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Abstract

We consider the classical problem of clock synchronization in distributed systems.

Previously, this problem was solved optimally and e�ciently only in the case when all

individual clocks are non-drifting, i.e., only for systems where all clocks advance at the

rate of real time. In this paper, we present a new algorithm for systems with drifting

clocks, which is the �rst optimal algorithm to solve the problem e�ciently: clock drift

bounds and message latency bounds may be arbitrary; the computational complexity

depends on the communication pattern of the system in a way which is bounded by a

polynomial in the network size for most systems. More speci�cally, the complexity is

polynomial in the maximal number of messages known to be sent but not received, the

relative system speed, and time-stamp size.

Our result has two consequences. From the theoretical standpoint, it re�nes the known

bounds for optimal synchronization. But even more importantly, it enables us to derive

new optimal algorithms that are reasonably e�cient for most practical systems.

1 Introduction

Suppose that all processors in the system are equipped with clocks with known upper and

lower bounds on their rate of progress. Suppose further that for each message delivered by the

system, we are given lower and upper bounds on the transit time of the message. Suppose that

one of the clocks, called source, is progressing precisely at the rate of real time (in fact, we

may assume that the source determines what real time is), and the task of all other processors
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is to provide the users with the best estimate of the source clock, where an estimate is an

interval which is guaranteed to contain the source time. This task is usually referred to as

external synchronization. External clock synchronization is solved by a clock synchronization

algorithm (abbreviated csa henceforth) by means of clock readings, message exchange, and

system speci�cation, including the bounds on clock rates and message speeds. Now, a csa is

said to be general if it applies to all systems, where the real-time speci�cations are given as

unrestricted non-negative parameters (including in�nity). A csa is said to be optimal if at all

times, any tighter estimate (i.e., a smaller interval) may be wrong on some execution which

looks indistinguishable at that point. In [20, 19] the following basic facts were proven. First,

there exists a general optimal on-line algorithm for external clock synchronization; furthermore,

this existential result is complemented with a lower bound which shows that the worst-case

space complexity (in a conservative computational model) of an optimal algorithm for general

systems cannot be less than the logarithm of the number of events in the execution of the

system. Indeed, the complexity of general optimal algorithm in [20] grew without bound as the

number of events in the execution grew.

However, real clock synchronization algorithms need not be general: they should work for

the particular system in which they are deployed. In many cases, such systems permit some

signi�cant assumptions on the timing speci�cations, which allow us to design e�cient optimal

algorithms. An important special case considered by many is systems with drift-free clocks, i.e.,

clocks which advance at the rate of real time (this assumption can be viewed as an abstraction

of systems with short duration, where the drift of the clocks does not accumulate to more than

a negligible amount). In [20] an e�cient algorithm is presented for this case, based on the

Bellman-Ford algorithm, where edge weights are derived from the local clocks readings and

the real-time speci�cations of the system. It is not di�cult to adapt this simple algorithm to

scenarios where clocks drift by running a new version of the algorithm every short while (say,

every hour), and combining the results by adding a \fudge factor" to account for the drift.

Such implementations may beat other practical algorithms, but they are still not optimal [18].

In this paper we prove, by presenting a new algorithm, that clocks in many systems can be

synchronized optimally and reasonably e�ciently. The key to the new algorithm is a reduction

of the synchronization problem to a single-source shortest-paths dynamic graph problem, which

can be garbage-collected by using an all-pairs shortest-paths algorithm. To explain the com-

plexity of the algorithm, we use Lamport's \happened before" relation [11]: the complexity of

the algorithm at a node v is polynomial in the maximum, over all times t, of the number of \live

messages" from the view point of v at time t: these are messages whose sending \happened

before" t at v and whose delivery did not \happen before" t at v. In many practical systems,

this number is linear in the size of the system. The complexity also depends polynomially

on the relative system speed: this is the maximal number of events occurring at the system

between any two consecutive events occurring at the same processor. Typically, the relative

system speed is linear in the number of processors in the system. Note that relative system

speed is related to (but di�erent than) drift.
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Related work. The work most relevant to the results presented in this paper is by Patt-

