
Forward Secrecy in Password-Only Key

Exchange Protocols

Jonathan Katz
1;4

Rafail Ostrovsky
2

Moti Yung
3

1 Department of Computer Science, University of Maryland (College Park)

jkatz@cs.umd.edu
2 Telcordia Technologies, Inc.

rafail@research.telcordia.com
3 Department of Computer Science, Columbia University

moti@cs.columbia.edu
4 Work done while at Columbia University

Abstract. Password-only authenticated key exchange (PAKE) proto-

cols are designed to be secure even when users choose short, easily-

guessed passwords. Security requires, in particular, that the protocol

cannot be broken by an o�-line dictionary attack in which an adversary

enumerates all possible passwords in an attempt to determine the correct

one based on previously-viewed transcripts. Recently, provably-secure

protocols for PAKE were given in the idealized random oracle/ideal ci-

pher models [2, 8, 19] and in the standard model based on general as-

sumptions [11] or the DDH assumption [14].

The latter protocol (the KOY protocol) is currently the only known ef-

�cient solution based on standard assumptions. However, only a proof

of basic security for this protocol has appeared. In the basic setting the

adversary is assumed not to corrupt clients (thereby learning their pass-

words) or servers (thereby modifying the value of stored passwords).

Simplifying and unifying previous work, we present a natural de�nition

of security which incorporates the more challenging requirement of for-

ward secrecy. We then demonstrate via an explicit attack that the KOY

protocol as originally presented is not secure under this de�nition. This

provides the �rst natural example showing that forward secrecy is a

strictly stronger requirement for PAKE protocols. Finally, we present a

slight modi�cation to the KOY protocol which prevents the attack and

| as the main technical contribution of this paper | rigorously prove

that the modi�ed protocol achieves forward secrecy.

1 Introduction

Protocols allowing mutual authentication of two parties and generation of a
cryptographically-strong shared key (authenticated key exchange) underly most
secure interactions on the Internet. Indeed, it is near-impossible to achieve any
level of security over an unauthenticated network without mutual authentica-
tion and key-exchange protocols. The former are necessary because one needs

to know \with whom one is communicating", while the latter are required be-
cause cryptographic techniques (such as encryption, etc.) are useless without a
shared key which must be periodically refreshed. Furthermore, high-level proto-
cols are frequently developed and analyzed using the assumption of \authenti-
cated channels"; this assumption cannot be realized without a secure mechanism
for implementing such channels using previously-shared information.

Client-server authentication requires some information to be shared between
client and server or else there is nothing distinguishing the client from other
parties in the network. The classical example of shared information is a high
entropy, cryptographic key ; this key can then be used, e.g., for message authen-
tication or digital signatures. Indeed, the �rst systematic and formal treatments
of authenticated key exchange [10, 6, 3, 4, 1, 20] assumed that participants shared
cryptographically-strong information: either a secret key [6, 3, 4, 1, 20] or public
keys [10, 1, 20]. Under these strong setup assumptions, many protocols for the
two-party case have been designed and proven secure [6, 3, 1, 20].

If the client is ultimately a human user, however, it is unrealistic to expect the
client to store (i.e., remember) a high entropy key. Instead, it is more reasonable
to assume that the client stores only a low entropy password. Protocols which
are secure when users share keys are often demonstrably insecure when users
share passwords. For example, a challenge-response protocol in which the client
sends r and the server replies with x = fK(r) (where K is the shared key) is
secure only when the entropy of K is suÆciently large. When K has low entropy,
an eavesdropper who monitors a single conversation hr; xi can determine (with
high probability) the value of K, o�-line, by trying all possibilities until a value
K 0 is found such that fK0(r) = x.

When a password is shared, we distinguish between the hybrid (i.e., pass-
word/public-key) model [15, 12, 7], in which the client and server share a pass-
word and the client additionally knows the public key of the server, and the
password-only model [5, 2, 8] in which the client and server share only a password
(although public information may be available to all parties in the network1). In
both cases, it is important to design protocols which are secure against o�-line
dictionary attacks in which an adversary enumerates all possible passwords, one-
by-one, in an attempt to determine the correct password based on previously-
recorded transcripts. Consideration of such attacks is crucial if security is to be
guaranteed even when users of the protocol choose passwords poorly.

Password-only protocols (even when public information is assumed) have
many practical advantages over protocols designed for the hybrid model. The
password-only model eliminates the need for a PKI, thereby avoiding issues of
user registration, key management, and key revocation. Furthermore, eliminat-
ing a PKI means that an on-line, trusted certi�cation authority (CA) is no
longer needed; note that access to the CA is often a performance bottleneck
as the number of users becomes large. In the password-only model, once public

1 The existence of such information is a typical (though not universal) assumption.

For example, in DiÆe-Hellman key exchange [9] the group G and a generator of G

are often assumed to be public.

information is established new users may join at any time and do not need to
inform anyone else of their presence. Finally, in the password-only model there
is no \secret key" associated with the public parameters. This eliminates the
risk that compromise of a single participant will compromise the security of the
entire system.

Motivation for our work. Formal de�nitions of security for password-only au-
thenticated key exchange (PAKE) are non-trivial, and are the subject of ongoing
research. At least three di�erent frameworks for this setting have been proposed
[8, 2, 11]. Further complicating the issue is that, in all three frameworks, two
levels of security can be distinguished depending on whether forward secrecy
is required (we discuss the de�nition of forward secrecy in Section 2.1). Making
matters worse, the various de�nitions of forward secrecy are subtly di�erent from
one another and hence a multitude of security notions exists; as an example, in
[2] alone four distinct notions of forward secrecy are mentioned! One of our goals
is to present a concise de�nition which simpli�es and uni�es previous work.

