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Abstract

One of the central problems in information retrieval,

data mining, computational biology, statistical analy-

sis, computer vision, geographic analysis, pattern recog-

nition, distributed protocols is the question of classi�-

cation of data according to some clustering rule. Of-

ten the data is noisy and even approximate classi�ca-

tion is of extreme importance. The di�culty of such

classi�cation stems from the fact that usually the data

has many incomparable attributes, and often results in

the question of clustering problems in high dimensional

spaces. Since they require measuring distance between

every pair of data points, standard algorithms for com-

puting the exact clustering solutions use quadratic or

\nearly quadratic" running time; i.e., O(dn2��(d)) time

where n is the number of data points, d is the dimen-
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sion of the space and �(d) approaches 0 as d grows. In

this paper, we show (for three fairly natural clustering

rules) that computing an approximate solution can be

done much more e�ciently. More speci�cally, for ag-

glomerative clustering (used, for example, in the Alta

Vistatm search engine), for the clustering de�ned by

sparse partitions, and for a clustering based on mini-

mum spanning trees we derive randomized (1 + �) ap-

proximation algorithms with running times O(d2n2�
)

where 
 > 0 depends only on the approximation pa-

rameter � and is independent of the dimension d.

1 Introduction

Clustering of data is an essential ingredient in many in-

formation retrieval systems (e.g., for building and main-

taining taxonomies), and plays a central role in statis-

tics, pattern recognition, biology, web search engines,

distributed networks, and other �elds. Recently, the

concept of clustering has taken on some added signi�-

cance as researchers have begun to view \data mining"

as a question of �nding \hidden clusters" in large col-

lections of data. (For a survey of clustering methods

see [18, 7] and references therein.) Informally, cluster-

ing algorithms attempt to form groups of similar ob-

jects into clusters based on the attributes of these ob-

jects. The question as to how best to de�ne \the cluster-

ing problem" seems to be particularly di�cult in large

unstructured databases whose members are viewed as

points in some high dimensional vector space.

The most successful formulations of clustering seem

to be graph-theoretic formulations, providing results

which have the best agreement with humanperformance



[13]. In this formulation, the main ingredient of graph-

theoretic clustering can be stated as follows: given n

data points in some metric space, do the following: (1)

compute some spanning graph (such as the complete

graph, or a minimumspanning tree) of the original data

set; (2) Delete (in parallel) some edges of this graph (ac-

cording to some criterion, such as distance); (3) output

clustering (such as connected components or some par-

titioning of the nodes which depends on the topology)

of the resulting graph.

For a more concrete example, consider the frame-

work of hierarchical clustering where data points are

joined into sets of objects, called clusters, with the prop-

erty that any two sets are either disjoint or nested.

In the agglomerative approach to hierarchical cluster-

ing, clusters are joined to form larger clusters based on

the distance between the clusters. That is, all clusters

with inter-cluster distance below a certain threshold are

joined to form bigger clusters and so on. The distance

between clusters can be de�ned in a number of ways. A

simple and common choice is to compute the distance

between the centroids of the clusters. Examples for ap-

plications that use such clustering rules include meth-

ods for determining consensus in biological sequencing

data, and the mutual fragments heuristic for computing

traveling salesman tours, see Eppstein [7]. (A more gen-

eral choice of distance function is the so-called single-

linkage distance, where the distance between clusters

is the minimum distance between a point in one clus-

ter and a point in the other cluster. Of course, mea-

suring the distance between centroids, as well as other

choices for a distance function, can be formulated as a

single-linkage distance between cluster representatives;

i.e., sets of points that replace the clusters.)

In this formulation, the core task for computing an

agglomerative clustering is the following: Start with a

complete weighted graph on the data set (points, or

cluster representatives). Delete edges whose weight ex-

ceeds some given absolute bound, then output the con-

nected components of the resulting graph. In addition

to the afore-mentioned application to hierarchical clus-

tering, this graph-theoretic clustering is used by the

Alta Vistatm search engine in order to prune identical

documents from its world-wide web database [4]. We

shall refer to it, somewhat imprecisely, as agglomera-

tive clustering.

