
Stability Preserving Transformations: Packet Routing

Networks with Edge Capacities and Speeds

Allan Borodin� Rafail Ostrovskyy Yuval Rabaniz

Abstract

In the context of an adversarial input model,

we consider the e�ect on stability results when

edges in packet routing networks can have ca-

pacities and speeds/slowdowns. In traditional

packet routing networks, every edge is consid-

ered to have the same unit capacity and unit

speed. We consider both static modi�cations

(i.e. where the capacity or speed of an edge

is �xed) and dynamic modi�cations where ei-

ther the capacity or the speed of an edge can be

dynamically changing over time. Amongst our

results, we show that the universal stability of

LIS is not preserved when either the capacity or

the speed is changing dynamically whereas many

other common scheduling protocols do maintain

their universal stability. In terms of univer-

sal stability of networks, stability is preserved

for dynamically changing capacities and speeds.

�Department of Computer Science, University of Toronto,

Toronto, Canada M5S 3G4. Part of this work was performedwhile

visiting Telcordia Technologies and the Technion Computer Sci-

ence Department. Email: bor@cs.toronto.edu
yTelcordia Technologies, MCC-1C357B, 445 South

Street, Morristown, New Jersey 07960-6438, USA.

Email: rafail@research.telcordia.com; URL:

http://www.argreenhouse.com/bios/rafail/index.shtml
zComputer Science Department, Technion | IIT, Haifa 32000,

Israel. Part of this work was done while visiting Telcordia

Research. Work at the Technion supportedby BSF grant 96-00402,

by Ministry of Science contract number 9480198, and by a grant

from the Fund for the Promotion of Research at the Technion.

Email: rabani@cs.technion.ac.il

The situation for static modi�cations is not as

clear but we are able to show that (in contrast

to the dynamic case) that any \well de�ned"

universally stable scheduling rule maintains its

universality under static capacities, and com-

mon scheduling rules also maintain their univer-

sal stability under static speeds.

1 Introduction

We continue the study of adversarial packet

routing networks as initiated in Borodin et al.

[6], and signi�cantly advanced in Andrews et

al. [2], Aiello et al. [1], Gamarnik [8], Andrews

and Zhang [5], and Andrews [4]. Brie
y stated

these papers analyze stability and queue sizes

for various networks and greedy (work preserv-

ing) scheduling rules when (uniform size) input

packets are being generated by an adversary. A

greedy scheduling rule insures that some packet

crosses a given edge (link) if the queue for that

edge is non-empty. For a given input process,

a network is stable with respect to a schedul-

ing rule if all edge queues are bounded. (Here

the bound may depend on the network but does

not depend on the duration of the process.) A

network is universally stable (for for the adver-

sarial input processes being considered) if any

greedy scheduling rule can be used and stabil-

ity is guaranteed. Similarly, a scheduling rule

is universally stable if stability is guaranteed for

any network.

Most studies of packet routing networks as-

sume that one packet can cross an edge in a

single time step. This assumption is well moti-

vated when we assume that all edges (= com-

munication links) are identical. However, it is

also reasonable to assume that a packet routing

network could contain di�erent types of links, in

which case we would need to assign a capacity

and/or a speed to each edge. Note that we are

still assuming uniform packet sizes so that the

capacity or speed at which packets pass through

a particular edge does not depend on the packet.

Once we allow the service time of an edge to de-

pend on the packets we are e�ectively assuming

a general multiclass queuing network. An ad-

versarial analysis of general multiclass queuing

networks was begun in Tsaparas [12].

In this paper, we consider the impact on sta-

bility results when edge capacities and speeds

are introduced.1 These edge capacities or speeds

may either be static or dynamic (i.e. changing

over time). In the case of dynamic edge capac-

ities or slowdowns, we assume that an adver-

sary is setting these capacities (or slowdowns)

as well as determining the packets (i.e. paths)

being injected at each time step. As a special

case of dynamic speeds or capacities, we are in

e�ect approximating the fault tolerance of a net-

work where edges can temporarily fail (i.e. have

in�nite slowdown or zero capacity). We shall

show (under a very natural assumption on the

class of scheduling rules being considered) that

the property of a rule being universally stable is

preserved in the context of static edge capacities.