It is also important to design PAKE protocols which provably achieve forward
secrecy. A number of PAKE protocols achieving basic security are known. The
�rst such protocol was given by Bellovin and Merritt [5], although they give
only heuristic arguments for its security. More recently, the �rst formal proofs of
basic security for PAKE protocols have been given in the random oracle [8, 19] or
ideal cipher models [2]. Subsequently, PAKE protocols were designed and proven
secure in the standard model: Goldreich and Lindell [11] construct a protocol
based on general assumptions which does not require public parameters, and
Katz, Ostrovsky, and Yung [14] give a protocol (the KOY protocol) based on
the decisional DiÆe-Hellman assumption. Subsequently, other protocols with
provable security in the random oracle model have been proposed [16, 17].

Only some of the above protocols are known to achieve forward secrecy.2

Forward secrecy is claimed for the protocol of [2], although no proof is given. A
full proof of forward secrecy for the protocol of [8] has subsequently appeared
[18]. In the standard model, Goldreich and Lindell [11] prove forward secrecy
of their protocol. We point out, however, that the de�nitions of forward secrecy
considered in these previous works are weaker than the de�nition presented here
(see discussion in Section 2.1).

Our contributions As mentioned above, a number of de�nitions have been pro-
posed for forward secrecy of PAKE protocols. However, we feel that none of these
de�nitions adequately capture all realistic attacks. Building on the framework
of Bellare, et al. [2] and extending the de�nition of forward secrecy contained
therein, we propose a new de�nition of forward secrecy in the weak corruption
model. We believe our de�nition better captures the underlying issues than pre-
vious de�nitions; in fact, we show concrete examples of potentially damaging
attacks which are not prevented under previous de�nitions of forward secrecy
but which are handled by our de�nition.

2 Here and throughout the rest of the paper, we consider only the weak corruption

model [2]. Our terminology is explained in greater detail in Section 2.1.

In Section 3.1, we demonstrate via an explicit attack that the KOY proto-
col as presented in [14] does not achieve forward secrecy with respect to our
de�nition. The attack represents a potentially serious threat to the protocol in
practice. Of additional interest, our attack shows a natural separation between
the notions of basic and forward secrecy in the PAKE setting. We suggest a
modi�cation of the KOY protocol which prevents this attack, and (as our main
technical contribution) give a complete proof of forward secrecy for this modi�ed
protocol in Section 4.

2 De�nitions

Due to space limitations, we assume the reader is familiarwith the \oracle-based"
model of Bellare, Pointcheval, and Rogaway [2] (building on [3, 4]) as well as their
de�nition of basic security. Our point of departure from their de�nition is with
regard to forward secrecy, so we only summarize those aspects of their model
necessary for understanding the present work. For further details, we refer the
reader to [13].

Participants, passwords, and initialization. We assume for simplicity a
�xed set of protocol participants (also called principals or users) each of which
is either a client C 2 Client or a server S 2 Server, where Client and Server are
disjoint. Each C 2 Client has a password pwC . Each S 2 Server has a vector
PWS = hpwS;CiC2Client which contains the passwords of each of the clients. We
assume that all clients share passwords with all servers.

Before the protocol is run, an initialization phase occurs during which global,
public parameters are established and passwords pwC are chosen for each client.
We assume that passwords for each client are chosen independently and uni-
formly3 at random from the set f1; : : : ; Ng, where N is a constant which is �xed
independently of the security parameter. At the outset of the protocol, the cor-
rect passwords are stored at each server so that pwS;C = pwC for all C 2 Client

and S 2 Server.

Execution of the protocol. In the real world, a protocol determines how
principals behave in response to signals from their environment. In the model,
these signals are sent by the adversary. Each principal can execute the protocol
multiple times with di�erent partners; this is modeled by allowing each principal
an unlimited number of instances with which to execute the protocol. We denote
instance i of user U as � i

U . A given instance may be used only once. Each
instance � i

U has associated with it the variables stateiU , term
i
U , acc

i
U , used

i
U ,

sidiU , pid
i
U , and skiU ; the function of these variables is as in [2].

The adversary is assumed to have complete control over all communication in
the network. The adversary's interaction with the principals (more speci�cally,
with the various instances) is modeled via access to oracles which are described
in detail below. Local state (i.e., values of state, term, etc.) is maintained for each

3 Our analysis extends to handle arbitrary distributions, including users with inter-

dependent passwords.

instance with which the adversary interacts; this state is not directly visible to
the adversary. The state of an instance may be updated during an oracle call,
and the oracle's output will typically depend upon this state. The oracle types
are:

{ Send(U; i;M) | This sends messageM to instance � i
U . The oracle outputs

the reply generated by this instance.

{ Execute(C; i; S; j) | This executes the protocol between instances � i
C and

�
j
S (where C 2 Client and S 2 Server) and outputs the transcript of this

execution. This represents occasions when the adversary passively eavesdrops
on a protocol execution.

{ Reveal(U; i) | This outputs the current value of session key skiU .

{ Corrupt(� � �) |We discuss this oracle in Section 2.1. This oracle is not present
in the de�nition of basic security, and is used to de�ne forward secrecy.

{ Test(U; i) | This query is allowed only once, at any time during the adver-
sary's execution. A random bit b is generated; if b = 1 the adversary is given
skiU , and if b = 0 the adversary is given a random session key.

