Conditional Oblivious Transfer
and Timed-Release Encryption

Giovanni Di Crescenzo', Rafail Ostrovsky?, and S. Rajagopalan?

! Computer Science Department, University of California San Diego,
La Jolla, CA, 92093-0114. E-mail: giovanni@cs.ucsd.edu
Work done while at Bellcore.

2 Bell Communications Research,

445 South Street, Morristown, NJ, 07960-6438, USA.
E-mail: {rafail,sraj}@bellcore.com

Abstract. We consider the problem of sending messages “into the fu-
ture.” Previous constructions for this task were either based on heuristic
assumptions or did not provide anonymity to the sender of the message.
In the public-key setting, we present an efficient and secure timed-release
encryption scheme using a “time server” which inputs the current time
into the system. The server has to only interact with the receiver and
never learns the sender’s identity. The scheme’s computational and com-
municational cost per request are only logarithmic in the time parameter.
The construction of our scheme is based on a novel cryptographic prim-
itive: a variant of oblivious transfer which we call conditional oblivious
transfer. We define this primitive (which may be of independent interest)
and show an efficient construction for an instance of this new primitive
based on the quadratic residuosity assumption.

1 Introduction

Time is a critical aspect of many applications in distributed computer systems
and networks. Among other things, time 1s used to co-ordinate remote actions,
to guarantee and monitor services, and to create linear order in some distributed
transactions systems. Roughly speaking, applications of time in distributed sys-
tems fall in two categories: those that use relative time between events (e.g. one
hour from the last reboot) and those that use absolute time (e.g. 0900 hours, May
2, 1999 GMT). We can concentrate on the second category as relative timing
can be implemented using absolute time but not vice-versa. While the existence
of a common view of current time 1s essential in systems that use absolute time,
it is generally hard to implement in a distributed system — either the local clock
1s assumed to be an acceptable approximation of the universal time or there is
a central time “server” that is available whenever needed and local clocks are
periodically synchronized [24]. In some cases, the trustworthiness of the time
server may be an issue as adversarial programs may try to change the value of
the local clock or spoof a network clock to their advantage and this may have an
unacceptable negative effect on the system. Such problems can be solved using

2 G. Di Crescenzo, R. Ostrovsky, and S. Rajagopalan

authentication mechanisms as long as the applications only need the current
time (or to be more accurate, the “latest time”). There are many applications
that depend on a common assumption of an absolute time that is in the future,
where, say, the opening of a document before a specified time is unacceptable.
An example is the Internet programming contest where teams located all over
the world need to be given access to the challenge problems at a certain time.
Another example may be in trading stocks: suppose one wants to send an e-mail
message from their laptop computer to a broker to sell a stock at a particular
time in the future. The broker should not be able to see the message before that
time and gain an unfair advantage, and yet one cannot rely on a service such
as e-mail to work correctly and expeditiously if the message was sent exactly on
release-time. The essence of the problem is this: the message has to be sent early
but the broker should not be able to read the message before the release-time.
Also, it would be preferable from a security perspective if the time server never
learns the identity of the sender of the message.

The act of encrypting a document so that it cannot be read before a release-
time has been called “sending information in to the future” or timed-release
cryptography by May [22]. Rivest, Shamir and Wagner [27] give a number of
applications for timed-release cryptography: electronic actions, sealed bids and
chess moves, release of documents (like memoirs) over time, payment schedules,
press releases, etc. Bellare and Goldwasser [2] propose that timed release may
also be used in key escrow: they suggest that the delayed release of escrowed keys
may be a suitable deterrent in some contexts to the possible abuse of escrow.

Prior techniques: There are two main approaches suggested in the literature:
the first one is based on so-called “time-lock puzzles,” and the second one is based
on trusted “time-servers.” Time-lock puzzles were first suggested by Merkle [23]
and extended by Rivest et al. [27]. The idea is that the time to recover a secret
is given by the minimum computational effort needed by any machine, serial or
parallel, to perform some computation which enables one to recover the secret.
This approach has the interesting feature of not requiring any third party or
trust assumption. On the other hand, it escapes a formal proof that a certain
lock is valid for a certain time. The time-lock puzzle presented by Bellare and
Goldwasser in [2] is based on the heuristic assumption that exhaustive search
on the key space is the fastest method to recover the key of, say, 40-bit DES. In
[27], Rivest et al. point out that this only works on average: for instance, for a
particular key, exhaustive search may find the key well before the assigned time;
they then propose a time-lock puzzle based on the hardness of factoring which
does not have this problem, although it still uses a different heuristic assumption
about the minimum time needed to perform some number-theoretic calculations.
A major disadvantage of time-lock puzzles from our point of view is that they
can only solve the relative time problem.

A “time-server” is a trusted third party that is expected to allow release of the
message at the appointed time only. May [22] suggests that the third party be
a trusted escrow agent that stores the message and releases it at release-time.
This does not scale well since the agent has to store all escrowed messages until

Conditional Oblivious Transfer and Timed Release Encryption 3

their release-times. Moreover, no anonymity is guaranteed: the server knows the
message, the release-time, and the identity of the two parties. In Rivest et al. [27]
it was suggested that the server simply use the iterates of a one-way function (or
a public-key sequence) and publish the next iterate value after one unit of time.
A sender wishing to release a document at time ¢ gets the server to encrypt
the document (or a key to an encrypted version) with a secret key that the
server will only publish at time ¢. This scheme has the advantage that the server
does not have to remember anything except the seed to the sequence of one-way
function iterates. This scheme requires the server to generate and publish a large
number of keys, so that the overall computation and storage costs are linear in
the time parameter. Furthermore, the receivers are anonymous but the sender
1s not anonymous in this scheme and the time server knows the release-time
requested.