A second type of clustering with many applications

in distributed computing (e.g., for routing tables, load

balancing, �le allocation) is de�ned by the sparse par-

titions of Awerbuch and Peleg [1]. Roughly speaking,

in our setting it says that given n points and a distance

r, as above de�ne a graph where two points are adja-

cent if they are at (weighted) distance r or less. Nodes

must be partitioned into a collection of possibly overlap-

ping clusters. The constraints on the clusters are that

(i) the (unweighted graph theoretic) diameter of each

each cluster is small (a typical value is O(logn)); (ii)

the clusters belong to a small number (again a typical

number is O(logn)) of color classes, so that the clusters

within each class are disjoint and, (iii) for every point

x, x and all its neighbors are contained entirely in at

least one cluster. Notice that this type of clustering is

not hierarchical, as clusters (from di�erent classes) may

overlap.

A third type of clustering requires computing a mini-

mumspanning tree (MST), so we call it MST-clustering.

The clusters are the connected components of the forest

that results from eliminating edges in the MST whose

length exceeds a given parameter. Exact MST-clustering

is equivalent to exact agglomerative clustering. It is

not hard to see, however, that the approximate versions

may di�er substantially (because the approximation of

MST is with respect to the total length of edges, and

not with respect to the length of each edge separately).

We remark that MST can be used as a subroutine for

a variety of clustering methods.

We study all these clustering problems for points in

d dimensional Euclidean space. (Our results extend to

other norms, we leave that to the full version of the

paper.) This is a natural setting for applications to in-

formation retrieval and data mining. The main issue

we address is the following: A naive approach for any

one of these problems (in high dimension) is to compute

the distances among all pairs of points, and then execute

any of the above clustering rules on the resulting graph.

Of course, this naive approach has quadratic (in n) or

worse time complexity. Can this quadratic behavior be

avoided? This is the context in which similar problems,

such as minimum spanning tree or closest pair, have

been studied in computational geometry (see [9]), but



often the solutions are better than quadratic for low di-

mensions only. For example, Yao [19] shows that MST

can be computed in subquadratic time but the expo-

nent is rapidly converging to 2 as the dimension grows.

However, recent work on another geometric problem

| nearest neighbor search (NNS) | shows that per-

formance degradation as the dimension increases can

be avoided if an approximation to the distances is al-

lowed [14, 10, 15].

We therefore focus on approximate versions of the

agglomerative and MST clustering problems. In most

applications, the choice of both distances and the clus-

tering rule is done on a heuristic basis, so approximate

clustering is quite su�cient. The problem of sparse

partition clustering already contains a certain degree

of approximation implicit in the use of the \big Oh"

notation and our methods can be used to derive im-

proved bounds for the \exact problem" as de�ned with

the understanding that the \big Oh" hides a factor of

1 + �. (For uniformity, we refer to our sparse partition

algorithm as an approximation algorithm.) For all of

the above problems and for any (approximation factor)

�, we derive clustering algorithms with time complexity
~O(d2n2�
) for 
 > 0 which depends only on �. (The ~O

notation also hides factors of logn.) Our subquadratic

algorithms use some of the recent results on approxi-

mate NNS. In particular, we use modi�ed versions of

the algorithms and data structures of Kushilevitz et

al. [15]. One of the di�culties in obtaining our results

is that these NNS algorithms are randomized, and their

probabilistic guarantees are not strong enough to al-

low a simple high-probability successful termination of

the clustering algorithms (without requiring quadratic

or worse running time). We note that Indyk and Mot-

wani [10] suggest that their NNS algorithms can be used

to derive subquadratic 2 + � approximations for some

of the problems mentioned here. Subsequent to the ac-

ceptance of this paper, they informed us that the full

version of their paper [11] explicitly states an improved

approximation guarantee of 1 + �, as well as mention-

ing applications of approximate nearest neighbor algo-

rithms to additional problems, including the approxi-

mate MST computation.