Correctness. As in [2].

Partnering. We say that two instances � i
U and �

j
U 0 are partnered if: (1) U 2

Client and U 0 2 Server, or U 2 Server and U 0 2 Client; (2) sidiU = sid
j
U 0 6= null;

(3) pidiU = U 0 and pid
j
U 0 = U ; and (4) skiU = sk

j
U 0 . (This slightly clari�es the

notion of partnering in [2].)

2.1 Forward Secrecy

As mentioned earlier, our main departure from [2] is in our de�nition of forward
secrecy. To completely de�ne this notion, two orthogonal components must be
speci�ed: the nature of the Corrupt oracle and what it means for an adversary
to succeed in breaking the protocol.

The corruption model. The Corrupt oracle models corruption of participants
by the adversary. Since the adversary in our setting already has the ability to
impersonate (i.e., send messages on behalf of) parties in the network, \corrup-
tion" in our setting involves learning or modifying secret information stored by
a participant. Three speci�c possibilities are: (1) Corruption of player U may
allow the adversary to learn the internal state of all (active) instances of U .
(2) Corruption of client C may allow the adversary to learn pwC . Finally, (3)
corruption of server S may allow the adversary to modify passwords stored on
S; that is, to change password pwS;C (for some C) to any desired value.

As de�ned in [2], the strong corruption model allows attacks (1){(3) while the
weak corruption model allows attacks (2) and (3) only. However, this terminology
is not universally accepted. In particular, the weak corruption models of [8, 11]
allow only attack (2); i.e., they do not allow the adversary to install bogus
passwords on servers.

Here, we focus on the weak corruption model and allow the adversary to
both learn passwords of clients and to change passwords stored on servers (in
other words, we allow attacks (2) and (3)). However, our precise formalization
of the Corrupt oracle di�ers from that of [2] in that we consider each such attack
separately. Formally, oracle Corrupt1 returns pwC when given C 2 Client as input.
Oracle call Corrupt2(S;C; pw) (for S 2 Server and C 2 Client) sets pwS;C := pw.
We emphasize that the adversary can install di�erent passwords on di�erent
servers for the same client. In the de�nition of [2], an adversary who installs
a password pwS;C also learns the \actual" password pwC ; we make no such
assumption here. Note that in the case of a poorly-administered server, it may
be easy to modify users' passwords without learning their \actual" passwords.

We choose to focus on the weak corruption model rather than the strong
corruption model for two reasons. First, fully satisfactory de�nitions of security
in the latter model have not yet appeared; in particular, we know of no protocols
satisfying any reasonable de�nition of forward secrecy in this model. Part of the
problem is that current de�nitions in the strong corruption model are overly
restrictive; in fact, a generalization of the argument given in [2] shows that
forward secrecy (under their de�nition) is impossible in the strong corruption
case. We therefore leave this as a subject for future research. Secondly, weak
corruption is more relevant in practice: it will often be easier to compromise a
machine after completion of protocol execution than to compromise a machine
during protocol execution. Installing bogus passwords on servers is also a realistic
threat if, e.g., a server's password �le is encrypted but not otherwise protected
from malicious tampering.

Advantage of the adversary. Our most signi�cant departure from previous
work is with regard to the de�nition of the adversary's success. Previous def-
initions have a number of
aws which allow attacks on supposedly \secure"
protocols; our de�nition aims at correcting these
aws.

In any de�nition of forward secrecy, the adversary succeeds if it can guess the
bit b used by the Test oracle when this oracle is queried on a \fresh" instance.
Di�erences among the de�nitions arise due to di�erent de�nitions of \freshness".
Note that some de�nition of freshness is necessary for any reasonable de�nition
of security; if no such notion were de�ned the adversary could always succeed
by, for example, submitting a Test query for an instance for which it had already
submitted a Reveal query.

In the de�nition of [2], an instance � i
U is fresh4 unless one of the following

is true: (1) at some point, the adversary queried Reveal(U; i); (2) at some point,
the adversary queried Reveal(U 0; j) where �j

U 0 and � i
U are partnered; or (3) the

adversary made a Corrupt query before the Test query and at some point the
adversary queried Send(U; i;M) for some M . This de�nition has been adopted
for all subsequent work of which we are aware.

This de�nition, however, considers \secure" a protocol in which revealing one
client's password enables the adversary to impersonate a di�erent client. This is

4 In [2] this is called \fs-fresh" but since we focus on forward secrecy we use the

abbreviated name.

so (under the above de�nition) because every instance with which the adversary
interacts following a Corrupt query is unfresh and no guarantees are given with
regard to unfresh instances. As another example of a
aw in the de�nition,
consider an adversary who installs password pwS;C for client C at server S,
interacts with server S, and is then able to impersonate C to server S0 6= S.
Under the above de�nition, such a protocol could be considered secure! In fact,
an attack of this sort represents a real threat: in Section 3.1, we demonstrate
precisely this type of attack against the original KOY protocol.

We are more careful in our de�nition of freshness. Under our de�nition, an
instance � i

U with pidiU = U 0 is fresh unless one of the following is true:

{ The adversary queried Reveal(U; i) or Reveal(U 0; j) where �j
U 0 and � i

U are
partnered.

{ The adversary queried Corrupt1(U) or Corrupt1(U
0) before the Test query

and at some point the adversary queried Send(U; i;M) for some M .
{ The adversary queried Corrupt2(U;U

0; pw) before the Test query and at some
point the adversary queried Send(U; i;M) for some M .