The Model. The general discussion above shows that it 1s necessary and ad-
vantageous to have a system in which the current absolute time is available with
the facility of posting messages that can be read at a future time. For complete-
ness, we first lay out some basic considerations. To begin with, time needs to be
defined. In computers, as in real life, time is simply defined to be the output of a
certain clock (such as the Denver Atomic Clock). We can assume the existence of
such an entity which we will call the Time Server (or simply, server) that defines
the time. Naturally, the server outputs (periodically or upon request) messages
that indicate the current time (down to whatever granularity is needed or pos-
sible). The server is endowed with a universally known public key. However, the
server 18 not required to remember any other keys, such as keys of senders and
receivers (in this respect, our model is different from that of Rivest et al. [27]).

What we are concerned with here is timed release of electronic documents:
it is straightforward to see that using encryption, we can reduce this problem
to timed release of the decryption key (rather than the document itself which
is assumed to be delivered ahead in encrypted form). Now, if the sender of a
document is available at the time of its release, this problem is trivial since
the sender can herself provide the decryption key at release-time. Thus, we can
assume that the sender of the document is only present prior to, but not at, the
release time. Furthermore, as May [22] suggested, if we have a trusted escrow
agent that supplies the decryption key at the appointed time, again the problem
is solved (but the solution does not scale well for the server). Next, the problem
is also trivial if the receiver can be trusted by the sender to not decrypt the
document before the release-time. Therefore, we assume that the the sender
does not trust the receiver to not try to decrypt the document before the release-
time. Finally, it may be that the sender is remote and hence may not be able to
communicate directly with the server (this is not possible in [27]). Hence, we will
also assume that the sender and server cannot interact at any time. However,
the receiver can interact with the server and we will be interested in keeping this
interaction to the minimum as well.

Putting all this together, the problem of timed-release encryption that we
address in this paper can be restated as follows: how can a sender, without

4 G. Di Crescenzo, R. Ostrovsky, and S. Rajagopalan

talking to the server, create a document with a release-time (defined using the
notion of time as marked by the server) such that a receiver can decrypt this
document only after the release-time has passed by interacting with the server
and such that the server does not learn the identity of the sender?

Our results: We present a formal definition for the cryptographic task of a
timed-release encryption scheme, and a solution to this task. Also, we introduce a
new variant of the oblivious transfer protocol, which we call conditional oblivious
transfer. We present a formal definition for this variant, and a construction for
an instance of it. The properties of this construction will be crucial for the design
of our timed-release encryption scheme.

Conditional Oblivious Transfer. The Oblivious Transfer protocol was introduced
by Rabin [26]. Informally, it can be described as follows: it is a game between
two polynomial time parties Alice and Bob; Alice wants to send a message to
Bob in such a way that with probability 1/2 Bob will receive the same mes-
sage Alice wanted to send, and with probability 1/2 Bob will receive nothing.
Moreover, Alice does not know which of the two events really happened. There
are other equivalent formulations of Oblivious Transfer (see, e.g., [8,9, 15,3, 21]).
This primitive has found numerous applications (see, e.g., [19,16,29,17]).

In this paper, we consider a variant of Oblivious Transfer, which we call Con-
ditional Oblivious Transfer. In this variant, Bob and Alice have private inputs
and share a public predicate that is evaluated over the private inputs and is
computable in polynomial time. The conditional oblivious transfer of (for sim-
plicity), say, a bit b from Alice to Bob has the following requirements. If the
predicate holds, then Bob successfully receives the bit Alice wanted to send him
and if the predicate does not hold, then no matter how Bob plays, he will have no
information about the bit Alice wanted to send him. Furthermore, no efficient
strategy can help Alice during the protocol in computing the actual value of
the predicate. Of course, such a game can be easily implemented as an instance
of secure function evaluation [29,17,4, 10, 16], however, we are interested here
in more efficient implementations of this particular game. To the best of our
knowledge, such a variant has not been considered previously in the literature.

Timed-Release Encryption. The setting is as follows. There are three partici-
pants: the sender, the receiver and the server. First, the sender transmits to the
receiver an encrypted messages and a release-time. Then, the receiver can en-
gage in a conversation with a server. Our timed-release encryption scheme uses,
in a crucial way, a protocol for conditional oblivious transfer. In particular, the
server and receiver engage in a conditional oblivious transfer such that if the
release-time is not less than the current time as defined by the server, then the
receiver gets the message. Otherwise, the receiver gets nothing. Furthermore,
the server does not learn any information about the release-time or the identity
of the sender. In particular, the server does not learn whether the release-time
is less than, equal to, or greater than the current time. Our protocol has mini-
mal round-complexity: an execution of the scheme consists of a single message
from the sender to the receiver and one request-answer interaction between the
receiver and the time server. Moreover, we present an implementation of our

Conditional Oblivious Transfer and Timed Release Encryption 5

scheme, using efficient primitives and cryptosystems as building blocks, that
only require communication and computation logarithmic in the size of the time
parameter. Finally, we note that the trust placed on the server can be further
decreased if more servers are available.

2 Notations and definitions

In this section we present notations and definitions needed for this paper. We
start with basic notations, then we define conditional oblivious transfer and
timed-release encryption schemes. For the necessary number-theoretic background
on quadratic residuosity and Blum integers, we refer the reader to [1,11].

