKAK, and so we turn to simulatability. The proof follows the reasoning

of [13]. Without loss of generality, say the adversary controls all players except

P1. From the perspective of P1, the Chor-Rabin protocol is a sequence of 2 logn
stages, where each stage consists of n=2 parallel executions of the ZKAK. In logn
of these stages, P1 is acting as the prover and in logn stages P1 acts as a veri�er.

By parallel composability of the ZKAK, we immediately see that the simulator

can always simulate the view of the adversary for those stages when P1 acts as

a prover. By the same token, in those stages when P1 acts as a veri�er (and

assuming that all proofs given to P1 by other players are successful), P1 can

extract witnesses for n=2 of the fxigi6=1. That P1 in fact extracts witnesses for

all the fxigi6=1 follows from the fact that every other player acts as a prover to

P1 at some point in the protocol. We can combine these observations to form a

simulator using the witness-extended emulation technique of Lindell [30]. ut

3.1 From Scheduled Proofs to Simulatable Coin-Flipping

To use cr scheduling for simulatable coin-
ipping, we apply a technique due

to Lindell [30]. Suppose that we have a non-interactive, perfectly binding com-

mitment scheme (these can be constructed based on one-way permutations, for

example). Players �rst commit to individual random coins and prove knowledge

of the committed values. Next, they reveal the values (not the decommitment

strings) and prove correctness of their decommitments. We give the resulting

construction in Protocol 2. Note that primitives weaker than ZKAKs are suÆ-

cient: we may use strong witness-indistinguishable proofs of knowledge in the

�rst phase, and zero-knowledge proofs (of membership) in the second phase.

However, using these would make the protocol and proofs more cumbersome.

Theorem 3.1. Protocol 2 is a simulatable coin-
ipping protocol.

Proof. (sketch) The simulator is given a value c and needs to simulate the view of

an adversary who corrupts n�1 players, while also ensuring that the �nal output
of the protocol is c (we ignore for the present discussion the possibility of abort).
Assume without loss of generality that the adversary corrupts all players except

P1. The simulator begins by following steps 1 and 2 exactly, and committing to a

random value r1. In step 3, the simulator may extract witnesses f(rj ; sj)gj 6=1 by



Protocol 2 (Simulatable coin 
ipping). On input 1k; 1m:

1. 8i; Pi : ci  Commit(ri; si)

2. 8i; Pi sends ci

3. Invoke cr scheduling to show that 8i; 9(ri; si) such that ci = Commit(ri; si).

4. 8i; Pi sends ri.

5. Invoke cr scheduling to show that 8i; 9si such that ci = Commit(ri; si).

6. Output c =
Ln

i=1
ri, or ? if any proofs failed.

All messages are sent over the broadcast channel.

Lemma 3.1 (in this case, the simulator does not even need to be able to simulate

the proofs of P1 since it in fact has the necessary witness).

At this point, the simulator knows frjgj 6=1. It sets r
0
1 = c�

Ln
j=2 rj and sends

r01 in step 4. In step 5, the simulator can simulate (false) proofs that its com-

mitment in step 1 was indeed a commitment to r01; this follows from Lemma 3.1

(in fact, here the simulator no longer needs to extract any witnesses). These

simulated proofs are computationally indistinguishable from \real" proofs, thus

ensuring that the entire simulated protocol is computationally indistinguishable

from an actual execution of the protocol. ut

4 Simulatable Coin Flipping in Constant Rounds

To obtain a constant-round coin-
ipping protocol, we introduce a simple notion

of parallel composability for two-party non-malleable coin-
ipping protocols, and

show that protocols satisfying this notion can be used to achieve multi-party

coin-
ipping. Although the recent two-party protocol of Barak [2] does not satisfy

our notion of non-malleability, we show how to extend it so that it does.

Our resulting coin-
ipping protocol is described in Protocol 3. As noted

above, it relies on a modi�cation of the coin-
ipping protocol of Barak [2] which is

described in Section 4.1 and is denoted by NMCF(1k; 1m) for security parameter

k and coin-length m. The protocol also uses an adaptively secure, unbounded-

use non-interactive zero-knowledge proof of knowledge (nizkpk) in Steps 4 and

5. De Santis and Persiano showed how to construct these based on dense cryp-

tosystems (pkc) and trapdoor permutations [16].3 The use of n di�erent strings

to guarantee independence of non-interactive proofs is due to Gennaro [21].