However, the universal stability of a scheduling

rule is not necessarily preserved in the context of

dynamic capacities with LIS (i.e. the scheduling

rule that gives priority to the longest in system

1In this paper, we only study the e�ect of introducing either

capacities or speeds (but not both).

packet) being a notable example of a rule that

does not remain universally stable.

We have not yet been able to show that uni-

versal stability of a rule is preserved in the con-

text of static edge speeds but all known rules

previously studied enjoy this property. Indeed

many rules also remain universally stable in the

context of dynamic edge slowdowns. However,

as in the case of dynamic edge capacities, LIS

is again a notable example where universal sta-

bility is not preserved. Finally, with regard to

the universal stability of networks, we can show

that universal stability is preserved under dy-

namic edge capacities and speeds.

2 De�nitions

We assume the reader is familiar with the basic

de�nitions of a greedy scheduling rule, stability

of a network system (G;�;S), and universal

stability of a rule or network (see, for example,

Borodin et al. [6]). These de�nitions were given

in the context of \standard" oblivious packet

routing where all edges have a uniform capacity

and uniform speed of one packet/step and each

packet has a �xed simple path (independent

of other packets) it must traverse. We now

want to consider networks in which edges can

have di�erent integer capacities or speeds which

may or may not vary over time. We will let

ce(t) denote the capacity of edge e at time step

t. That is, we assume edge e is capable of

simultaneously transmitting up to ce(t) packets

at time t. When this capacity does not depend

on time we simply write ce.

The de�nition for the (time varying) speed

of an edge is a little more problematic. For the

purpose of this paper we will restrict ourselves

to a synchronous framework. We will assume we

know the maximum speed possible (normalized

to 1 packet/step). We let the positive integer

se(t) denote the slowdown of edge e at time t. To

make the semantics of this slowdown precise, we

chose the following interpretation which allows

us to maintain a synchronous view of packet

routing. If a packet P is scheduled to traverse

link e at time t and at time t the slowdown

of this link is se(t), then packet P completes

the traversal of e at time t + se(t) and during

this interval of time, no other packet can be

scheduled on e. And again we simply write se
for the case of static slowdown.

Let w be an arbitrary positive integer, e any

edge in the network and � any sequence of w

consecutive time steps. We de�ne N(�; e) to be

the number of packets injected by the adversary

during time interval � that traverse edge e.

De�nition. Consider the case of edges with

capacities. For any �; 0 < � � 1, we de�ne a

(w; �) adversary as an adversary which injects

packets (= paths) subject to the following load

condition: for every sequence � of w consecutive

time steps and for every edge e, N(�; e) �
�
P

t2� ce(t).

De�nition. Now consider the case of edges

with slowdowns. Again, let 0 < � � 1. We

�rst consider the case of static slowdowns and

de�ne a (w; �) adversary as one which injects

paths subject to the following load condition: for

every sequence � of w consecutive time steps and

for every edge e, N(�; e) � �
P

t2�
1
se
= �w 1

se
.

The de�nition for an adversary in the context

of the dynamic slowdown model requires some

care. The most obvious extension of the static

model condition is : N(�; e) � �
P

t2�
1
se
(t).

However, our de�nition of edge slowdown , se(t)

at a given time t, impacts the e�ective speed

of the edge e for the next se(t) time steps.

Indeed because we are only considering greedy

scheduling rules, an adversary can start a packet

on edge e at time t and then this edge is

unavailable for the next se(t) time steps no

matter what values are given for the slowdowns

se(t
0) for t < t0 < t + se(t). Hence for any time

t0, we de�ne the e�ective slowdown ~se(t) at time

t0 to be the maxt[se(t)jt � t0 < t + se(t)]. Now

we can de�ne a (w; �) adversary as one which

injects paths subject to the load condition: for

every sequence � of w consecutive time steps

and for every edge e, N(�; e) � �
P

t2�
1

~se(t)
Note

that this de�nition coincides with the de�nition

for the static slowdown model since in this case,

~se(t) = se(t) = se.