2.1 Basic Notations and Model

An algorithm is a Turing machine. An efficient algorithm is an algorithm running
in probabilistic polynomial time. An interactive Turing machine is a probabilistic
algorithm with an additional communication tape. A pair of interactive Turing
machines is an interactive protocol. The notation z < S denotes the probabilistic
experiment of choosing element x from set S according to distribution D; we
only write «— S in the case D is the uniform distribution over S. The notation
y — A(x), where A is an algorithm, denotes the probabilistic experiment of
obtaining y when running algorithm A on input x, where the probability space
is given by the random coins (if any) of algorithm A. Similarly, the notation
t — (A(x), B(y))(z) denotes the probabilistic experiment of running interactive
protocol (A,B), where z is A’s input, y is B’s input, z is an input common to
A and B, and ¢ 1s the transcript of the communication between A and B during
such execution. By Prob[Ry;...; R, : E] we denote the probability of event E|
after the execution of probabilistic experiments Ry, ..., R,. Let a®b denote the
string obtained as the bitwise logical xor of strings ¢ and b. Let a o b denote
the string obtained by concatenating strings a and b. A language is a subset of
{0, 1}~

The predicate GE. Given two sequences of k bits t1,...,1, and dy, ..., dy,
define predicate GE as follows: GE(t1,...,%5,d1,...,dx) = 1 if and only if
(tyo---oty) > (dyo---ody), when strings ¢; o ---ot, and dj o --- o dy are
interpreted as integers.

The public random string model. In the sequel, we define two cryptographic
protocols: conditional oblivious transfer, and timed-release encryption, in a set-
ting that is well known as the “public random string” model. In this model,
the parties share a public and uniformly distributed string. It was introduced
by Blum, De Santis, Feldman, Micali and Persiano in [6,5], and was motivated
by the goal of reducing the ingredients needed for the implementation of zero-
knowledge proofs. This model has been well studied in Cryptography since then
as a minimal setting for obtaining non-interactive zero-knowledge proofs and
several other cryptographic protocols.

6 G. Di Crescenzo, R. Ostrovsky, and S. Rajagopalan

2.2 Conditional Oblivious Transfer: Definition
We now give the formal definition of Conditional Oblivious Transfer.

Definition 1. Let Alice and Bob be two probabilistic Turing machines running
in time polynomial in some security parameter n. Also, let x4 (xp) be Alice’s
(respectively, Bob’s) private input, let b be the private bit Alice wants to send to
Bob, and let ¢(-,-) be a predicate computable in polynomial time. We say that
(Alice,Bob) is a CoNDITIONAL OBLIVIOUS TRANSFER protocol for predicate ¢
if there exists a constant a such that:

1. Transfer Validity. If ¢(za,z5) = 1 then for each b € {0,1}, it holds that
Prob | ¢ — {0, 1}"a;tr — (Alice(z 4,b),Bob(zg))(c) : Bob(o,zp,tr) =b| = 1.

2. Security against Bob. If ¢(z.a,z5) = 0 then for any Bob’, the random variables Xo
and X are equally distributed, where, for b € {0,1},

Xy =[o — {0, 1}"a;tr — (Alice(z a,b),Bob'(z5))(0) : (a,1r)]

3. Security against Alice. For any efficient Alice’, there exists an efficient simulator M
such that for any constant c, and any sufficiently large n, it holds that |po — p1| <
n~°, where, po and p; are equal to, respectively,

Prob | ¢ — {0, 1}"a;tr — (Alice’(2.4),Bob(z))(0) : Alice’(g,24,1r) = g(za,25)
Prob | ¢ — {0, 1}"a : M(o,24) =q(z4,2B)

Notice that here we are defining the security against a possibly cheating Bob
even if he is infinitely powerful (requirement 2), similar to [25]. In the sequel,
we will also consider security with respect to a honest-but-curious Bob, meaning
that Bob follows his program, but at the end may arbitrarily try to distinguish
random variables Xy and X;. We also note that a definition suitable for the
public-key setting can be easily obtained by the above one. In particular each
party would use its private string too and would be given access also to the
public keys of the other parties; namely, Alice and M would be given Bob’s
public key, and Bob would be given Alice’s public key. Finally, we note that
the above definition can be extended in a natural way to the case of a message
containing more than one bit.

2.3 Timed-Release Encryption : Definition

First, we give an informal description. A timed release encryption scheme is a
protocol between three polynomial time parties: a sender S, a receiver R and
a server V. Time (a positive integer) is represented as a k-bit string and is
entirely managed by V. Each message sent in an “encrypted” form from S to
R will be associated with a release-time d = (di,...,dy), where d; € {0,1},

Conditional Oblivious Transfer and Timed Release Encryption 7

for i = 1,...,2% R can check if the message it got from S is “well-formed”. If
the message is “well-formed” then R is guaranteed to be able to decrypt some
message after the release-time d. R is allowed to interact with V, while S never
needs to interact with V. Also, for any efficient strategy of R, R can not decrypt
before the release-time. Finally, V just acts as a time server; i.e., the conversation
V sees reveals no information about the actual message, its release-time or which
sender/receiver pair is involved in the current conversation. Time is managed by
V by answering timing requests from R; namely, first R sends a message to V,
then V answers. V’s answer contains some information allowing R to decrypt if
and only if the current time is greater than the release-time.

By (pr,sr) (resp., (puv, sv)) we will denote a pair of R’s (resp., V’s) public/secret
keys; by ¢ a sufficiently long public random string; by m € {0, 1}* a message, by
t and d the current time according to V’s clock and the release-time of message

m, both being represented as a k-bit string. We now present our formal definition
of timed release encryption scheme.