The completeness of Protocol 3 follows trivially from the completeness of

the coin-
ipping protocol and the nizkpk proof system. To prove the security

of the protocol, we consider the e�ect of a coin-
ipping protocol (A;B) in the

3 In fact, one needs only weaker primitives: a strong witness-indistinguishable proof of

knowledge in Step 4 and a zero-knowledge proof in Step 5. However, these distinctions

make the notation of the protocol more cumbersome.



Protocol 3 (Constant-round simulatable coin 
ipping).

Let R(c; (x; s)) denote the relation c = Commit(x; s), where Commit is a perfectly

binding, non-interactive commitment scheme. Suppose that for security parameter k,

the nizkpk system uses a crs of length ` = `(k;m).

1. Run 2
�
n

2

�
protocols in parallel. For each ordered pair (i; j) 2 [n]� [n]; i 6= j:

Run coin-tossing protocol NMCF(1k; 1n`) (see Lemma 4.1) to generate a string

of n` coins which will be parsed as n strings �
(1)

i;j ; :::; �
(n)
i;j 2 f0; 1g

`.

2. Pi: xi  f0; 1g
m

3. Pi sends ci = Commit(xi; si)

4. Pi sends, for j = 1; :::; n: nizkpk
�
(i)
i;j

of (xi; si) such that R(ci; (xi; si)).

5. Pi sends xi and also, for j = 1; :::n: nizkpk
�
(i)
i;j

that there exists si such that

R(ci; (xi; si))

6. Output
Ln

i=1 xi, or ? if any previous proofs or coin-
ipping protocols failed.

All messages are sent over the broadcast channel. Honest players abort immediately

if any nizkpk proofs fail.

A1  !

A2  !

...
...

An  !

C
(Man in the

middle)

 ! B1

 ! B2

...
...

 ! Bn

Fig. 1. Parallel Composition of Non-Malleable Protocols

following scenario. The adversary, C, simultaneously plays man-in-the-middle

against with n pairs of copies of the protocol executed synchronously and in
parallel (cf. Figure 1). We call this an n-fold, parallel man-in-the-middle attack.

It is a restriction of the more robust versions of non-malleability de�ned by

Dolev, Dwork and Naor [17], but it seems incomparable to that of Barak [2].

Let r1; :::; rn be the outputs of the left-hand protocols, and ~r1; :::; ~rn be the

outputs of the right-hand protocols. We clearly cannot prevent the adversary

from mounting a trivial relaying attack, in which she copies messages from one

or more protocols on the right to one or more protocols on the left. This allows the

adversary to force the outcomes of some of the protocols to be identical. Instead,

we require that the left-hand outputs r1; :::; rn all be random and independent,

and that each of the right-hand outputs ~ri is either random and independent of

the others, or equal to one of the left-hand outputs rj .

De�nition 4.1. A coin-
ipping protocol � = (A;B) is non-malleable against

n-fold parallel composition if for any ppt algorithm C, there is an eppt algo-
rithm Ĉ such that the following are computationally indistinguishable:



1. output(A;B;C);�(1
k) where this denotes the 2n+1-tuple consisting of the 2n

outputs of A1; :::; An; B1; :::; Bn and the view of C, when executing an n-fold
parallel man-in-the-middle attack.

2. (�1; :::�n; ~�1; :::; ~�n; �), where �rst the strings �1; :::�n; �1; :::�n are selected
uniformly at random, and the output of Ĉ(�1; :::�n; �1; :::�n) consists of �
followed by a speci�cation, for each i, of which value to assign ~�i out of
f�ig [ f�1; :::; �ng.

It is not clear a priori that all non-malleable coin-
ipping schemes satisfy

this de�nition. In fact, it appears to be orthogonal to the de�nition of non-

malleability in [2]: on one hand, it requires synchronous (not concurrent) execu-

tion of the 2n protocol pairs, and so a protocol which satis�es it may be insecure

when any one of the executions is not synchronized. On the other hand, this

de�nition requires security when the adversary has access to several protocols.

In particular, if any of the building blocks of the coin-
ipping protocol are not

parallel-composable, then the resulting protocol may not satisfy the de�nition.

Lemma 4.1. The coin-
ipping protocol of [2] can be modi�ed to satisfy De�ni-
tion 4.1.

We present the modi�ed protocol in the following section. However, we �rst

show that we can use it to obtain a constant-round simulatable coin-
ipping

protocol.