For either (static or dynamic) capacities or

slowdowns, we say that a (w; �) adversary injects

packets at rate � with window size w. A rate �

adversary is a (w; �) adversary for some w.

De�nition. Let G be a network (with or

without edge capacities or slowdowns) and S a

scheduling rule. A network environment (G;S)
is �-stable if for every initial con�guration 2

C0(G), and every w, there is a bound B =

B(C0(G); w) such that for any rate � adversary

(with window w), the size of every queue is

bounded by B at any time. A scheduling rule S
is universally �-stable if (G;S) is �-stable for all

G. Similarly, a network G is universally �-stable

if (G;S) is �-stable for all greedy 3 scheduling

rules S.

Examples. For uniform capacities and speeds,

any ring is a universally �-stable network for any

� < 1 ([2]) and any DAG is 1-stable ([6]). An-

drews et al. [1] show that a number of scheduling

rules, namely \longest in system" (LIS), \far-

thest to go" (FTG) and \shortest in system"

(SIS) are universally �-stable scheduling rules

for any � < 1. Gamarnik [9] shows that \near-

est to origin" (NTO) is universally 1-stable .

However, FIFO is not universally �-stable for

� � :85 (Andrews et al. [1]) and NTG is not

2The initial con�guration is not really signi�cant for the pur-

poses of this paper and henceforth it will be ignored.
3In this context, a greedy scheduling rule is one that always

sends as many packets as available across an edge, up to its

capacity.

universally �-stable for any � > 0 (Borodin et

al. [6]).

De�nition. A greedy scheduling rule S
is capacity (respectively, speed) invariant i� for

every set A of packets in an edge queue, S
induces a total order on the packets in A that

is independent of the capacities (respectively,

speeds) of the network edges, and furthermore,

for all A0 � A, the total order induced by S on

A0 is consistent with the total order induced by

S on A. Equivalently, S is capacity invariant if

the relative order (imposed by the rule) of any

pair of packets in a queue is independent of the

capacity of the edges and independent of other

packets. We claim that this is a very natural

assumption as it insures that the de�nition of

the rule when applied at an edge (having an

arbitrary capacity) is unambiguous.4 Since the

context will always be clear, we will simply say

\invariant (scheduling) rule".

Examples. FIFO, LIFO, FTG, NTG, SIS,

LIS, NTO are all invariant rules. In fact, all

natural scheduling rules are invariant rules. As

an example of a non-invariant rule, consider the

rule of using LIS if the number of packets in the

queue is less than 10, and LIFO otherwise.

3 Networks with Edge Capacities

Theorem 3.1. There is a standard packet

routing network G (namely the 4 node baseball

graph introduced by Andrews et al. [2] such that

when G is allowed to have dynamic capacities,

(G;LIS) is not stable. (Recall that LIS is uni-

versally stable with regard to standard packet

routing networks against any rate � < 1 adver-

sary.) More speci�cally, if G0 denotes G when all

4We would certainly not want to allow the rule \LIS if all edges

have capacity one, else FIFO". On the other hand the \speed

invariant" restriction prohibits a rule such as \most time to go"

which is a natural generalization of FTG. It is not clear what is

the most appropriate restriction for studying networks with edge

speeds.

dynamic edge capacities are either 1 or C, then

(G0; LIS) can be unstable for rate � > C
2C�1

.

Proof. The proof is motivated by the con-

struction in Andrews et al. [2] showing that for

the baseball graph, neither NTG nor FIFO are

�-stable for a su�ciently large �. See Figure 1

e
0

2
e4 e2

v2

v3v4

v1

e
0

4

Figure 1: Baseball graph

As in the Andrews et al. proof for NTG, we

assume that the packets are injected in stages

and each stage consists of two substages. At the

start of a stage we assume that there is a set X

of at least t packets queued at nodes v4 and v1
(with at least one packet at node v1) that need

to traverse edges e4; e1; e2. It su�ces to show

that at the end of the stage, more than t packets

will be queued at nodes v2 and v3 (with at least

one packet at node v3)waiting to traverse edges

e3; e4. To simplify the proofs we avoid the use

of
oors and ceilings. Let � be the rate of an

adversary which sets the capacities of the edges

and injects packets as follows:

1. For the �rst 1
�C+1

� t steps, all edges have

capacity C except for edge e2 which has

capacity 1. (Note that when C is large,

we are relatively shutting down edge e2.)