Shamir and Rajsbaum [20, 19], which is summarized in Section 2.3 below. A closely related

paper is by Moses and Bloom [17], where the upper bound on external synchronization is derived

using a calculus of time bounds. Dolev et al. [8] use similar techniques to obtain synchronization

algorithms for relativistic systems. Much e�ort has been devoted to studying internal synchro-

nization, where the goal is to synchronize clocks within a system in which real-time is not

available (see, e.g., [11, 12, 6, 10, 24, 1], surveys [22, 21] and references therein). The approach

of comparing the synchronization bounds to the best possible bound for the given execution

was �rst presented by Attiya et al. in [1], where they studied internal synchronization. The

work in [1] extended the work of Halpern et al. [10], which analyzed internal synchronization

as a \game against nature," which means that it is assumed that the execution should be taken

as if it is generated by an adversary whose aim is to provide as little information as possible

within the system speci�cation. The work in [10], in turn, extended the work of Lundelius

and Lynch [12], which analyzed internal synchronization in fully connected systems where all

link speci�cations are identical. Much work is also devoted to the issue of fault-tolerant clock

synchronization (e.g., [21, 13, 7]), which falls outside the scope of this paper.

As for practical work, two prominent approaches for clock synchronization are the NTP

[15, 16] by Mills, used over the Internet, and probabilistic clock synchronization algorithm by

Cristian [5]. We explain them brie
y in Section 4.

Paper organization. In Section 2 we outline the basic system assumptions we use and review

a few results directly relevant to our work. In Section 3 we present our main result, the new

synchronization algorithm. In Section 4 we show that the new algorithm, under some properties

shared by most systems, has polynomial complexity.

2 Model and Preliminaries

Our system model is the usual network model used, e.g., in [1, 20, 19]. In this section we give

a summary of the essential assumptions. The system consists of processors and communication

links. Processors are assumed to have unique identi�ers. Communication links carry messages

between processors. We assume that communication is reliable, and that links are bidirectional.

Message receives and sends are called events or points, and we shall denote them by the letters

p; q; r etc. Processors will be denoted by the letters u; v; w etc. For each event p there is a

unique processor in which it occurs, denoted loc(p). An execution of the system is a sequence

of events, where each event p has its real time of occurrence, denoted RT (p). (The real time

attribute is used only for analysis, and is not available to processors: see \view" below.) In

addition, we shall have for each event p and processor v the local time of v at the occurrence of

p, denoted LT v(p); if p occurs at v, then we sometimes write LT (p) for LT v(p). We shall think

of an execution as a graph, whose node set is the set of events, with an edge (p; q) if either (i) q
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is a receive event of the message whose send event is p, or (ii) p; q occur at the same processor

and q is the �rst event following p. We further de�ne the standard happens before relation

between two events p; q, denoted p ! q, to hold if and only if there exists a (possibly empty)

directed path from p to q in the execution graph. (Such graphs are sometimes referred to as the

Lamport graphs, as they, as well as the happens before relation, were �rst de�ned by Lamport

[11].) Note that in our execution graphs, nodes are also labeled by the real and local times

of occurrence. A view of an execution is just an execution where the real time attributes are

projected away. Thus a view can also be represented as a graph. Two executions are said to be

indistinguishable if they share the same view. The intention is to capture the notion that real

time is not available from within the system: a view of an execution contains only attributes

available to the processors. To capture the notion that a processor has only local information

regarding the execution, we de�ne the notion of a view from a point p of an execution to be the

view induced by points q such that q ! p.

We shall associate with each view a set of real-time speci�cations, which is a set of bounds

on the di�erence of real times between pairs of events. We will mainly consider the following

types of real-time speci�cations.

� Message transit bounds. Denote the send event of a message by p and its receive event

by q. In any physical system, we have that RT (q)�RT(p) 2 [0;>], but in many systems,

non-zero lower bounds and �nite upper bounds may be known.

� Clock drift bounds. Processor clocks usually have known bounds on their rate of progress

with respect to real time. A typical workstation may have a quartz clock whose accuracy

is 50 parts per million (abbreviated ppm), which means, for example, that if it shows

that 106 time units have passed between events p and q, then we are guaranteed that

RT (p) � RT (q) 2 [999950; 1000050].

Given a view, we represent the real time speci�cations uniformly by a bounds mapping, which

is a function from pairs of events to BR [ f>g. The interpretation of a bounds mapping is

just upper bounds: We shall say that an execution � satis�es a bounds mapping B if for all

events p; q in the execution we have that RT (p) � RT (q) � B(p; q). Note that lower bounds

are also implicitly represented by bounds mappings: if we know that RT (p)� RT (q) 2 [L;U ],

then this fact is equivalent to having B(p; q) = U and B(q; p) = �L. Under our usual real-time

speci�cations, the bounds mapping value for a pair of points may be �nite only if they are

connected by an edge in the view graph.