Lemma 4.2. Protocol 3 is a simulatable coin-
ipping protocol.

Proof. (sketch) We begin by describing the algorithm used by the simulator, and

then show that the simulation satis�es De�nition 2.2. In addition to the simulator

for the coin-
ipping protocol, we will use the extractor and simulator for the

nizkpk system and the languages we need. The two phases of the extractor

(generation and extraction) are denoted by Ext1;Ext2. Similarly, the simulator

is denoted by Sim1 and Sim2.

On input c 2 f0; 1gm, the simulator does the following:

{ Pick an honest player at random (w.l.o.g. P1). Allow the adversary to control

the remaining honest players. That is, wrap the original adversary A in a

circuit A0 which makes the honest players follow the protocol. No special

simulation of these players is required.

{ Pick 2(n�1) strings �2; :::; �n; �2; :::; �n as follows. Recall that each string is

parsed as n segments, each of which is long enough to serve for nizkpk. Use

the nizkpk simulator to generate segment 1 of each string (independently),

i.e. �
(1)
i ; �

(1)
i  Sim(1k) for all i.

Use the nizkpk extractor to generate segments 2; ::; n of each string, that is

�
(j)
i ; �

(j)
i  Ext(1k) for all i and for j = 2; :::; n.

The simulator keeps the side-information necessary for simulation and ex-

traction with respect to each of these strings.



{ (Step 1) Run the simulator Ĉ from (n� 1)-fold parallel composition on the

adversary, on inputs �2; :::; �n; �2; :::; �n. Note that here, P1 is playing the

roles of A1; ::; An�1 and B1; :::; Bn�1. Denote the outputs of the coin 
ipping

protocol by �1;j and �j;1 for j = 2; :::; n, as in Protocol 3.

{ (Steps 2, 3 and 4) Run these steps honestly: choose x1  f0; 1g
m, pick coins

s1, let c1 = Commit(x1; s1) and prove knowledge of x1 using nizkpk.

{ Extract the values x2; :::; xn from the proofs at Step 4 (this is possible since

the values used by other players were all generated by the extractor for the

nizkpk). Compute x0 = c�
Ln

j=2 xj .
{ (Step 5) Send x0. For each j = 2; :::; n, use the simulator for the nizkpk to

fake proofs of \9s0 such that R(c1; (x
0; s0))" with respect to �

(1)
1;j .

{ Either the protocol aborts, or all honest players output the string

x0 �
Ln

j=2 xj = c.

The proof of the success of this simulation relies on several observations. First,

the strings output by the generators are pseudo-random, and so the behaviors

of the adversary and simulator are the same as if the strings were truly random.

By Lemma 4.1, the simulation of the NMCF protocols is indistinguishable from

a real execution, and the strings generated will, with overwhelming probability,

be from f�2; :::; �n; �2; :::; �ng.
Second, as observed by Barak [2], nizk proof of knowledge systems remain

secure even if the adversary may choose the crs from among a polynomial set

of random (or pseudo-random) strings. The adversary will not be able to make

his committed values (in Step 3) dependent on those of the honest players,

since that would violate the hiding property of the commitment or the zero-

knowledge property of the proof system (in fact, all we need here is strong

witness indistinguishability). Moreover, the simulator will be able to extract the

committed values of the cheater since the adversary proves with respect to the

strings generated by the extractor. Finally, the simulator's proof of consistency

of his decommitment will appear legitimate, again because of the zero-knowledge

property, and the adversary's proofs will have to remain sound. ut

Remark 4.1. The use of nizkpk in the above protocol requires a dense pkc. We

expect that one can avoid this assumption by using (non-malleable) interactive

zk proofs of knowledge which rely on a public random string. We defer details

to the �nal version.

4.1 Parallel Composability of Barak's Coin-Flipping Protocol

The proof of Lemma 4.1 is similar to the proofs of Theorems 2.4 and 3.4 in [2].

There are two main modi�cations to Barak's protocol which are necessary. First,

the two proof systems that are used as sub-protocols must themselves be paral-

lel composable. This is trivial for the strong witness-indistinguishable proof of

knowledge. As for the zk universal argument, the original paper of Barak and

Goldreich [3] gives a construction which is concurrently composable and thus

parallel composable.



Protocol 4 (Parallel NM coin 
ipping (NMCF(1k; 1m))).