Definition 2. Let S,R,V be three probabilistic Turing machines running in time
polynomial in some security parameter n. Let L denote a special symbol that
may be output by any of S,R,V, on any input, meaning that such input is not
of the specified form. We say that (S,R,V) is a TIMED-RELEASE ENCRYPTION
SCHEME if there exists a constant a such that:

0. Correctness. For any m € {0,1}* and any d € {0,1}*,

Prob [o — {0, 1}"a;(pv, sv) — V(o); (pr, sr) — R(o);
(enc, d) — S(pr,pv, ma d)a Teq — R(pr, Sr,pv, enc, d)a
ans — V(py, su,t,req, o) :

(t<d) Vv (R(pr, sr,ans) =m)] = 1.

1. Security against S. For any probabilistic polynomial time S’, any constant ¢, and
any sufficiently large n,

Prob [o — {0, 1}"a;(pv, $y) — V(o); (pr, sr) — R(o);
(enc,d) — S/(pr,pv); req — R(pr, $r, po, enc, d);
ans — V(py, Sy, t,req, o) :

(t<d) V (reg=L1) V (R(pr, sryans) ZL)] > 1 —n"".

2. Security against R. For any probabilistic polynomial time R'=(R{,R5,R%,R}), any
constant ¢, and any sufficiently large n,

Prob [0 — {0, 13" (pu, s0) — V(0); (pr, s) — R (0,p0);
(mo, m1, auzx) «— Ry(a, po, pr, sr);1 — {0,1}; (enc,d) — S(pr, pv, mi, d);
req «— R5(pr, 87, po, enc,d);ans «— V(py, s0,t,7eq, 0):
(t < d) A Ry(pr,sr, auz,ans) =1] < 1/24+n"°.

8 G. Di Crescenzo, R. Ostrovsky, and S. Rajagopalan

3. Security against V. For any probabilistic polynomial time V'=(V{,V} Vi), any
constant ¢, and any sufficiently large n,

Prob [o — {0, l}na; (pry5r) = R(a); (po, 50) — Vi(U,Pr)é
((mo,do), (m1,d1), aux) — Vi(a,p,);i — {0,1};
(enc,di) — S(pr, pv, mi,d;);req — R(pr, $r, po, enc, d;):
Vi(ps, 0,1, req, auz, o) =] < 1/2 4+ n7°.

Notes on Definition 2 :

— The validity of the encryption scheme is defined even with respect to ma-
licious senders (requirement 1): even if S is malicious, and tries to send a
message for which he claims the release-time to be d, then R can always
decrypt after time d.

— The security against malicious R (requirement 2), and V (requirement 3)
have been defined in the sense of semantic security [18] against chosen mes-
sage attack. Fxtensions to chosen ciphertext attack can be similarly formal-
ized.

— A scheme satisfying the above definition also protects the sender’s anonymity:
namely, the sender does not need to use his public or private keys when talk-
ing to the receiver, and never talks to the server.

3 A conditional oblivious transfer protocol for GE

In this section we show a conditional oblivious transfer protocol for predicate
GE. Our result is the following

Theorem 1. Let GE be the predicate defined in Section 2. The protocol (Al-
ice,Bob) presented in Section 3 is a conditional oblivious transfer protocol for
GE, for which requirement 1 of Definition 1 holds with respect to any honest-
but-curious and infinitely powerful Bob and requirement 3 of Definition 1 holds
with respect to any probabilistic polynomial time Alice under the hardness of
deciding quadratic residuosity modulo Blum integers.

The rest of this section is devoted to the proof of Theorem 1.

3.1 Our Conditional Oblivious Transfer Protocol

We first give an informal description of the ideas in our protocol and then give
the formal description.

An informal description. We will use as a subprotocol (A,B) a simple vari-
ation of the oblivious transfer protocol given in [13,12], based on quadratic
residuosity modulo Blum integers. For lack of space, we omit the description of
such protocol but give the properties necessary for our construction here. By
NQR-COT-Send(b, (z,y)) we denote the algorithm A on input a bit b and (z, y),
where z is a Blum integer, y € ZF!. By NQR-COT-Receive(mes, (z,p,q,y))

Conditional Oblivious Transfer and Timed Release Encryption 9

we denote the algorithm B using the factors p,q of z to decode a message mes
sent by A using (#,y), where the result of such decoding will be either b or L
(indicating an invalid message). We recall that in protocol (A,B), algorithm B
will receive bit b sent by A if y is a quadratic non residue and the actual value
of b will remain information-theoretically hidden with respect to a honest-but-
curious B otherwise. Moreover, no efficient strategy allows A to guess whether
B actually received the right value for b or not.

Informally, our COT protocol for the predicate GE works as follows. At the
beginning of the protocol, Alice has a k-bit string ¢ = (¢1,...,%;) as her secret
key and Bob has a k-bit string d = (d1, ..., d)) as his secret key. Moreover, let b
be the bit that Alice wants to send to Bob. First of all, Bob computes a Blum
integer z, and a k-tuple (D1, ..., D) as his public key, where D; = r?y% mod =,
where the d;’s are part of Bob’s secret key. Similarly, Alice computes her public
key as integers T1,..., Ty € ZF', where T; is a quadratic non residue if and
only if ¢; = 1. Now, one would like to use properly computed products of the
Ty’s and Dy’s to play the role of integer y in the above mentioned protocol
(A,B), where the products are computed according to the boolean expression
that represents predicate GE over bit strings. A protocol implementing this
would require @(k?) modular multiplications. We show below a protocol which
only requires 8k modular multiplications.