Note that, in contrast with previous de�nitions (as explained above), exposing
the password of user U no longer automatically results in instances of user U 0 6=
U being unfresh.

We have not yet de�ned what we mean by a secure protocol. Note that a ppt
adversary can always succeed by trying all passwords one-by-one in an on-line
impersonation attack. Informally, we say a protocol is secure if this is the best an
adversary can do. Formally, an instance � i

U represents an on-line attack if both
the following are true: (1) at some point, the adversary queried Send(U; i;M) and
(2) at some point, the adversary queried Reveal(U; i) or Test(U; i). In particular,
instances with which the adversary interacts via Execute calls are not counted
as on-line attacks. The number of on-line attacks represents a bound on the
number of passwords the adversary could have tested in an on-line fashion. This
motivates the following de�nition:

De�nition 1. Protocol P is a secure PAKE protocol achieving forward secrecy
if, for all N and for all ppt adversaries A making at most Q(k) on-line attacks,
there exists a negligible function "(�) such that AdvA;P (k) � Q(k)=N + "(k).

In particular, the adversary can (essentially) do no better than guess a single
password during each on-line attempt. Calls to the Execute oracle, which are not
included in Q(k), are of no help to the adversary in breaking the security of the
protocol; this means that passive eavesdropping and o�-line dictionary attacks
are of (essentially) no use.

Some previous de�nitions of security consider protocols secure as long as the
adversary can do no better than guess a constant number of passwords in each
on-line attempt. We believe the strengthening given by De�nition 1 (in which the
adversary can guess only a single password per on-line attempt) is an important
one. The space of possible passwords is small to begin with, so any degradation
in security should be avoided if possible. This is not to say that protocols which

do not meet this de�nition of security should never be used; however, before
using such a protocol, one should be aware of the constant implicit in the proof
of security.

An examination of the security proofs for some protocols [2, 8, 19] shows
that these protocols achieve the stronger level of security given by De�nition
1. However, security proofs for other protocols [11, 17] are inconclusive, and
leave open the possibility that more than one password can be guessed by the
adversary per on-line attack. In at least one case [21], an explicit attack is known
which allows an adversary to guess two passwords per on-line attack.

3 The KOY Protocol

Due to space limitations, we include only those details of the KOY protocol that
are necessary for understanding our attack, our modi�cation, and our proof of
security. We refer the reader to [14, 13] for more details.

A high-level description of the protocol is given in Figure 1. During the ini-
tialization phase, public information is established as follows: for a given security
parameter k, primes p; q are chosen such that jqj = k and p = 2q+1; these values
de�ne a group G in which the decisional DiÆe-Hellman (DDH) assumption is
believed to hold. Values g1; g2; h; c; d are selected at random from G , and a func-
tion H : f0; 1g� ! Zq is chosen at random from a universal one-way hash family.
The public information consists of (a description of) G , the values g1; g2; h; c; d,
and the hash function H .

As part of the initialization phase, passwords are chosen randomly for each
client and stored at each server. We assume that all passwords lie in (or can
be mapped in a one-to-one fashion to) G . As an example, if passwords lie in
the range f1; : : : ; Ng, password pw can be mapped to g

pw
1

2 G ; this will be a
one-to-one mapping for reasonable values of N .

When a client Client 2 Client wants to connect to a server Server 2 Server,
the client begins by running a key-generation algorithm for a one-time sig-
nature scheme, giving VK and SK. The client chooses random r1 2 Zq and
computes A = gr1

1
, B = gr1

2
, and C = hr1 � pwC . The client then computes

� = H(ClientjVKjAjBjC) and sets D = (cd�)r1 . These values are sent to the
server as the �rst message of the protocol.

Upon receiving the �rst message hClientjVKjAjBjCjDi, the server �rst chooses
random x2; y2; z2; w2 2 Zq, computes �0 = H(ClientjVKjAjBjC), and sets E =

gx2
1
g
y2
2
hz2(cd�

0

)w2 . Additionally, a random r2 2 Zq is chosen and the server com-
putes F = gr2

1
, G = gr2

2
, and I = hr2 �pwS;C (where pwS;C is the password stored

at the server for the client named in the incoming message). The server then
computes � = H(ServerjEjF jGjI) and sets J = (cd�)r2 . These values are sent
to the client as the second message of the protocol.

Upon receiving the second message hServerjEjF jGjI jJi, the client chooses
random x1; y1; z1; w1 2 Zq, computes �0 = H(ServerjEjF jGjI), and sets K =

gx1
1
g
y1
2
hz1(cd�

0

)w1 . The client then signs �0jK using SK. The value K and the
resulting signature are sent as the �nal message of the protocol. At this point,

Public: G ; g1; g2; h; c; d 2 G ; H : f0; 1g� ! Zq

Client Server

(VK; SK) K(1k)

r1 Zq

A := g
r1
1
; B := g

r1
2

C := hr1 � pwC

� := H(Client jVKjAjBjC)

D := (cd�)r1 Client j VK j A j B j C j D
-

x2; y2; z2; w2; r2 Zq

�0 := H(Client jVKjAjBjC)

E := gx2
1
gy2
2
hz2(cd�

0

)w2

F := gr2
1
; G := gr2

2

I := hr2 � pwS;C

� := H(Server jEjF jGjI)

J := (cd�)r2Server j E j F j G j I j J
�

x1; y1; z1; w1 Zq

�0 := H(Server jEjF jGjI)

K := g
x1
1
g
y1
2
hz1(cd�

0

)w1

Sig Sign
SK
(�0

j K) K j Sig
-

I 0 := I=pwC

skC := Er1F x1Gy1(I 0)z1Jw1

if Vrfy
VK
(� j K; Sig) = 1

C0 := C=pwS;C

skS := Ax2By2(C0)z2Dw2Kr2

else skS := null

Fig. 1. The KOY protocol.

the client accepts and computes the session key by �rst computing I 0 = I=pwC

and then setting skC = Er1F x1Gy1(I 0)z1Jw1 .