Steps L0.1.x, R0.1.x (Left commits to �): Left party chooses a hash function h1,

and sends h1 and y1 = Com(h1(0
k)). It then proves using a PSWIUAK that it

knows a value � of length at most klog k such that y1 = Com(h1(�)).

Steps L0.2.x, R0.2.x (Right commits to �): Left party chooses a hash function

h2, and sends h2 and y2 = Com(h2(0
k)). It then proves using a PSWIUAK that it

knows a value � of length at most klog k such that y1 = Com(h1(�)).

Step L1 (Commitment to r1): Left party selects r1  f0; 1g
m and commits to it

using a perfectly binding commitment scheme. The commitment is denoted �1.

Steps L2.2{L2.4,R2.1{R2.3 (Prove knowledge of r1): The left party proves to the

right party its knowledge of the value r1 committed by �1 using a PSWIPOK.

Step R3 (Send r2): The right party selects r2  f0; 1g
m and sends it. Step L4

(Send r) The left party sends r = r1� r2. (No decommitment string is revealed).

Steps L5.1{5.9, R5.2{R5.10 (Prove that r = r1�r2): The left party proves, using

a PZKUAK, that either r = r1� r2 or r 2 R�k�;k, where fR�;�g is an n-evasive set

family.

Second, the evasive set family that is used in the proof of security must resist

generation of an element by ppt ccircuits, even when n strings from the family

are given (here n is the number of players and not the security parameter). By

changing the union bound in the proof of existence of evasive set families ([2],

Theorem 3.2), it is possible to show the existence of sets which remain evasive

given n elements, provided that we increase the security parameter appropriately.

The remainder of this section contains the de�nitions necessary to state the

NMCF protocol (Protocol 4). The notation used in the protocol de�nition is

taken from [2] for consistency. A proof of security is deferred to the �nal ver-

sion. Note that here PZKUAK (resp. PSWIUAK) refers to a parallel composable

universal argument of knowledge which is also zero-knowledge (PZKUAK) or

witness-indistinguishable (PSWIUAK). These can be constructed based on trap-

door permutations and collision-free hash families secure against 2k
�

-size circuits

[3]. The conditions on the set family fR�;�g in the protocol appear below.

De�nition 4.2 (n-Evasive Set Family). Let n = n(k) = kc for some constant
c > 0. An ensemble of sets fR�;kg�2f0;1g�;k2IN, where R�;k 2 f0; 1g

k is said to be
an n(k)-evasive set family if the following conditions hold with respect to some
negligible function �(�):

Constructibility: For any k 2 IN, and any string � 2 f0; 1g�, the set R�;k

can be constructed in time j�j2k
3

. That is, there exists a TM MR such that

M(1k; 1n) runs in time j�j2k
3

and outputs all the elements of R�;k.
Pseudorandomness: For all probabilistic 2O(k)-time Turing Machines M , and

for all � 2 f0; 1g�, it holds that��Pr[r  R�;k : M(�; r) = 1]� Pr[r  f0; 1gk : M(�; r) = 1]
�� < �(k).



n-Evasiveness: Given n elements of R�;k, it is hard for algorithms with advice �
to �nd an (n+1)-st element: for all probabilistic 2O(k)-time Turing Machines
M , and for any r1; :::; rn 2 R�;k,
Pr[M(�; r1; :::; rn) 2 R�;k n fr1; :::; rng] < �(k).

De�nition 4.3 (String Equivalence with respect to a prg G). Let G be
a prg from t bits to g(t) bits secure against algorithms which take time o(g(t)).
Let �(`) be any integer function such that ` < �(`) < 2`. Consider two strings
�; �0 2 f0; 1g� and let ` = j�j + j�0j. The strings �; �0 are �-equivalent with
respect to G if there exist �(`)-time Turing machines M and M 0 which can each
be described in space log(`), and such that

min

�
Pr[s f0; 1gt :M(�;G(s)) = �0] ;
Pr[s f0; 1gt :M 0(�0;G(s)) = �]

�
>

1

�(`)

where the second input to M;M 0 denotes a random tape, and t = g�1(�(`)).

Lemma 4.3. Suppose that G is a pseudo-random generator from t bits to 2t
�

bits. Let �(`) = 2log
2=�(`). There exists an n-evasive set family for all n(k) � k�=2,

with the additional property that if � and �0 have length at most `, and are �-
equivalent with respect to G, then R�;k = R�0;k for all k > 2

p
log `.