First of all Alice splits bit b into bit a and bit a @ b, for random a, and sends a
using (2, T1) and a® b using (z, D171 mod x) as inputs for the subprotocol (A,B)
(notice that this allows Bob to receive b if and only if t; > dy). Then, Alice will
send a random bit ¢ using (z, =71 D1 mod z) as input (this allows Bob to receive
¢ if and only if {1 = d;). The gain in having the latter step is that it allows
Alice to run the same scheme recursively on the tuple (7%, ..., Tk, , Da, ..., D),
using as input b @ ¢. Notice that if ¢ < d Bob will be able to compute only bits
with distribution uniform and independent from b. In this protocol Alice only
performs 8 modular multiplications for each ¢ (this is because A’s algorithm only
requires 2 modular multiplications). We now proceed with the formal description
of our scheme (Alice,Bob).

THE ALGORITHM ALICE: On input b, t1,...,tx € {0,1}, Alice does the following;:

1. Receive: 1, D1,..., Dy from Bob and set b = b.
2. Fores=1,... k,
uniformly choose a;,¢; € {0,1},r; € Z} and compute T; = r7(—1)" mod ;
if ¢ = k then set ¢; = b;;
compute mes;1 = NQR-COT-Send(as, (z,13));
compute mes;z = NQR-COT-Send(a; & b;, (z, DiT; mod z));
compute mes;z = NQR-COT-Send(cs, (¢, —D;T; mod z));
set b1 = b; B ci;
set pa = (11, ..., Tx) and mes = ((mes11, mesiz, mesiz), ..., (Meskp1, Mesk2, Mmeska));
send: (pa,mes) to Bob.

10 G. Di Crescenzo, R. Ostrovsky, and S. Rajagopalan

THE ALGORITHM BoB: On input a sufficiently long string o and di,...,dx € {0,1},
Bob does the following

1. Uniformly choose two n-bit primes p, ¢ such that p = ¢ = 3 mod 4 and set z = pg;

for i = 1,...,k, uniformly choose r; € Z} and compute D; = r?(—1)% mod «;
let pg = (¢, D1,..., Dx) and send: pp to Alice.
2. Receive: ((T1,...,Tk), (mes11, mes12, mesia, ..., Mesk1, meskz, mesys)) by Alice.

3. Fori=1,... k,
compute a; = NQR-COT-Receive(mesi1, (z,p, ¢, T3));
compute e; = NQR-COT-Receive(mesiz, (¢,p, ¢, DiT; mod z));
if a; #1 and e; #L1 then
output: a; ®e; O ci—1 D --- D c1 and halt;
else compute ¢; = NQR-COT-Receive(mes;s, (z, p, ¢, —DiT; mod z));
if ¢ = k and ¢; #L then output: ¢; and halt;
output: L.

3.2 Conditional Oblivious Transfer: the Proof

We need to prove three properties: transfer validity, security against Alice and
security against Bob.

Transfer validity. Assume predicate ¢ is true; i.e., {1 0---0fp > dyo---ody.
Notice that if £, > dy then 7} and D{7} modx are quadratic non residue and
by the validity property of NQR-COT-Receive, Bob can compute aj,e;. and

therefore b as a1®er. Now, assume that t; = d;,forj = 1,...,i—1 and?; > d;, for
some ¢ € {1,...,t}. Then, since ¢; = d;, the integer —7; D; mod « is a quadratic
non residue modulo z and Bob can compute ¢;, for each j = 1,...,0 -1, by

the validity property of NQR-COT-Receive; moreover, since t; > d;, Bob can
compute both a; and e; from Alice’s message. Since e; = a; bPBe1 BBy,
Bob can compute b as a; @ e; $c1 D - D ;1. Finally, the case of t; = dj,
for j = 1,...,k, is similarly shown, by just observing that ¢ is set equal to
bder @B ep-1.

Security against Bob. To prove security against any honest-but-curious algo-
rithm Bob’, first, assume that z is a Blum integer, Dy, ..., Dy € Z}!, and predi-
cate ¢ is false; i.e., tyo- - -0l < djo---ody. Consequently, for some i € {1,... k}
it must be that t; = d;, for j =1,...,¢—1, and ¢; < d;. Note that according to
Alice’s algorithm, b can be written as a1 G ej oras c1 & - B ej—1 P a; B ey, for
some [. Then, since T;D;, for j =1,...,¢—1, is a quadratic residue modulo z,
for each j, it holds that at most ¢; and a; can be computed from mes;q, mes;s,
but e; is information-theoretically hidden given mes;2; from the properties of
NQR-COT-Send. Notice that both a; and ¢; are independently and uniformly
distributed bits. Then, since t; < d;, Bob’ has no information about either a; or
ci; this guarantees that even for any ¢ > ¢ such that ¢;; > d;;, Bob’ will obtain
a;r and a; @ by, but not b since by = bP ey P - - - D eyr_1. Moreover, even for such
values ¢/, the values received by Bob’ are again independently and uniformly
distributed bits. Hence, for any b, Bob’ only sees uniform and independent bits.
Therefore, the two variables Xy, X7 are equally distributed.

Conditional Oblivious Transfer and Timed Release Encryption 11

Security against Alice. Notice that Alice’s role in the protocol consists of a
single message to Bob. Therefore, if after the protocol, Alice has a non-negligible
advantage over any efficient simulator M in deciding the predicate ¢, then she
has the same advantage when she is given only Bob’s public message pp before
running the protocol. Therefore, there exists an efficient M that has the same
advantage in deciding predicate ¢ as Alice. Finally, using a standard hybrid
argument, M has a non-negligible advantage in deciding the quadratic residuosity
modulo the Blum integer of one of the D;’s, and therefore any y € Z}1.