Once we are willing to settle for approximate solu-

tions we can appeal to the dimension reduction tech-

niques of Johnson and Lindenstrauss [12] (see also [8,

16, 10]). Simply stated, any n points in Euclidean space

of any dimension d can be probabilistically mapped to

an O(logn=�2) dimensional space so that no distance

is increased and (with high probability) no distance

shrinks by more than a 1 + � factor and this mapping

has time complexity O(dn logn=�2). It follows that for

all the approximate clustering algorithms we consider,

we can assume that d = O(logn). However, for the

sake of completeness (and because the dependence on

d is interesting even for \small" d), we state all results

in terms of d and n as well as the approximation factor

�.

The naive approach to clustering in Euclidean space

is to �rst compute all
�
n

2

�
distances, and then apply a

clustering algorithm to the resulting weighted complete

graph. For agglomerative clustering, (with standard im-

plementations of a connected components algorithm)

this naive approach would require O(n2) time. Broder,

Glassman, Manasse, and Zweig [4] give a heuristic used

in Alta Vistatm that seems to give good running time

in practice, but requires quadratic time in the worst

case.

For sparse partitions Awerbuch and Peleg [1] give

a polynomial time algorithm (in the number of edges).

In the naive approach, we have a weighted complete

graph, where all
�
n

2

�
edges are present. The following

bounds are stated for this setting. Linial and Saks [17]

yield a randomized ~O(n2) time algorithm (where the
~O notation hides polylog(n) factors). The best result

to date for the above setting (on a complete graph) is

the deterministic ~O(n2) algorithm of Awerbuch, Berger,

Cowen and Peleg [2].

The bottleneck for MST-clustering is computing the

MST. We show how to apply the agglomerative clus-

tering algorithm to derive a subquadratic approximate

Euclidean minimum spanning tree (MST) algorithm.

Sollin (see in [3]) shows how to reduce the MST problem

to a problem similar to exact NNS. Yao [19] gives an-

other reduction, and uses it to give a subquadratic algo-

rithm for (exact) MST in low dimension. (Yao mentions

obtaining a fast approximateMST algorithmas an open

problem.) Yao's reduction seems speci�c to exact NNS,

whereas Sollin's may be adapted to approximate NNS,

though it is not clear how to overcome the probabilistic



guarantees problem without resorting to our methods.

The reduction of Yao yields an MST algorithm with

time complexity O(n2�2�d+1 (logn)1�2�d+1 ). (This is

somewhat better than what would result from using

Yao's algorithm with Sollin's reduction.) Chazelle [6]

improves this bound further, still the bound approaches

quadratic behavior as the dimension grows. Notice that

dimension reduction techniques cannot guarantee low

distortion unless the dimension reduces to 
(logn), for

which Chazelle's algorithm is still quadratic.

We also brie
y indicate some other applications of

our methods and algorithms to traditional computa-

tional geometry problems, for example a subquadratic

algorithm for the Euclidean closest pair problem. The

problem has many applications; for a full history see

Cohen and Lewis [5] and Eppstein[7] and references

therein. Kleinberg [14] uses his approximate NNS re-

sults to get an approximate closest pair algorithm with

O((n2 + dn logn)=�2) running time (thus eliminating

the dependency on the dimension for d � n= logn). We

show how to solve approximate closest pair (and ap-

proximate furthest pair) problems in subquadratic time

for all d.

2 Preliminaries

We denote by Ed the d dimensional Euclidean space;

i.e., IRd with the metric induced by the L2 norm.

An �-approximate �-proximity table for a �nite set

P � Ed is a data structure supporting the following

operations

� construct(P ), which creates a new instance of

the data structure for P � Ed; this data struc-

ture consists of jP jO(1) \entries", where O(1) may

depend on �.

� neighbors(x), for any x 2 Ed, which returns a

subset P 0 � P (obtained from one of the above

entries) containing all the points in P within dis-

tance � of x, and perhaps some additional points

of P within distance (1 + �)� of x. (Notice that

there may be several possible correct answers to

neighbors.)