During these steps, the adversary injects a

set Y of �C

�C+1
�t packets that need to traverse

the path e4; e1; e
0
2; e3. By the nature of the

LIS rule, all of these Y packets are blocked

by the X packets as they enter node v1. At

the end of this substage, there are �C

�C+1
� t

packets in X (respectively, in Y) that still

need to traverse edge e2 (respectively, the

path e4; e1; e
0
2; e3).

2. For the next �C

(�C+1)2
� t steps. all edges have

capacity C except for edge e02 which has

capacity 1. The adversary now injects a

set Z of [�C

(�C+1)
]2 � t packets which need to

traverse the path e2; e3; e4. All the packets

in Z will be blocked by the X packets.

Hence at the end of this substage, we have

jY j+ jZj � 2[�C

�C+1
]2 �t. For �C

�C+1
>
p
(1=2),

there are then more than t packets queued

at nodes v2 and v3 (with at least one packet

at node v3) that need to traverse edges e3
and e4. Note that for C � 3, we can set

� < 1.

However, we now show that the property of

an invariant scheduling rule being universally �-

stable is preserved when adding static capacities

to edges.

Theorem 3.2. Let S be an invariant schedul-

ing rule, which is universally �-stable for stan-

dard unit capacity networks. Then, for any

� > 0, S is universally (� � �)-stable for inte-

ger capacity networks.

Proof. Intuitively, a directed graph G =

(V;E) having edge capacities ce for e 2 E, can

be thought of as a non-simple, unit capacity

graph ~G with ce parallel edges
5 replacing each

5However, this intuition cannot always be applied since the

baseball graph can also be thought of as a 4 node ring with two

edges having capacity 2. Since the ring is a universally stable

network, FIFO is stable on any ring but FIFO is not stable on

capacitated edge e. Assume (for contradiction)

that there exists � > 0 such that (G;S) is not

(� � �)-stable. Therefore, for all w and for

all B, there exists a (w; � � �) adversary that

produces a �nite sequence of packet injections

which causes some queue to exceed size B. We

would like to simulate S on G by using S on ~G.

The simulation will be such that we can argue

that the queue size in ~G exceeds B=c where

c = maxe ce. This will contradict the �-stability

of (~G;S). The issue is how to assign packets to

the parallel edges so that the rate condition is

not violated. Resolving this issue requires some

care.

Conceptually, for any edge e and time t,

we consider the set Ae;t of the �rst ce packets

queued at e (in the order induced by S), or

all the packets queued at e, if there are fewer

than ce packets there. Map the packets in Ae;t

to the ce parallel edges in ~G by a uniformly at

random matching. This induces a probability

distribution over mappings of packets to the

edges of ~G. Note that because the adversary

(producing the large queue size in G) is �nite,

every packet eventually reaches every edge in its

path (in G) and thus the mapping of packets

to edges in ~G is well de�ned. We shall argue

that there exists a point in this distribution such

that the induced injection rate on each edge

of ~G preserves the rate less than � constraint.

The theorem follows as the packet traversals

scheduled by S in ~G are exactly the same as the

traversals scheduled by S in G (this follows from

the invariant property of S). It is worth noting

that we do not have to construct the matching of

packets to parallel edges; we only need to know

it exists.

Let us now consider a (� � �; w) adversary

for some su�ciently large window w. Consider

the baseball graph. Although it is possible that the theorem holds

for any network system (G;S), our proof relies on the assumption

that S is universally stable.

windows beginning at time j for j = 0; 1; : : :. Let

Wj denote the jth such window. The random

matchings discussed above are now viewed as

randomly choosing a selected edge (let's call it

a slot) in ~G for each edge (in G) in the path

of a packet injected in this window. We say

that a window Wj is good if for every slot in ~G

there are at most (� � �=2) � w packets injected

during Wj that are assigned to this slot by the

random mapping. We want to show that there

is a positive probability that every window will

be good and hence there is a mapping which

induces an injection by a (�� �=2; w) adversary

in ~G.