This concludes the proof of Theorem 1.

4 A timed-release encryption scheme

In this section, we present our construction of a timed-release encryption scheme
which can be viewed as a transformation from any ordinary encryption scheme
into a timed-release one. It uses as additional tools, a non-malleable encryption
scheme and a conditional oblivious transfer protocol for the predicate GE. Our
scheme can be based on several different intractability assumptions, according
to what goal one is interested in (i.e., generality of the assumptions, efficiency in
terms of communication, and efficiency in terms of computation). We discuss all
these variants after our formal description and proof. Our result 1s the following

Theorem 2. The scheme (S,R,V) defined in Section 4.1 is a timed-release en-
cryption scheme.

4.1 Description of our scheme

We start with an informal description of the ideas needed for our scheme. A first

idea for the construction of our scheme would be to use the conditional oblivious
transfer designed in Section 3 as follows. Assume the receiver has obtained the
release-time d = (dy,...,d;) of the message from the sender. Since the server
has the current time ¢ = (¢1,...,13), the server and the receiver can execute the
conditional oblivious transfer protocol for predicate GE, where the server plays
as Alice on input ¢ and the receiver plays as Bob on input d. Additionally, the
receiver, by running this protocol should get the information required to decrypt
and compute the message. The properties of conditional oblivious transfer guar-
antee that the receiver will be able to receive some private information if and
only if the time of the receiver’s request was not earlier than the release-time.
First, we have to decide what secret information should be sent from the server
to the receiver in the event that the release-time is past. This can be as follows:
the sender will first encrypt the message using the receiver’s public key, and then
encrypt this encryption using the server’s public key. Let zy be the resulting mes-
sage. Then the private information sent by the server to the receiver could be
the decryption of zg under the server’s public key. Note this is the encryption of
the message under the receiver’s key and therefore this would give the receiver a

12 G. Di Crescenzo, R. Ostrovsky, and S. Rajagopalan

way to compute the message. Moreover, the sender does not get any information
about the message since he only sees an encryption of it.

A second issue is about the release-time. So far, we have assumed that the
receiver encrypts the same release-time that he obtains from the sender, and the
server uses those encryptions for the conditional oblivious transfer. However, a
malicious receiver could simply replace the release-time with an earlier one and
obtain the message earlier. Now, a first approach to prevent this is the following:
the server will compute the bit-by-bit encryption of the release-time needed for
the conditional oblivious transfer and send it to the receiver; together with a
further encryption of it under the server’s public key. Let z; be the resulting
message. The idea would be that the receiver will be required to send z; to the
server so that the server can verify that he is using the right encryptions. Still,
the receiver can compute a faked encryption z{ and repeat the same attack as
before. However, now we can have the sender encrypt under the server’s key the
concatenation of the encryption of the release-time (under the receiver’s key)
and the encryption of the message (under the receiver’s key). In other words,
zo and z1 are actually merged into a single encryption z. Now, the only attack
the receiver can try is to modify z into something which may be decrypted
as encryptions of the same message and a different release-time. However, this
can be prevented by requiring that the encryption scheme of the server is non-
malleable. the preceding discussion gives us our timed-release encryption scheme
described formally below.

A formal description of our scheme. Let (nm-G,nm-E, nm-D) be a non-
malleable encryption scheme, and denote by (nm-pk, nm-sk) the pair of public
and secret keys output by nm-G. Also, let (Alice,Bob) denote the conditional
oblivious transfer protocol for predicate GE given in Section 3. We now describe
the three algorithms S, R, V'; in each algorithm, when necessary, we differentiate
between the key-generation phase and the encryption/decryption phase. Also,
we assume wlog that the message m to be encrypted is a single bit.

THE ALGORITHM S:

Key-Generation Phase: no instruction required.

Encryption Phase:

Let (m,d) be the pair message/release-time input to S, where m € {0,1};

let (z) be R’s public key;

uniformly choose r € Z and compute ¢, = r2(—1)™ mod ;

let d =di,...,dr, where d; € {0,1}, for 1 = 1,...,k;

for i = 1,...,k, uniformly choose r; € Z and compute D; = r3,(—1)% mod «;
let cqa = (Dh,..., Dy);

compute cc = nm-E(nm-pk, cq 0 ¢;n) and output: (cc, cq, d).

-~ O UL = W o

THE ALGORITHM R:

Key-Generation Phase:

1. Uniformly choose two n/2-bit primes p, ¢ such that p = ¢ = 3mod 4 and set z = pg;
2. let L be the language {z |z is a Blum integer };

Conditional Oblivious Transfer and Timed Release Encryption 13

3. using o, p, ¢, compute a non-interactive zero-knowledge proof II for I;
4. output: (=, II).

Decryption Phase:

1. Let (cc,cq, d) be the triple received by S;
2. let d =di,...,dr, where d; € {0,1}, for s =1,...,k;
fore=1,...,k,
using p, ¢, set di = 1if (z, D;) € NQR or d = 0 otherwise;
if d; # d; then output: L and halt.
run step 1 of algorithm Bob, by sending (¢, D4, ..., Di) to V;
send cc, II to V;
run step 2 of algorithm Bob, by receiving (11, ...,T%), mes from V;

w

run step 3 of algorithm Bob, by decoding mes as cm;
if ¢;n #L then compute m = D(sk, pk, ¢,n) and output: m else output: L.