An e�cient construction of an �-approximate�-proximity

table lies at the heart of our results. We can get such

a construction by adapting the approximate nearest

neighbor search algorithm of [15]. These results pro-

vide the following guarantee:

Lemma 1. For every � > 0 and every � > 0 there

exists c > 0 such that there is a randomized implemen-

tation of an �-approximate �-proximity tables with the

following properties:

1. construct takes T (jP j) = jP jc=�
2

arithmetic op-

erations;

2. neighbors takes q(jP j) = c��2d2 log jP j opera-

tions;

3. for any x 2 Ed, the probability that an entry, and

hence neighbors(x), returns an incorrect list is

at most jP j��.

We also need to apply frequently a union/�nd algo-

rithm. For our purposes it is su�cient to assume simply

(say using balanced trees) that any union or �nd opera-

tion in a universe of n elements can be performed within

g(n) = O(logn) steps.

We also need to call approximate nearest (and fur-

thest) neighbor algorithms1 of [15]. These algorithms

work for all queries and all distances. In particular, an

�-ANN/�-AFN table for a �nite set P � Ed is a data

structure supporting the following operations

� construct-ANN/construct-AFN(P ),

which creates a new instance of the data struc-

ture for P � Ed; this data structure consists of

jP jO(1) \entries", where O(1) may depend on �,

and every entry contains either a single element of

P or a symbol indicating that the entry is empty.

� closest(x), for any x 2 Ed, which returns a point

in P (contained in one of the entries), whose dis-

tance from x is at most 1 + � times the minimum

distance of a point in P from x.

� furthest(x), for any x 2 Ed, which returns a

point in P (contained in one of the entries), whose

distance from x is at least 1�� times the maximum

distance of a point in P from x.

1The algorithms of [15] are easily adapted to �nding furthest

neighbors.



An e�cient construction of an �-ANN/�-AFN ta-

ble is easily constructed from the approximate nearest

neighbor search algorithm of [15]. These results provide

the following guarantee:

Lemma 2. For every � > 0 and every � > 0 there

exists c > 0 such that there is a randomized imple-

mentation of an �-ANN/�-AFN table with the following

properties:

1. construct-ANN/construct-AFN

takes T (jP j) = jP jc=�
2

arithmetic operations;

2. closest takes ~O(��2d2) operations;

3. furthest takes ~O(��2d2) operations;

4. for any x 2 Ed, the probability that closest(x)

or furthest(x) returns an incorrect answer is at

most jP j��.

3 Agglomerative Clustering

In this section we discuss the following clustering prob-

lem: Given a set P � Ed of n points and � > 0,

partition P into the connected components of the fol-

lowing graph GP;�. The graph GP;� has node set P

and an edge connecting every pair of nodes at distance

� or less. In the approximate version of the problem,

we are given an additional parameter �, and the graph

GP;� is replaced by a graph GP;�;�. The graph GP;�;�

has the same node set as GP;�. Its edge set contains

all the edges of GP;�. In addition, it may contain edges

connecting pairs of nodes at distance greater than �,

but no greater than (1 + �)�. (Notice that the choice

of GP;�;� is not necessarily unique | any such graph

gives a correct solution to the approximate problem.)

We remark that in addition to separating the graph

into connected components, our algorithm can be eas-

ily modi�ed to output a witness spanning tree for each

component.

The algorithm. We maintain a union/�nd structure

with element set P and a multigraph G(P;E), repre-

sented by the adjacency list for each node. In addi-

tion, we maintain several proximity tables for subsets

of P . We set � = 1 in Lemma 1 and let c > 0 be the

Partition P arbitrarily into n1�� sets

P1, P2, : : :, of size n
� each;

Initialize E  ;;

Repeat k times:

Initialize the union/�nd structure

(each element is a set);

For each i = 1; 2; : : : ; n1��:

T  construct(Pi);

Mark each entry in T by 0;

For each node x 2 P :

L neighbors(x); (say L = fy1; y2; : : :g)

If L = ;, skip x;

If L is marked 1 and dist(x; y1) � (1 + �)�,

union(x,y1), E  E [ f(x; y1)g;

If L is marked by 0 and 8i, dist(x; yi) � (1 + �)�,

8i, union(x,yi), E  E [ f(x; yi)g;

Mark L by 1.

Figure 1: The agglomerative clustering algorithm.

constant guaranteed by Lemma 1 Set � = �2=2c and

k = 2=� = 4c=�2.