Upon receiving the �nal message hKjSigi, the server checks that Sig is a
valid signature of �jK under VK (where � is the value previously used by the
server). If so, the server accepts and computes the session key by �rst computing
C 0 = C=pwS;C and then setting skS = Ax2By2(C 0)z2Dw2Kr2 . If the received
signature is not valid, the server does not accept and the session key remains
null.

Although omitted in the above description, we assume that users always
check that incoming messages are well-formed; e.g., when the server receives
the �rst message it veri�es that Client 2 Client and that A;B;C;D 2 G . If an

ill-formed message is received, the receiving party terminates without accepting
and the session key remains null.

3.1 An Attack on the KOY Protocol

Here, we demonstrate that the KOY protocol is not forward secure under our
de�nition by showing an explicit attack. Our results do not impact the basic
security of the protocol.

Fix a client Client. The attack begins by having the adversary impersonate
Client to a server S using an arbitrary password, say pw = g1. Thus, the adver-
sary chooses r1 and VK, constructs a message hClientjVKjAjBjCjDi (using pass-
word g1), and sends this message to server S. The server will respond with a mes-
sage hSjEjF jGjI jJi (which is computed using password pwS;Client = pwClient).
Next, the adversary changes the password stored at S for Client (i.e., pwS;Client)
to the value g1 using oracle call Corrupt2(S;Client; g1). Finally, the adversary
computes the �nal message of the protocol by choosing x1; y1; z1; w1 and send-
ing hKjSigi. If the adversary later obtains skS (via a Reveal query), we claim the
adversary can determine pwClient and hence successfully impersonate Client to
a di�erent server S0 6= S.

To see this, note that when S computes the session key after receiving the
�nal message of the protocol it uses pwS;Client = g1. Thus,

skS = Ax2By2(C=g1)
z2Dw2Kr2 = gr1x2

1
g
r1y2
2

hr1z2(cd�)r1w2Kr2 = Er1Kr2 :

Since the adversary can compute Er1 , the adversary can use skS to determine
the value Kr2 . Now, using exhaustive search through the password dictionary,
the adversary can identify pwClient as that unique value for which:

F x1Gy1(I=pwClient)
z1Jw1 = Kr2 :

3.2 Modifying the Protocol to Achieve Forward Security

The reason the attack described in the previous section succeeds is precisely
because the password used by the server changes in the middle of protocol ex-
ecution. To ensure that this does not happen, we modify the protocol so that
the password pwS;Client used to construct the server's response is saved as part

of the state information for that instance. When the server later computes the
session key (for a given instance), it uses the value of pwS;Client stored as part
of the state information (for that particular instance) rather than using the \ac-
tual" value of pwS;Client stored in \long term memory" (e.g., the password �le).
Note that if multiple server-instances are active concurrently, it is possible for
di�erent passwords to be in use for each instance. Although this modi�cation is
a simple one, it is a crucial change that must be made in any implementation of
the protocol.

The proof of forward secrecy for the modi�ed protocol is complex. In fact,
we view the main technical contribution of this paper as a detailed, full proof
of forward secrecy; this is the �rst such proof (without random oracles/ideal
ciphers) of forward secrecy in the model of [2].

4 Proof of Forward Secrecy

Although the modi�cation given in the previous section seems to thwart known
attacks (in particular the one given in Section 3.1) the rigorous proof of forward
secrecy is challenging. We present such a proof here; note that this is the �rst
such proof for any PAKE protocol under the (natural) de�nition of forward
secrecy appearing here.

Theorem 1. Under the DDH assumption, the modi�ed KOY protocol is a secure

PAKE protocol achieving forward secrecy.

Proof. Due to space limitations, only a sketch of the proof is given here. A
complete proof appears in the full version of this work [13].

As in [14], the adversary has access to oracles Sendi (0 � i � 3) representing
the four di�erent types of messages (including an \initiate" message) that can be
sent. We imagine a simulator that runs the protocol for adversary A. When the
adversary completes its execution and outputs b0, the simulator can tell whether
A succeeds by checking whether (1) a single Test query was made on an instance
� i
U ; (2) instance �

i
U is fresh; and (3) b0 = b. Success of the adversary is denoted

by event fsSucc. We refer to the real execution of the experiment as P0.
In experiment P 0

0, the adversary does not succeed if any of the following
occur:

1. A veri�cation key VK used by the simulator in responding to a Send0 query
is repeated.

2. The adversary forges a new, valid message/signature pair for any veri�cation
key used by the simulator in responding to a Send0 query.

3. A value � used by the simulator in responding to Send1 queries is repeated.

4. A value � used by the simulator in responding to a Send1 query (with
msg-out = hServerjEjF jGjI jJi) is equal to a value � used by the simula-
tor in responding to a Send2 query (with msg-in = hServer0jE0jF 0jG0jI 0jJ 0i)
and furthermore it is the case that hServerjEjF jGjIi 6= hServer0jE0jF 0jG0jI 0i.

Since the probability that any of these events occur is negligible (assuming the
security of the signature scheme and the universal one-way hash function), we
have fsAdvA;P0(k) � fsAdvA;P 0

0
(k) + "(k) for some negligible function "(�).