L =1 O U =

THE ALGORITHM V:

Key-Generation Phase:

1. Run algorithm nm-G to generate a pair (nm-pk, nm-sk);
2. output: nm-pk.

Timing service phase:

run step 1 of algorithm Alice, by receiving (z, D1, ..., D) from R;

receive cc, I from R;

verify that the proof II is accepting;

compute (¢, ¢7,) = nm-D(nm-sk, nm-pk, cc);

if cq # ¢, or the above verification is not satisfied then output L to R and halt;
let ¢t = (t1,...,tx) be the current time, where ¢; € {0,1}, for s =1,...,k;

for i =1,...,k, uniformly choose r; € Z3 and compute T; = r?(—1)" mod ;

run step 2 of algorithm Alice, by computing mes;

output: (11, ..., T},), mes.

[Nolie o e e A e S

Round complexity: In the above description, we use the specific conditional
oblivious transfer protocol of Section 3, based on quadratic residuosity, since this
protocol shows that the entire timed-release can be implemented with minimum
interaction. Notice that the sender does not interact at all with the server. More-
over, the sender only sends one message to the receiver in order to encrypt a
message, after the receiver has published his public key. Finally the interaction
between receiver and server is one round (after both parties have published their
own public keys).

Efficiency: In the above description, we can use a generic non-malleable en-
cryption scheme. A practical implementation would use, for instance, the scheme
by Cramer and Shoup [7], that is based on the hardness of the decision Diffie-
Hellman problem. Recall that the scheme in [7] requires about 5 exponentiations
from its parties. The rest of the communication between sender and receiver is
based on computing an encryption of the message m and release-time d, which
requires at most & modular products (which is less expensive than one exponen-
tiation, since k is the number of bits to encode time, and therefore a very small
constant). Then, the interaction between server and receiver requires only 8nk

14 G. Di Crescenzo, R. Ostrovsky, and S. Rajagopalan

modular products (which is about 8%k n-bit exponentiations). We observe that
the communication complexity 18 12nk + nlog? and the storage complexity is
6n + nlogt, where ¢ is the soundness parameter required for the non-interactive
zero-knowledge proof.

Complexity Assumptions: We remark that by using the non-malleable en-
cryption scheme in [14], and implementing the conditional oblivious transfer
protocol using well-known results on private two-party computation [28, 17, 16],
our scheme can be implemented using any one-way trapdoor permutation.

5 Timed-Release Encryption : the Proof

We would like to prove Theorem 2. First of all observe that S,R,V run in proba-
bilistic polynomial time; in particular the non-interactive zero-knowledge proof
II can be efficiently computed and verified using the protocol in [11]. Now we
need to prove four properties: correctness, security against S, security against
R and security against V. The correctness requirement directly follows from the
properties of the conditional oblivious transfer and the encryption schemes used
as subprotocols. We now concentrate on the remaining three properties.

Security against S. We need to show that for any probabilistic polynomial time
S’, if R does not output | and ¢ > d then R can compute the message m sent by
S’. Notice that if R does not output | then the release-time has a right format;
then, since ¢ > d, by the transfer validity property of the conditional transfer
protocol used, R will always receive ¢,, and then compute m with probability 1.
Security against R. Assume that S and V are honest. Consider the following
experiment for any probabilistic polynomial time algorithm R’'=(R} R, R%, R}).
Let ((x, IT), (p, q)) be the pair computed by R} on input o, p, and let (mg, my) be
the two messages returned by RY on input o, 2, p, ¢. Let b a uniformly chosen bit,
and let ((¢cc, ¢q), d) be the output of S on input message my, the public key pk by
R’ and the public key nm-pk of V. Now, let req = (x, II, cc/, ¢;) be the request
made by R5 to V| and let ans be V’s reply at some time ¢ < d. We now want to
show that for any ¢ such that ¢ < d, the probability p that R} (x, IT, p, ¢, ans) = b
is at most 1/2 4+ n~°, for any constant ¢ and all sufficiently large n. We divide
the proof in three cases.

Case 1: cc’ = cc and ¢/} = cq. Assume that there exists a ¢ such that ¢ < d and
the above probability p is at least 1/2 + n™¢, for some constant ¢ and infinitely
many n. Now, we explain how to turn R’ into an algorithm B’ that can break
the scheme (nm-G,nm-E,nm-D). The idea is of course to simulate an entire
execution of the protocol, and then use R’ in order to break the mentioned
scheme. Specifically, B’ uses R} in order to generate the pair of public/private
keys. Now, given the two messages mg, m; output by R} as candidates to be
encrypted using the timed release encryption scheme, B’ will compute the two
messages nm-mg, nim-my that are the candidates to be encrypted under the non-
malleable scheme. These two messages are computed by encrypting the messages
mo, my, respectively, using the public key output by R}. Now, a bit b is uniformly

Conditional Oblivious Transfer and Timed Release Encryption 15

chosen in the attack experiment associated to the non-malleable scheme, and
nm-my is encrypted using such encryption scheme (this is the encryption cc).
This automatically chooses message m; in the experiment associated with the
timed release scheme. Now, B’ uses Rj to send a request (z, I, cc,¢}}) to V;
recall that we are assuming that cc = e¢¢’ and ¢q = ¢/, therefore, B’ will now
simulate the server using the assumed time ¢. Notice that he does not need to
know the string c,, that is part of the decryption of cc’ since when ¢t < d, by
Property 2 of the conditional oblivious transfer (Alice,Bob), the receiver is only
obtaining transfers of uniformly distributed bits, which are therefore easy to
simulate. Finally, B’ runs algorithm R}, on the (simulated) answer obtained by
V. Now, notice that since the simulation of V is perfect, the probability that B’
breaks the non-malleable encryption scheme 1s the same as p, which contradicts
the security of scheme (nm-G, nm-E, nm-D).