The algorithm is shown in Figure 1.

At the end of the algorithm, the desired partition of

P into clusters is the partition of the (sparse) graph G

constructed by the algorithm into its connected compo-

nents.

Notation. Let x 2 IRd and let ` > 0. Denote by

B(x; `) the closed ball around x with radius `; i.e., the

set fy 2 IRd j kx� yk2 � `g.

Correctness. The correctness of the algorithm is an

immediate corollary of the following claim:

Claim 3.

1. With high probability, (i.e., � 1�n��) every node

u 2 P is in the same connected component as all

the nodes in B(u;�).

2. If u; v 2 P are in the same connected component

of G, then there is a sequence of nodes u = v0,

v1, : : :, vt = v, such that for all i = 1; 2; : : :; t,

dist(vi�1; vi) � (1 + �)�.



Proof : To see (1), consider an n�-subset Pi of P

used by the algorithm and let u be some point in P .

Let Ei be the event that u retrieves a proximity ta-

ble entry containing all of B(u;�) \ Pi and none of

B(u; (1 + �)�) \ Pi (call such an entry good). Pr[Ei] �

pk, where p is the failure probability of a query. Thus

p � n��, so pk � n�2. We have n nodes and n1��

sets Pi, so with high probability every event Ei hap-

pens. Now, if Ei happens and u retrieves a good entry

marked by 0, then we connect u to all the nodes in that

entry. Otherwise (the entry is marked 1), there is an-

other node v connected to all the nodes in the entry,

and u connects to one of the nodes of the entry.

For (2), use induction on the number of union op-

erations performed. Consider a union(x,y) operation

which joins two components C1 3 x, C2 3 y. The

only case which does not follow from the induction hy-

pothesis is u 2 C1 and v 2 C2. But by the induc-

tion hypothesis, there is a sequence u = v0, v1, : : :,

vs = x, and another sequence y = vs+1, vs+2, : : :,

vt = v, such that for every i 6= s + 1, 1 � i � t,

dist(vi�1; vi) � (1 + �)�. By the speci�cation of the

algorithm, dist(vs; vs+1) = dist(x; y) � (1 + �)�.

Analysis. We analyze the complexity of one iteration

of the outer \Repeat loop" and then multiplyby k to ob-

tain the total running time. For simplicity we suppress

the in
uence of c and � in the bigOh notation. The time

complexity of the \Repeat loop" is upper bounded by

the sum

D +N + B +G+ U;

where D is the cost of building the n1�� proximity ta-

bles, N is the minimum search cost for the nodes (i.e.,

assuming they retrieve entries marked 1 only), B is the

cost for retrieving bad entries, G is the cost induced by

retrievals of good 0-marked entries, and U is the cost

of performing union/�nd. We analyze each term sepa-

rately.

Claim 4. Let � = 1 and let c = c(�) be the constant

from Lemma 1. Let g(n) = O(logn) be the worst case

cost of a union/�nd algorithm. Then,

D = n1��T (n�) = o(n3=2)

N = n2��
�
q(n�) + d

�
= O(d2n2��

2
=2c logn)

E[B] = n2��d = O(dn2��
2
=2c)

G = nT (n�)d = O(dn3=2)

U = g(n)
�
n2�� + nT (n�)

�
= O(n2��

2
=2c logn)

Proof :

� For D: In each iteration we have to construct n1��

proximity tables, each for n� points. The construc-

tion of each table takes T (n�) steps.

� For N : In each iteration we process each of the

n points. Each point requires a search in n1��

proximity tables. The search in each proximity

table takes q(n�) time. If the retrieved entry is

not empty and is marked 1, there is an additional

cost of O(d) to compute the distance to the �rst

point on the list.

� For B: In each iteration we access n1�� proximity

tables, searching for n points in each table. For

each table, for each point, the probability that

the point retrieves a bad entry is at most
�
n��

�
.

Therefore the expected number of bad entries han-

dled in each proximity table is at most n1��. For

each bad entry, we may have to compute the dis-

tance to all the points in the table. This costs

O(n�d).