In experiment P1, upon receiving oracle query Execute(Client; i;Server; j),
values C and I are chosen independently at random from G . The simulator then
checks whether pwClient = pwServer;Client. If so, the session keys are computed as

skiClient := sk
j
Server := Ax2By2(C=pwServer;Client)

z2Dw2F x1Gy1(I=pwClient)
z1Jw1 :

On the other hand, if pwClient 6= pwServer;Client (i.e., as the result of a Corrupt

oracle query), the session keys are computed as

skiClient := Ax2By2(C=pwClient)
z2Dw2F x1Gy1(I=pwClient)

z1Jw1

sk
j
Server := Ax2By2(C=pwServer;Client)

z2Dw2F x1Gy1(I=pwServer;Client)
z1Jw1 :

(Other aspects of the Execute oracle are handled as before.) Under the DDH
assumption, one can show that jfsAdvA;P 0

0
(k) � fsAdvA;P1(k)j � "(k) for some

negligible function "(�). Details appear in the full version.
In experiment P2, upon receiving query Execute(Client; i;Server; j), the sim-

ulator checks whether pwClient = pwServer;Client. If so, sk
i
Client is chosen randomly

from G and sk
j
Server is set equal to sk

i
Client. Otherwise, both skiClient and sk

j
Server

are chosen independently at random from G .

Claim. jfsAdvA;P1(k)� fsAdvA;P2(k)j � "(k) for some negligible function "(�).

The claim follows from the negligible statistical di�erence between the dis-
tributions on the adversary's view in the two experiments. The proof when
pwClient = pwServer;Client exactly parallels the proof given in [14]. When pwClient 6=
pwServer;Client, the proof is more complicated but the techniques used are exactly
the same. Details are omitted here and appear in the full version.

We now introduce some notation. For a query Send1(Server; j;msg-in), we
say msg-in is previously-used if it was ever previously output by a Send0 oracle.
Similarly, for a query Send2(Client; i;msg-in), we say msg-in is previously-used if
it was ever previously output by a Send1 oracle. Amsg-in which is not previously-
used is called new.

In experiment P3, the simulator runs the modi�ed initialization procedure
shown in Figure 2, where the values �1; �2; �1; �2; � are stored for future use. A

Initialize(1k) |

g1; g2 G

�1; �2; �1; �2; � Zq

h := g�1 ; c := g
�1
1
g
�2
2
; d := g

�1
1
g
�2
2

H UOWH(1k)

return G ; g1; g2; h; c; d;H

Fig. 2. Modi�ed initialization procedure.

new msg-in for a query Send2(Client; i; hServerjEjF jGjI jJi) is said to be newly
valid5 only if F�1+��1G�2+��2 = J and I=pwClient = F �. Otherwise, we say that
it is newly invalid. A newmsg-in for a query Send1(Server; j; hClientjVKjAjBjCjDi)
is newly valid only if A�1+��1B�2+��2 = D and C=pwServer;Client = A�, where
the value of pwServer;Client is that at the time of the Send1 query (note that
pwServer;Client may change as a result of Corrupt queries). Otherwise, we say it is
newly invalid.

Upon receiving query Send2(Client; i;msg-in), the simulator checks whether
there has previously been any query of the form Corrupt1(Client). If so, the
Send2 query is answered as before. Otherwise, the simulator examines msg-in. If

5 Note that (with negligible probability) a newly valid message may not actually be a

valid protocol message. This is �ne as far as the proof of security is concerned.

msg-in is newly invalid, the query is answered as in experiment P2. If msg-in is
newly valid, the query is answered as in experiment P2 but the simulator stores
the value (r; skiClient) as the \session key". If msg-in is previously-used, the
simulator checks for the unique Send1 query following which msg-in was output.
Say this query was Send1(Server; j;msg-in0). Ifmsg-in0 is newly invalid, the Send2
query is answered as in experiment P2. If msg-in0 is newly valid, the query is
answered as in experiment P2 but the simulator stores the value (r; sk

i
Client) as

the \session key".

Upon receiving query Send3(Server; j;msg-in), let Client
def
= pid

j
Server . The

simulator �rst checks when the query Send1(Server; j;�rst-msg-in) was made.
If this Send1 query was made after a query Corrupt1(Client) or a query of the
form Corrupt2(Server;Client; �), the behavior of the Send3 oracle is unchanged.
Otherwise, the simulator responds as in experiment P2 unless �rst-msg-in is
newly valid. In this case, the query is answered as in experiment P2 but the
simulator stores the value (r; skjServer) as the \session key".

If the adversary queries Test(U; i) or Reveal(U; i) before any queries of the
form Corrupt1(U) or Corrupt2(U;U

0; �) (where U 0 = pidiU), and the session key
stored is of the form (r; skiU), the adversary is given r. If the Test or Reveal

query is made after any such Corrupt query has been made, the adversary is given
the value skiU . Other Test or Reveal queries are answered as in experiment P2.
Completing the description of experiment P3, if the adversary ever receives the
value r in response to a Reveal or Test query, the adversary succeeds. Otherwise,
the adversary succeeds, as before, by correctly guessing the bit b.

Since the adversary's view is unchanged unless it receives the value r and
the adversary succeeds when this is the case, we clearly have fsAdvA;P2(k) �
fsAdvA;P3(k).