Of course, if Wj and Wj0 overlap then the

events \Wj is good" and \Wj0 is good" are not

independent. Moreover, if packets p (injected

during Wj) and p0 (injected during Wj0) are

involved in the same matching, then again the

events \Wj is good" and \Wj0 is good" are

not independent, even if these windows do not

overlap. However, for a given window W ,

the event \W is good" is independent of any

combination of other such events excluding the

above mentioned events, the number of which is

bounded by 2w + [(�� �) � w �Pe ce]
2 = �(G)w

(where �(G) is a constant that only depends

on the graph G) The fact that dependency is

limited will allow us to invoke the Lov�asz Local

Lemma (see [11]).

We now bound the probability that a window

W is not good. Consider an edge e in G and the

t � (� � �)wce packets injected during W that

may need to traverse e. If it were not for the

fact that the random matchings impose a condi-

tion on which slots can be assigned to a packet,

we could view the random process of assigning

slots to packets as a traditional balls and bins

experiment. Namely, we are throwing (���)wce
balls (=packets) at ce bins (=slots). The ex-

pected number of packets assigned to a slot is

obviously (���)w and using the Cherno� bound,

the probability that the number of packets as-

signed to a slot exceeds (� � �=2) � w is at most

e�
(w). However, this analysis is
awed because

the balls participating in any single matching

are not being thrown independently. Intuitively,

the fact that the balls have to satisfy a matching

constraint should only help to reduce the max-

imum congestion on a slot. We can make this

intuition precise by the following argument.

We consider the process of sequentially

throwing balls into a given slot. De�ne a se-

quence of random variables Y0; Y1; : : : Yt where

Y0 is the expected number of balls that will end

up in this slot and Yi is the same expectation af-

ter i balls have been thrown. Note that Y(���)w
is the �nal congestion on this slot. Clearly by

linearity of expectations, Y0 = (� � �)w. By

de�nition Yi = E[Yi+1jYi]. Moreover, we claim

jYi+1 � Yij � 1. This follows because any ball

is correlated by the matching with at most ce
other balls in the sequence and the contribution

of all these balls to the congestion is at most

1. Hence the sequence is a martingale. We now

can calculate an upper bound on the probabil-

ity that the �nal congestion on a slot is more

than ((r � �=2)w = Y0 + w�=2 = Y0 + �
p
t for

� = w�=2
p
t � �

p
w

2
p

(���)ce
. By Azuma's inequal-

ity [11], this probability is less than e��
2=2 �

e
� �2

8(r��)ce
w
.

By the union bound, the probability that any

slot is overcongested (that is, that the window

W is not good) is at most
P

e ce � e
� �2

8(���)ce
w
. To

apply the local lemma we need this probability

to be at most 1=e(d+1) where d = �(G)w is the

bound on the dependency. This clearly holds for

su�ciently large w.

We can now apply Theorem 3.2 to show that

(in contrast to LIS), some common scheduling

rules do remain universally stable with respect

to dynamically changing capacities.

Theorem 3.3. The SIS and NTO schedul-

ing rules are universally stable for dynamically

changing integer capacity networks.

Proof. (Sketch) For simplicity assume that

there is a known bound c on the largest capac-

ity allowed. (This assumption can be removed

by noting as in the proof of Theorem 3.2 that

if there was a counterexample to universal sta-

bility then this counterexample would only use

a �nite set of capacities.) Next we observe that

for the SIS and NTO rules, newly injected pack-

ets will take priority over packets in the system.

Now at any point of time t, suppose we have an

edge e with capacity ce(t) < c. Then we can in-

ject c� ce(t) \dummy" packets which only need

to traverse this edge. This can be done with-

out violating the load condition for a network in

which every edge has (static) capacity c. Now

we appeal to Theorem 3.2 to obtain the desired

result.