� For G: In each iteration we handle n1�� proximity

tables. Each table has at most T (n�) entries. An

entry is accessed as a good entry that is marked

0 at most once. If this happens, we compute the

distances to all the points listed, at most n�. Each

distance costs O(d).

� For U : The bound follows from an estimate on

the total number of union operations performed.

In each iteration we handle n1�� proximity table.

Each proximity table is accessed by n points. If

a point retrieves an entry marked 1, it causes at

most one union operation, so there are at most n

such operations per table. Good entries marked 0

cause at most n� union operations. For each entry

we do this at most once. Thus, the number of these

union operations per table is at most n�T (n�).



Theorem 5. The total running time of the agglomer-

ative clustering algorithm is O(d2n2��
2
=2c logn)

4 Sparse Partitions

In this section we discuss computing a sparse parti-

tion clustering of a �nite set of points P � Ed, P =

fx1; : : : ; xng. Our de�nition of sparse partitions is the

Euclidean analogue of the de�nitions given in [1], [2]

and [17] for undirected graphs where in those papers

distance refers to path length.

A sparse partition C of P (with parameter r > 0), is

a collection of subsets (called clusters) S1; S2; : : : ; Sm �

P satisfying the following conditions:

1. The (Euclidean) diameter of each cluster Si is at

most O(r logn).

2. For every x 2 P , P \ B(x; r) is contained com-

pletely in at least one of the clusters where B(x; r)

is the Euclidean ball of radius r centered at x.

3. The clusters can be grouped into O(logn) classes,

so that the clusters in each class are disjoint. (It

follows that for each x 2 P , there are at most

O(logn) clusters containing x.) Furthermore, the

distance between any two clusters in the same class

is greater than r; that is, if clusters Si and Sj are

in the same class with x 2 Si and y 2 Sj , then

the Euclidean distance between x and y is greater

than r.

(The original de�nition of sparse partitions is more gen-

eral in that it allows tradeo�s between the values in

conditions 1 and 3. The de�nition here uses the most

common values in applications. Our results extend to

these general tradeo�s.)

The algorithm. As in [17], we run O(logn) phases. In

each phase we grow a new class (of clusters) which con-

tains a constant fraction of all the nodes. In a phase,

the status of each node is either free or used (initially

in a phase, all nodes are free). We grow a cluster

by picking a free node and adding its free neigh-

bors in a breadth �rst search manner, stopping at a

distance chosen at random using the truncated geomet-

ric distribution of [17] (i.e., choose the distance to be i

Repeat O(log n) times:

Initialize proximity tables (see below);

Mark all x 2 P as free;

Choose at random i 2 f1; 2; : : : ; 2 log ng

with geometric truncated distribution;

While there is a free node x 2 P :

Initialize a new cluster S  ;;

Mark node x as used

Initialize F  fxg, F 0  ;;

For i steps do:

For each y 2 F :

For each free z 2 ~B(y; r):

F 0  F 0 [ fzg;

mark z as used;

S  S [ F , F  F 0, F 0  ;

Figure 2: The sparse partitions algorithm.

with probability 2�i, for i ranging from 1 to 2 logn�2,

and with probability 2�2 logn+1, for i = 2 logn � 1 or

i = 2 logn). The main di�erence with [17] is in our

implementation of the breadth �rst search, which ex-

ploits the underlying structure of the graph, giving the

speedup in the running time. In particular, we need

to be able (with high probability) to determine all so

far free r-neighborhood points in an approximate ball
~B(y; r) centered at y of radius r which contains B(y; r)

and may also include some (so far free) points in the

slightly larger ball B(y; (1 + �)r). A more formal de-

scription of the algorithm appears in Figure 2.

Computing neighbors. We compute the set ~B(y; r)

using the proximity tables that are initialized at the be-

ginning of the phase. We �rst explain the initialization:

Let � and k be as in the previous section. We partition

P into n1�� disjoint sets of size n� each. For each set

we construct k independent �-approximate r-proximity

tables. We also mark all the entries in all the tables by

0. This completes the initialization. We construct the

set ~B(y; r) as follows: We fetch neighbors(y) in each

of the kn1�� tables. Let L1; L2; : : : ; Lkn1�� be the re-

sulting lists. We ignore all lists marked by 1. For every

list L marked 0 we compute dist(y; z), for all z 2 L. If

any point in L is further from y than (1 + �)r, we leave

L marked by 0. Otherwise we add the elements of L to



~B(y; r) and mark L by 1.