Case ¢! = cc and ¢/} # cq. This case cannot happen, since V decrypts cc’ as
(¢4, cm) and can see that ¢/, # ¢4, and therefore outputs L and halts.

Case cc’ # cc. This case contradicts the non-malleability of the scheme used by
V. This is because given history ¢q about plaintext pl = (¢4, ¢yn), and ciphertext
ce, R is able to compute a ciphertext c¢’ of some related plaintext pl’ = (¢4, ¢l,),
i.e., such that ¢/, is a valid encryption of m under the key of R'. The fact that
e, is a valid encryption of m under such key is guaranteed by our original con-
tradiction assumption that R’ successfully breaks the timed release encryption
scheme.

Security against V. We see that the server V receives a tuple (z, I, cc, cq),
and he can decrypt cc as (¢, ¢}j) and check that ¢/, = c¢4. Namely, he obtains
encryptions of the message m and the release-time d under the receiver’s key.
The semantic security of the encryption scheme used guarantees that the server
does not obtain any additional information about m, d. Moreover, notice that the
tuple (z, T, ce, cq) is independent from the sender’s identity and the receiver’s
identity. Therefore, V does not obtain any information about the sender’s or the
receiver’s identity either.

This concludes the proof of Theorem 2.

References

1. E. Bach and J. Shallit, Algorithmic Number Theory, MIT Press, 1996.

2. M. Bellare and S. Goldwasser, Encapsulated Key-Fscrow, MIT Tech. Report 688,
April 1996.

3. G. Brassard, C. Crépeau, and J.-M. Robert, Information Theoretic Reductions
among Disclosure Problems, in Proc. of FOCS 86.

4. M. Ben-or, S. Goldwasser, and A. Wigderson, Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation, in Proc. of STOC 88.

5. M. Blum, A. De Santis, S. Micali, and G. Persiano, Non-Interactive Zero-
Knowledge, STAM Journal of Computing, vol. 20, no. 6, Dec 1991, pp. 1084-1118.

6. M. Blum, P. Feldman, and S. Micali, Non-Interactive Zero-Knowledge and Appli-
cations, in Proc. of STOC 88.

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

G. Di Crescenzo, R. Ostrovsky, and S. Rajagopalan

R. Cramer and V. Shoup, A Practical Cryptosystem Provably Secure under Chosen
Ciphertext Attack, in Proc. of CRYPTO 98.
C. Crépeaun, Fquivalence between Two Flavors of Oblivious Transfer, in Proc. of

CRYPTO 87.

. C. Crépeau and J. Kilian, Achieving Oblivious Transfer Using Weakened Security

Assumptions, in Proc. of FOCS 1988.

D. Chaum, C. Crepeau, and I. Damgard, Multiparty Unconditionally Secure Pro-
tocols, in Proc. of STOC 88.

A. De Santis, G. Di Crescenzo, and G. Persiano, The Knowledge Complexity of
Quadratic Residuosity Languages, Theoretical Computer Science, vol. 132, (1994),
pp. 291-317.

A. De Santis, G. Di Crescenzo, and G. Persiano, Zero-Knowledge Arguments and
Public-Key Cryptography, Information and Computation, vol. 121, (1995), pp. 23—
40.

A. De Santis and G. Persiano, Public Randomness in Public-Key Cryptography, in
Proc. of EUROCRYPT 92.

D. Dolev, C. Dwork, and M. Naor, Non-Malleable Cryptography, in Proc. of STOC
91.

S. Even, O. Goldreich and A. Lempel, A Randomized Protocol for Signing Con-
tracts, Communications of ACM, vol. 28, 1985, pp. 637-647.

O. Goldreich, Secure Multi-Party Computation, 1998. First draft available at
http://theory.lcs.mit.edu/ oded

O. Goldreich, S. Micali, and A. Wigderson, How to Play any Mental Game, in
Proc. of STOC 87.

S. Goldwasser and S. Micali, Probabilistic Fncryption,in Journal of Computer and
System Sciences. vol. 28 (1984), n. 2, pp. 270-299.

J. Kilian, Basing Cryptography on Oblivious Transfer , in Proc. of STOC 88.

J. Kilian, S. Micali and R. Ostrovsky Minimum-Resource Zero- Knowledge Proofs,
in Proc. of FOCS 89.

E. Kushilevitz, S. Micali, and R. Ostrovsky, Reducibility and Completeness in
Multi-Party Private Computations, Proc. of FOCS 94 (full version joint with J.
Kilian to appear in SICOMP).

T. May, Timed-Release Crypto, Manuscript.

R.C. Merkle, Secure Communications over insecure channels Communications of
the ACM, 21:291-299, April 1978.

R. Ostrovsky and B. Patt-Shamir, Optimal and Efficient Clock Synchronization
Under Drifting Clocks, in Proc. of PODC 99, to appear.

R. Ostrovsky, R. Venkatesan, and M. Yung, Fair Games Against an All- Powerful
Adversary, in Proc. of SEQUENCES 91, Positano, Italy. Final version in AMS
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol.
13, pp. 155-169, 1993.

M. Rabin, How to Fxzchange Secrets by Oblivious Transfer, TR-81 Aiken Compu-
tation Laboratory, Harvard, 1981.

R. Rivest, A. Shamir, and D. Wagner, Time-Lock Puzzles and Timed-Release
Crypto, manuscript at http://theory.lcs.mit.edu/ rivest.

A.C. Yao, Protocols for Secure Computations,in Proc. of FOCS 82.

A.C. Yao, How to Generate and Exchange Secrets, in Proc. of FOCS 86.