We now turn our attention to universally

stable networks. From the results of Goel [10]

we know that there is a nice characterization of

the class of directed graphs which are universally

stable (in the context of unit edge capacities).

Goel's characterization is based on the following

facts:

� The unidirectional cycle and all DAGS are

universally stable.

� A digraph is universally stable if and only

if all of its strongly connected components

are universally stable.

� The unidirectional cycle is the only strongly

connected digraph that is universally sta-

ble.6

6Here for simplicitywe are assuming simple paths. We can then

superimpose two unidirectional cycles on the same set of nodes and

have a universally stable network. These two unidirectional cycles

clearly do not interfere with each other and one can argue about

each cycle separately.

One can then establish the same facts for the

arbitrary capacity model and obtain:

Theorem 3.4. Let G be a universally stable

network in the unit capacity model. Then G

remains stable in the context of dynamic edge

capacities.

Proof Sketch. Using the idea of dummy

packets, it is easy to see that by modifying a

given scheduling rule so that it gives priority to

these dummy packets, we can assume that every

edge has a �xed (static) capacity c. We then

must show that the universal stability proofs for

DAGs and for the cycle can be generalized to

the case of a �xed static capacity c. The proof

is then completed following the characterization

of Goel [10]. We brie
y indicate how to modify

the DAG and cycle proofs:7

� For DAGs, we modify the function in

Theorem 1 of [7]. Let edge e have edges

f1; : : : ; fk entering the tail of e. For our

case, the inductive de�nition is then:

 (e) = maxf2c � w;Q0(e)g+
kX

i=1

 (fi):

The goal is to show that for all t = l �w � 0

and all e 2 G, we have

At(e) � (e)(3.1)

where At(e) denotes the number of packets

(not already absorbed) that have arrived by

time t and are eventually destined to cross

edge e. One then argues by induction on l

and by cases, according to whether or not

At�w(e) � c � w +
Pk

i=1 (fi).

7There are some minor di�erences in notation and in the

de�nitions of a rate 1 � � adversary as they appear in [7] and

[3]. The former paper incorporates the initial queues Q0(e) and

the latter paper dispenses with the notion of a window in favor of

an additive constant. For simplicity we will just indicate how to

modify the proofs as they appear in these papers.

� For the unidirectional cycle, we modify the

de�nition of the f function in the proof of

Theorem 3.7 of [3]. For our case, we need

f(j; T0) = Q+ c(b+ 1)(j � i0)

f(j; t) = Q�c��(t�T0)+c�(b+1)(1+j�i0)
for t > T0:

The goal is to show that for all applica-

ble pairs (j; t); Pj;t � f(j; t) where Pj;t de-

notes the number of packets (not already

absorbed) that have arrived by time t and

are eventually destined to cross edge j. Es-

sentially the c in the term c�(b+1)(1+j�i0)
is su�cient to modify the proof of Lemma

3.6 where one argues by cases depending on

whether or not c packets crossed edge j in

the past (t�T0) consecutive steps. The c in
the term c � �(t� T0) is needed for the rest

of the proof in Theorem 3.7.

4 Networks with Edge Slowdowns

We will now see that every universally stable

network remains universally stable when edges

can have slowdowns and this holds even for

dynamic edge slowdowns.

Theorem 4.1. Let G be a universally stable

network at every rate � < 1 in the standard

packet routing context. Consider any scheduling

rule S and any execution of the derived network

system (G0;S) in which the inputs are being gen-
erated by an adversary in the context of dynamic

edge slowdowns (see De�nition 2). Then the sys-

tem (G0;S) remains stable for all rates � < 1.

Proof. The idea is similar to Theorem 3.

Essentially we want to simulate the behavior

of the network system (G0;S) by a standard

packet routing system (G;S 0). We do so by

delaying (real) packets at a slow edge by using

newly injected dummy packets traversing that

edge alone. We give the dummy packets higher

priority in order to force the delay of the real

packets. This remains a greedy rule (call it S 0)
and hence we are assured stability for (G;S 0)
since G is universally stable.