Correctness. Here we prove that the above algorithm

indeed produces the desired sparse partition clustering

with high probability. The main issue is to show that
~B(y; r) is computed correctly. The rest of the argument

follows in general the line of argument in [17]. The

added di�culty is that because we have approximate

distances only, proximity between points is no longer a

symmetric property.

Claim 6. With probability2 at least 19
20

the following

holds for every y 2 P : If the algorithm computes ~B(y; r)

then this set contains all the points in B(y; r) that are

still free, and none of the points in B(y; (1 + �)r).

Proof : The latter claim is obvious because the al-

gorithm checks the distances to the points it adds to
~B(y; r). To see the former claim, we argue as in the

proof of Claim 4 that the probability that the good

entries retrieved by y do not contain all the points in

B(y; r) is at most n�2, and therefore the probability

that this happens for any y is at most n�1. Finally,

notice that if an entry is marked 1, then the status of

all the points listed in the entry (in the current phase)

is used.

Claim 7. Consider any particular phase. Let y 2 P

be the �rst point in B(x; r) that is placed in F in that

phase. If y is placed in F just before the execution of

iteration j � 2 logn�2 of the \For" loop of that phase,

then B(x; r) is contained in a cluster generated in the

phase with probability at least 1
5
.

Proof : Let Fj be the set of points in B(x; r) that are

in F at the start of iteration j; that is, if j > 1 these

are the points that were placed in F 0 during iteration

j � 1. Assume for the moment that x 62 Fj . Clearly,

y 2 Fj � F . Moreover, at the start of the jth iteration,

all the points in B(x; r) n Fj (and in particular x) are

free. As the jth iteration is executed, we know that

i � j. Given that i � j, and that j � 2 logn � 2,

the conditional probability that i � j + 2 is 1
4
. So

assume that the event i � j + 2 holds, and further

assume that the event in Claim 6 holds. This happens

2The choice of constant is arbitrary

with probability at least 1
4
� 1

20
= 1

5
. As y 2 B(x; r),

dist(y; x) � r. Therefore, x 2 B(y; r) � ~B(y; r), and x

is placed in F 0 during the jth iteration (by Claim 6).

Let Fj+1 be the set of points in B(x; r) that are placed

in F 0 during the jth iteration. At the end of the jth

iteration, all the points in Fj are added to the cluster S,

and all the points in F 0 are placed in F . In particular,

x is placed in F , and so are all the other points in Fj+1.

We have assumed that i � j+2. Therefore iteration j+1

is executed. Notice that at the start of this iteration, the

points in B(x; r) n (Fj [ Fj+1) are free. Denote these

points by Fj+2. As x 2 F , during iteration j + 1 the

free points in ~B(x; r) are placed in F 0. These include

all the points of Fj+2. At the end of iteration j+1, the

points in F , and in particular the points of Fj+1, are

placed in the cluster S. The points in F 0, in particular

all of Fj+2 are placed in F . As we are assuming that

iteration j + 2 is executed as well, at the end of that

iteration the points of Fj+2 are placed in the cluster S.

Because Fj [ Fj+1 [ Fj+2 are all the points in B(x; r),

the claim follows. If x 2 Fj then a similar argument

shows that S will contain all the points in B(x; r) with

even larger probability.

Claim 8. Consider any particular phase. 8x, the prob-

ability that the �rst y 2 B(x; r) to be clustered is

reached in the last two iterations of the main loop for

that phase is 4
n2
.

Proof : i is chosen once each phase, and the probability

that i > 2 logn� 2 is 4
n2
.

The above claims imply

Theorem 9. With high probability the algorithmpro-

duces a sparse partitioning clustering with parameter r.