Proposition 4.1. Suppose that 2k
�

-strong trapdoor permutations and hash fam-
ilies exist and that fR�;kg is an n-evasive set family as in Lemma 4.3. Then
NMCF (Protocol 4) is non-malleable against n-fold parallel composition.

5 Multi-Party Computation

In this section we show how to obtain mpc protocols for arbitrary functionalities

using any simulatable coin-
ipping protocol. Let a �xed-round protocol be one

which always requires the same number of rounds in every execution; we only dis-

cuss �xed-round protocols for poly-time computable functions f . Beaver, Micali

and Rogaway [6] (with further extensions in [33]) shows that:

Theorem 5.1 ([6, 33]). Suppose that trapdoor permutations exist. For any func-
tion f , there is an O(1)-round protocol for computing f which is (n� 1)-secure
against honest-but-curious adversaries.

For malicious adversaries, Canetti, et al. [11] construct mpc protocols in the

common random string (crs) model which are (n � 1)-secure against adaptive
adversaries (in fact, their protocols achieve the stronger notion of universal com-

posability). Because their goal is security against adaptive adversaries, the round

complexity of their protocols is proportional to the depth of the circuit being

evaluated. Nonetheless, many of the tools they develop (such as uc commitment

and zero-knowledge proofs) run in constant rounds. The following result for the

case of static adversaries is not explicit in [11], but follows directly from their

work (we use the expression abortable mpc to emphasize that in our setting the

adversary may abort the protocol):



Theorem 5.2 ([11]). Given an r-round protocol for mpc of a function f which
is (n�1)-secure against static, honest-but-curious adversaries, there is an abortable
mpc protocol for f with O(r) rounds which is (n� 1)-secure against static, ma-
licious adversaries in the common random string model, assuming the existence
of trapdoor permutations and dense pkc.4

Combining the two previous theorems, we obtain:

Corollary 5.1. Suppose that trapdoor permutations and dense pkc exist. For
any function f , there is an O(1)-round (abortable) protocol for computing f in
the crs model which is (n� 1)-secure against static, malicious adversaries.

The key to using simulatable coin-
ipping protocols in our setting | when

no setup assumptions are made and a crs is unavailable | is the following

composition result:

Proposition 5.1. Given a simulatable coin-
ipping protocol �, and an abortable
protocol � for computing f in the crs model which is (n � 1)-secure against
static, malicious adversaries, the natural composition of the two is a protocol for
computing f with no setup assumptions which is (n � 1)-secure against static,
malicious adversaries.

Canetti [8] proved a muchmore general composition result of this sort for the case

of non-abortable mpc protocols. In fact, however, his proof applies in our context

more or less directly. Since our particular composition result is considerably

simpler, we provide a proof sketch here.

Proof. (sketch) Let stateA denote the internal view of A at the end of the

round in which the coin-
ipping protocol � terminates (call this round r). We

may imagine the adversaryA as the composition of two adversaries:A1 operates

for r rounds and produces output stateA. A2 takes as input stateA, operates for

the remainder of the protocol and produces the �nal view viewA. We can now

invoke the security of the coin-
ipping protocol � to create a simulator S1 which
takes a string � 2 f0; 1gm as input and outputs variables �0; state0A such that

� 2 f�;?g (with overwhelming probability) and state0A
c
� stateA when � is

indistinguishable from random.

We may now de�ne an adversary A02 for the crs model as follows: upon

receiving � from the trusted party, run S1 to produce �
0; state0A. If �

0 = ?, then
broadcast \I abort" and halt. Otherwise, run A2 on input state

0
A to complete the

protocol. Note that an execution ofA02 in the ideal model can be modi�ed to yield

a view and protocol outputs which are indistinguishable from those generated by

A in the real model.5 Finally, we invoke the security of � to obtain a simulator

S2 for the ideal model which emulates the behavior of A02. The output of the

simulator S2 can be similarly modi�ed to yield outputs indistinguishable from

those of A in the real model. ut
4 As in Remark 4.1, one should be able to remove the assumption of a dense pkc.
5 The only di�erence is the \abort" message, which can simply be stripped from the

transcript.



Our main result (Theorem 1.2) follows from Corollary 5.1, Proposition 5.1,

and the simulatable coin-
ipping protocols given in Sections 3 and 4.
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