For the remaining transformations, the simulator will modify its actions
in response to query Send2(U) only when this query is made before a query
Corrupt1(U). Similarly, the simulator's response to a query Send3(U; i; �) (where
pidiU = U 0) will be changed only if the query Send1(U; i; �) was made before any
queries Corrupt2(U;U

0; �) or Corrupt1(U
0). For brevity in what follows, however,

we will simply say that the simulator modi�es its behavior only for Send oracle
queries made \before any Corrupt queries".

In experiment P4, whenever the simulator responds to a Send2 query it
stores the values (K;�; x; y; z; w), where K = gx1g

y
2
hz(cd�)w. Upon receiving

a query Send3(Server; j; hKjSigi) (assuming query Send1(Server; j;�rst-msg-in)
was made before any Corrupt queries), the simulator checks the value of �rst-msg-in =
hClientjVKjAjBjCjDi. If �rst-msg-in is new, the query is answered as in exper-
iment P3. If �rst-msg-in is previously-used and VrfyVK(�jK; Sig) = 0, the query
is answered as in experiment P3 (and the session key is not assigned a value). If
�rst-msg-in is previously-used, VrfyVK(�jK; Sig) = 1, and the experiment is not
aborted, the simulator �rst checks whether there exists a (unique) i such that
sidiClient = sid

j
Server . If so, sk

j
Server is assigned the value skiClient. Otherwise,

let �rst-msg-out = hServerjEjF jGjI jJi. The simulator must have stored values

x0; y0; z0; w0 such that K = gx
0

1 g
y0

2
hz

0

(cd�)w
0

(this is true since the experiment is

aborted if Sig is a valid signature on �jK that was not output by the simulator
following a Send2 query). The session key is then assigned the value:

sk
j
Server := AxBy(C=pw)zDwF x0

Gy0

(I=pw)z
0

Jw
0

:

Claim. fsAdvA;P4(k) = fsAdvA;P3(k).

The distribution on the adversary's view is identical in experiments P3 and
P4. It is crucial here that the value pw = pwServer;Client used when responding
to a Send1 query is stored as part of the state and thus the same value is used
subsequently when responding to a Send3 query. If this were not the case, the
value of pwServer;Client could change as the result of a Corrupt2 query sometime
between the Send1 and Send3 queries.

In experiment P5, upon receiving a query Send3(Server; j; hKjSigi) (again, as-
suming query Send1(Server; j;�rst-msg-in) was made before any Corrupt queries),
the simulator checks the value of �rst-msg-in. If �rst-msg-in is newly invalid and
the session key is to be assigned a value, the session key is assigned a value ran-
domly chosen in G . Otherwise, the query is answered as in experiment P4.

Claim. fsAdvA;P5(k) = fsAdvA;P4(k).

This step is similar to the identical step in [14], except that it is now crucial
that the same value pwServer;Client is used during both the Send1 and Send3
queries for a given instance.

In experiment P6, upon receiving query Send1(Server; j;msg-in) (and assum-
ing this query is made before any Corrupt queries), if msg-in is newly valid the
query is answered as before. Otherwise, component I is computed as hrgN+1

1
,

where the dictionary of legal passwords is f1; : : : ; Ng.

Claim. Under the DDH assumption, jfsAdvA;P5(k) � fsAdvA;P6(k)j � "(k), for
some negligible function "(�).

The proof of this claim follows [14], and depends on the non-malleability of

messages in the protocol. Details appear in the full version.

Note that when a query Send1(Server; j;�rst-msg-in) is made before any
Corrupt queries and �rst-msg-in is not newly valid, the simulator will not re-
quire r in order to respond to the (subsequent) query Send3(Server; j;msg-in)
in case this query is ever made. On the other hand, in contrast to the basic
case when no Corrupt queries are allowed, the simulator does require r in case
�rst-msg-in is newly valid. The reason is the following: assume the adversary
queries Send1(Server; j; hClientjVKjAjBjCjDi) (before any Corrupt queries have
been made) where hClientjVKjAjBjCjDi is newly valid. Assume further that the
adversary subsequently learns pwClient from a Corrupt1 query. The adversary
might then query Send3(Server; j; hKjSigi) followed by Reveal(Server; j). In this
case, the simulator must give the adversary the correct session key sk

j
Server |

but this will be impossible without knowledge of r.

In experiment P7, queries to the Send2 oracle are handled di�erently (when
they are made before any Corrupt queries). Whenever msg-in is newly invalid,
the session key will be assigned a value chosen randomly from G . If msg-in is
previously-used, the simulator checks for the Send1 query after whichmsg-in was
output. Say this query was Send1(Server; j;msg-in0). If msg-in0 is newly valid,
the Send2 query is answered as before. If msg-in0 is newly invalid, the session key
is assigned a value chosen randomly from G . Queries Send3(Server; j;msg-in) are
also handled di�erently (assuming query Send1(Server; j;�rst-msg-in) was made
before any Corrupt queries). If �rst-msg-in is previously-used, Vrfy

VK
(�jK; Sig) =

1, and there does not exist an i such that sidiClient = sid
j
Server , then the session

key is assigned a value chosen randomly from G .

Claim. fsAdvA;P7(k) = fsAdvA;P6(k).

The claim follows from the equivalence of the distributions on the adversary's
views in the two experiments, as in [14]. Details appear in the full version.