More speci�cally, consider a rate � adversary

with window w for the network G0 with slow-

downs. To simplify the discussion let's �rst as-

sume that the edge slowdowns are static with

integer se � 1 being the slowdown of edge e.

Then in any window of w steps there are at

most w � �

se
packets injected that need to tra-

verse edge e. Consider an edge with slowdown

se � 2. Then during these w time steps there

are at least w � se��
se

steps in which no packets

are injected that need to traverse edge e. When

a packet P is ready to traverse edge e we �rst

inject se � 1 dummy packets that only need to

traverse edge e and which are given priority over

packet P . Then packet P completes its traversal

of e in se steps. The injection rate of the derived

adversary is still less than 1 (with the same win-

dow w) and hence we are indeed assured sta-

bility. The same proof applies to dynamically

changing slowdowns. When there is a packet P

ready to traverse edge e at time t, the adversary

injects ~se(t)� 1 dummy packets.

The idea in the above proof can be used to

show that certain scheduling rules remain uni-

versally stable in the context of (dynamically

changing) edge slowdowns. For example, con-

sider farthest to go (FTG) and any packet rout-

ing network G = (V;E). We can modify G so

that from every node v 2 V , there is a path �e

of length jV j+1 directed away from V . Now to

simulate a slowdown of ~se(t) on edge e at time

t, if a packet P wants traverse e, the adversary

injects
~se(t)�1
~se(t)

dummy packets that need to tra-

verse e and then �e. Since these dummy packets

have the farthest distance to go they have prior-

ity over P and hence delay P for ~se(t) steps.

For SIS and NTO the same idea (of insert-

ing dummy packets) can used and in these cases

we do not have to add extra edges since priority

of the dummy packets is ensured by the de�ni-

tion of the rule (assuming that dummy packets

have priority over real packets originating at the

same node. We thus have:

Theorem 4.2. SIS;NTO and FTG remain

universally stable in the context of dynamically

changing edge slowdowns.

This simple dummy packet idea does not

directly extend to the LIS rule. For static

edge slowdowns, we know that LIS remains

universally stable by the result of Tsaparas [12]

who shows that LIS remains universally stable

even in the context that for each edge and each

packet P , there is a given speed or alternatively

(since we are assuming a maximum speed) a

given slowdown se(P) de�ning the speed at

which P traverses e. However, the situation is

di�erent for LIS and dynamically changing edge

slowdowns as we now see.

Theorem 4.3. LIS is not � stable for dynam-

ically changing edge slowdowns for any � >
1

2(D�1
D

)
where D is the maximum slowdown al-

lowed.

Proof. The proof is quite similar to the proof of

Theorem 3.1. We again assume that the packets

are injected in stages and each stage consists of

two substages. At the start of a stage we now

assume that there is a set X of at least t packets

queued at node v4 that need to traverse edges

e4 or e04, followed by edges e1; e2. It su�ces to

show that at the end of the stage, more than

t packets will be queued at node v2 waiting to

traverse edges e2 or e
0
2 followed by edges e3 and

e4. Again, to simplify the proofs we avoid the

use of
oors and ceilings. Let � be the rate of

an adversary which sets the slowdowns of the

edges and injects packets as follows: Again to

simplify the proofs, we abuse the de�ntion of

a rate � adversary and ignore the fact that the

adversary must observe the \e�ective slowdown"

load condition. The justi�cation for this abuse

is that when t is su�ciently large (compared to

D), the adversary can utilize the full speed edges

(i.e. slowdown = 1) for almost all steps in the

phase.

1. For the �rst t steps, no edge has a slowdown

except edge e2 which has slowdown D.

During these t steps, the adversary injects

a set Y of � � t packets that need to traverse

the path e1; e
0
2; e3. By the nature of the LIS

rule, all of these Y packets are blocked by

the X packets. At the end of this substage,

there are (approximately) D�1
D

� t packets in
X that still need to traverse edge e2 and �t

packets in Y that need to traverse the path

e1; e
0
2; e3.

2. For the next D�1
D
�t steps no edge has a slow-

down except edge e02 which has slowdown D.