Proof : By Claims 7 and 8, for every point x 2 P ,

the following holds. In any phase, the probability that

B(x; r) \ P is completely contained in a cluster gener-

ated in that phase is a bit below 1
5
, but clearly more

than, say 1
6
. Thus, after O(logn) phases, with high

probability this property holds for all points x. The

bound on the diameters of the clusters follows from

the choice of i. The bound on the number of clusters

containing a point follows from the fact that there are

O(logn) iterations, and each iteration generates a col-

lection of disjoint clusters.



Analysis. Let � and k be as described in the implemen-

tation. The time complexity for a phase in the above

algorithm is (similar to agglomerative clustering) upper

bounded by the sum

D +N + B +G+ U;

where D is the cost of building the kn1�� logn r-proximity

tables, N is the minimum search cost for ~B(y; r) (i.e.

cost of retrieving all the pointers only), B is the cost

for retrieving entries that are marked 0, but which con-

tain points further then (1 + �)r, G is the cost induced

by retrievals of good 0-marked entries (i.e. such that

all are at distance within (1 + �)r, and U is the cost

of performing set unions. Again, we analyze each cost

separately.

Claim 10. Let � = 1 and let c = c(�) be the constant

from Lemma 1. Then,

D = o(kn3=2 logn)

N = O(kd2n2�� log2 n)

E[B] = O(kn2��d logn)

G = O(kn3=2 logn)

U = O(n2�� log2 n):

Proof : Analogous to Lemma 4.

Theorem 11. The total running time of the sparse

partitions algorithm is O(d2n2��
2
=2c log2 n)

5 Computing an approximate MST and other re-

lated problems

In this section we discuss several other geometric prob-

lems that can be approximated in subquadratic time

using our methods. First, we consider the problems of

computing a 1 + � appoximation to the closest and to

the furthest pair of points, an application also consid-

ered by Kleinberg [14]. We have the following result:

Lemma 12. For each constant � there exists � > 0

(the same � as in agglomerative clustering) so that in

time ~O(d2n2��) we can compute w.h.p. a pair of points

which are within a factor 1 + � of the distance of the

closest (or furthest) pair of points.

Proof sketch : The idea is to partition the set P

into n1�� subsets of size n� each, as before. For each

subset we build an �-ANN (or an �-AFN) data structure.

We then search each of the structures for each point in

P . By repeating the search several times and taking

the best answer, we can reduce the error probability

su�ciently.

We now consider the problem of computing an ap-

proximate minimum spanning tree (MST).

Lemma 13. For each constant � there exists � so that

we can compute w.h.p. a (1 + �)-approximation to the

minimum spanning tree in time ~O(d2n2��).

Proof sketch : The idea here is to iterate over several

computations of agglomerative clustering, each time re-

duing the parameter � by a factor of about 1+�. Notice

that our agglomerative clustering algorithm outputs a

sparse graph G as a witness to the connectivity of each

cluster. We use such a witness here (i.e., a \black-

box" agglomerative clustering algorithm that outputs

the partition into clusters alone is insu�cient). When-

ever a cluster in one iteration is split in the next, we

add to the growing forest edges connecting the current

fragments of the cluster. These edges are taken from

the graph G computed in the previous iteration. (No-

tice that the graph in the current iteration may di�er

from the the graph in the previous iteration.) We add

edges of G, that do not connect two points that are

currently also in the same cluster, and do not close a

cycle. (Because G is sparse enough, we can check all its

edges.)

We can begin with any � which on the one hand

guarantees a single cluster, and on the oher hand is not

too big (close enough to a lower bound on the MST).

For example, we can take 1 + � times the result of an

approximate furthest pair search. We can stop when

� reaches a value small enough to allow us to take the

remaining connections as we please. Because an MST

contains n�1 edges, a value of about �=n times the ini-

tial value of � is su�cient (recall that the initial value

is close to a lower bound on the MST). Thus, the num-

ber of agglomerative clustering computations, for �xed

�, is O(logn).

As mentioned previously, we can now use such an

approximate MST and any threshold value � as the ba-



sis for approximate MST clustering by deleting from the

MST any edges of distance larger than � and viewing

the resulting components as clusters. We note that this

MST clustering might be di�erent from an approximate

agglomerative clustering using the same parameter �.
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