Let fsSucc1 denote the event that the adversary succeeds by receiving a value
r following a Test or Reveal query (this can occur only before any Corrupt queries
have been made). We have:

PrA;P7 [fsSucc] = PrA;P7 [fsSucc1] + PrA;P7 [fsSuccjfsSucc1] � PrA;P7 [fsSucc1]:

Event fsSucc^ fsSucc1 can occur in one of two ways (by de�nition of freshness):
either (1) the adversary queries Test(U; i) before any Corrupt queries and does
not receive r in return; or (2) the adversary queries Test(U; i) after a Corrupt

query and acciU = true but the adversary has never queried Send`(U; i;M)
for any `;M . In either case, skiU is randomly chosen from G independent of
the remainder of the experiment; therefore, we have PrA;P7 [fsSuccjfsSucc1] =
1=2. Thus, PrA;P7 [fsSucc] = 1=2 + 1=2 � PrA;P7 [fsSucc1]. We now upper bound
PrA;P7 [fsSucc1].

We de�ne experiment P 0
7 in which the adversary succeeds only if it re-

ceives a value r in response to a Reveal or Test query. Clearly PrA;P 0

7
[fsSucc] =

PrA;P7 [fsSucc1] by de�nition of event fsSucc1. Since the adversary cannot suc-
ceed in experiment P 0

7 once a Corrupt query is made, the simulator aborts the

experiment if this is ever the case. For this reason, whenever the simulator would
previously store values (r; sk) as a \session key" (with sk being returned only
in response to a Test or Reveal query after a Corrupt query), the simulator now
need store only r.

In experiment P8, queries to the Send1 oracle are handled di�erently. Now,
the simulator computes I as hrgN+1

1
even when msg-in is newly valid. Following

a proof similar to those in [14], it follows under the DDH assumption that, for
some negligible function "(�), we have jfsAdvA;P8(k) � fsAdvA;P 0

7
(k)j � "(k). A

key point used in the proof is that when msg-in is newly valid, the simulator
no longer need worry about simulating the adversary's view following a Corrupt

query.
In experiment P9, queries to the Send0 are handled di�erently. Now, the

simulator always computes C as hrgN+1

1
. Following a proof similar to those in

[14], it follows under the DDH assumption that, for some negligible function
"(�), we have jfsAdvA;P9(k) � fsAdvA;P8(k)j � "(k). Note that, because session
keys computed during a Send2 query are always either r or are chosen randomly
from G , the value r is not needed by the simulator and hence we can use the
simulator to break the Cramer-Shoup encryption scheme as in [14].

The adversary's view in experiment P9 is independent of the passwords cho-
sen by the simulator until the adversary receives r in response to a Reveal or
Test query (in which case the adversary succeeds). Thus, the probability that
the adversary receives r, which is exactly PrA;P9 [fsSucc], is at most Q(k)=N .
This completes the proof of the theorem.

References

1. M. Bellare, R. Canetti, and H. Krawczyk. A Modular Approach to the Design and

Analysis of Authentication and Key Exchange Protocols. STOC '98.

2. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure

Against Dictionary Attacks. Eurocrypt '00.

3. M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. Crypto

'93.

4. M. Bellare and P. Rogaway. Provably-Secure Session Key Distribution: the Three

Party Case. STOC '95.

5. S.M. Bellovin and M. Merritt. Encrypted Key Exchange: Password-Based Proto-

cols Secure Against Dictionary Attacks. IEEE Symposium on Research in Security

and Privacy, IEEE, 1992, pp. 72{84.

6. R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, and M. Yung.

Systematic Design of Two-Party Authentication Protocols. Crypto '91.

7. M. Boyarsky. Public-Key Cryptography and Password Protocols: The Multi-User

Case. ACM CCCS '99.

8. V. Boyko, P. MacKenzie, and S. Patel. Provably-Secure Password-Authenticated

Key Exchange Using DiÆe-Hellman. Eurocrypt '00.

9. W. DiÆe and M. Hellman. New Directions in Cryptography. IEEE Transactions

on Information Theory, 22(6): 644{654 (1976).

10. W. DiÆe, P. van Oorschot, and M. Wiener. Authentication and Authenticated Key

Exchanges. Designs, Codes, and Cryptography, 2(2): 107{125 (1992).

11. O. Goldreich and Y. Lindell. Session-Key Generation Using Human Passwords

Only. Crypto '01.

12. S. Halevi and H. Krawczyk. Public-Key Cryptography and Password Protocols.

ACM Transactions on Information and System Security, 2(3): 230{268 (1999).

13. J. Katz. EÆcient Cryptographic Protocols Preventing \Man-in-the-Middle" At-

tacks. PhD thesis, Columbia University, 2002.

14. J. Katz, R. Ostrovsky, and M. Yung. EÆcient Password-Authenticated Key Ex-

change Using Human-Memorable Passwords. Eurocrypt '01.

15. T.M.A. Lomas, L. Gong, J.H. Saltzer, and R.M. Needham. Reducing Risks from

Poorly-Chosen Keys. ACM Operating Systems Review, 23(5): 14{18 (1989).

16. P. MacKenzie. More EÆcient Password-Authenticated Key Exchange. RSA '01.

17. P. MacKenzie. On the Security of the SPEKE Password-Authenticated Key-

Exchange Protocol. Manuscript, 2001.

18. P. MacKenzie. Personal communication. April, 2002.

19. P. MacKenzie, S. Patel, and R. Swaminathan. Password-Authenticated Key Ex-

change Based on RSA. Asiacrypt '00.

20. V. Shoup. On Formal Models for Secure Key Exchange. Available at

http://eprint.iacr.org/1999/012.

21. T. Wu. The Secure Remote Password Protocol. Proceedings of the Internet Society

Symposium on Network and Distributed System Security, 1998, pp. 97{111.