During these steps, the adversary injects a

set Z of �D�1
D
�t packets that need to traverse

the path e2; e3; e4. All the packets in Z will

be blocked by the X packets and because of

the slowdown in edge e02 there will still be

�D�1
D

� t packets in Y . Hence at the end of

this substage, we have jY j+ jZj � 2�D�1
D

�t.
For � > 1

2(D�1
D

)
, this number exceeds t. Note

that for D � 3, we can set � < 1.

5 Conclusions and Open Problems

We have shown that that LIS does not have the

dynamic stability properties of other universally

stable scheduling rules. We have also shown that

(for capacity invariant rules) universal stability

is preserved under static capacities, and (for

known rules) under static slowdowns. There are

many open problems that remain including the

following:

� Is there a natural de�nition of a \speed in-

variant" rule such that universal stability

of a speed invariant scheduling rule is pre-

served under static slowdowns?

� For a given network system (G;S), is sta-
bility preserved for either static capacities

or slowdowns?

� Can these stability preserving results be

extended to an asynchronous framework

(i.e. for arbitrary real valued speeds)?

Acknowledgements

We thank Eyal Kushilevitz and Yishay Mansour

for helpfull discussions in the initial stages of

this research. We also wish to thank Adi Ros�en

for pointing out an inaccurate de�nition in an

earlier version of the paper.

References

[1] W. Aiello, E. Kushilevitz, R. Ostro-

vsky, A. Ros�en Adaptive Packet Routing

for Bursty Adversarial Tra�c. In Proc. of the

30th Ann. ACM Symposium on the Theory of

Computing (STOC), 359-368, 1998.

[2] M. Andrews, B. Awerbuch,

A. Fern�andez, J. Kleinberg,

F.T. Leighton, Z. Liu. Universal Stability

Results for Greedy Contention-Resolution

Protocols. Proceedings of the Thirty-Seventh

Annual IEEE Symposium on Foundations of

Computer Science, 380{389, 1996.

[3] M. Andrews, B. Awerbuch,

A. Fern�andez, J. Kleinberg,

F.T. Leighton, Z. Liu. Universal Sta-

bility Results and Performance Bounds for

Greedy Contention-Resolution Protocols.

Journal version of [2]; to appear in JACM.

[4] M. Andrews Instability of FIFO in Ses-

sion Oriented Networks. Proceedings of the

Eleventh Annual ACM-SIAM Symposium on

Discrete Algorithms, Jan, 2000.

[5] M. Andrews and L. Zhang The Ef-

fects of Temporary Sessions on Network Per-

formance. Proceedings of the Eleventh An-

nual ACM-SIAM Symposium on Discrete Al-

gorithms, Jan, 2000.

[6] A. Borodin, J. Kleinberg, P. Raghavan,

M. Sudan, and D. Williamson. Adver-

sarial Queueing Theory. Proceedings of the

Twenty{Eighth Annual ACM Symposium on

Theory of Computing, 376-385, 1996.

[7] A. Borodin, J. Kleinberg, P. Raghavan,

M. Sudan, and D. Williamson. Adversar-

ial Queueing Theory. Journal version of [6];

to appear in JACM.

[8] D. Gamarnik. Stability of Adversarial

Queues via Fluid Models. Proceedings of the

39th Symposium on the Foundations of Com-

puter Science, 60-70, 1998.

[9] D. Gamarnik. Stability of Adaptive and

Non-Adaptive packet Rounting Policies in Ad-

versarial Queuing Networks. Proceedings of

the Thirty{First Annual ACM Symposium on

Theory of Computing, 206-214, 1999.

[10] A. Goel. Stability of Networks and Protocols

in the Adversarial Queueing Model for Packet

Routing. Stanford University Technical Note

STAN-CS-TN-97-59, June 1997.

[11] R. Motwani and P. Raghavan Random-

ized Algorithms. Cambridge University Press,

1995.

[12] P. Tsaparas. Stability in Adversarial Queue-

ing Theory M.Sc Thesis, Department of Com-

puter Science, University of Toronto, 1997.