Example. Consider a system with processors whose clocks may drift up to 100 ppm, and where

message delivery time is completely arbitrary. Then an execution of this system can be modeled

by the following bounds mapping B. B(p; q) = 0 if p is a send event and q is the receive event of

that message; if p occurs after q at the same processor, then B(p; q) = 1:0001 � (LT (p)�LT (q))

and B(q; p) = 0:9999 � (LT (q)� LT (p)); for all other cases, B(p; q) = >.
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We stress that in our model, real-time speci�cations express only upper and lower bounds

on the real times between pairs of events. We do not treat cases such as RT (p) � RT (q) 2

[L1; U1][ [L2; U2] with L2 > U1. (Such restrictions may arise if local clocks are not continuous.)

To show optimality of synchronization algorithm, we need an additional assumption which

in e�ect says that the real time speci�cations expressed by the bounds mapping are the only

criterion to determine whether an execution is possible. Formally, we make the following

assumption. Let � be a view, and let B be a bounds mapping for �. If there is a way to assign

real times to all points in � without violating B, then the result is a possible execution of the

system.

2.1 External Synchronization

In an external synchronization system, one of the processors is designated as the source pro-

cessor, and its clock is assumed to run at the rate of real time. The goal of all other processors

is to get, at all points, the tightest estimate of the value source clock at that point. Formally,

each processor is required to maintain two variables ext L; ext U such that at all times, the

source clock is in the interval [ext L; ext U ].

External synchronization models systems where at least one of the processors has access to

standard time as produced by a radio clock or an atomic clock. The concept is useful in loosely

coupled systems such as the Internet: NTP is an external synchronization system [15, 16].

2.2 Synchronization Algorithms

In this work we consider only how to interpret the data collected by synchronization algorithms.

In order to model this problem, we de�ne passive clock synchronization algorithms, that do

not a�ect system execution. In other words, the part we call \synchronization algorithm" does

not initiate message sending, nor can it in
uence the real-time speci�cations of the system.

This approach (proposed �rst by [1]) has the advantage of facilitating comparison of di�erent

algorithms under the same conditions: otherwise, if we allow an algorithm to create its own

message tra�c, it is not clear how to compare its results with results produced by another

algorithm which generates a di�erent type of message tra�c. Furthermore, we restrict our

attention to on-line distributed algorithms (in line with [20], and in contrast to [1]). This is

modeled as follows (see Figure 1). Messages are generated and absorbed by a module called

the send module, which abstracts the module which generates messages for the clock synchro-

nization algorithm. Messages are delivered by the network module. The clock synchronization

algorithm (abbreviated CSA) is a layer between the send module and the network. The CSA

�lls information in outgoing messages, and reads the information from incoming messages.

Thus, the only input a CSA module can have at its disposal at any point p is a complete

local view of the execution from p, and the bounds mapping associated with that view (as it is
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Clock Synchronization
 Algorithm (CSA)

controls synchronization output and
             message contents

Communication Links

control message delivery

controls message emission

LocalClock

Processor

empty message sends

full message sends
full message receives

Send Module

Figure 1: Schematic arrangement of the modules of a processor in a clock synchronization

system.

derivable from the system speci�cations).

An external synchronization algorithm is called general if it works for any bounds mapping,

i.e., it does not rely on assumption other than those listed above. An algorithm is called optimal

if at all points, the di�erence ext U � ext L is minimal in the sense that for any output [a; b]

with b�a < ext U �ext L, there exists an execution which is indistinguishable from that point,

and such that the source time is outside the interval [a; b].

2.3 Overview of Known Results

For the purpose of the unfolding discussion, it is convenient to use the notion of virtual delay

between points, de�ned as the di�erence in their local times. Formally, virt del (p; q) = LT (p)�

LT (q). The concept of synchronization graph [20] is de�ned as follows.
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De�nition 2.1 Given a view � and bounds mapping B for �, the synchronization graph for �

and B is a weighted directed graph, denoted ��B = (V;E;w), where V is the set of events in

the execution, (p; q) 2 E if and only if B(p; q) < >, and w(p; q) = B(p; q)� virt del (p; q).

The synchronization graph translates the synchronization problem into a distance compu-

tation problem, as implied by the following theorem [20].

Theorem 2.1 (Clock Synchronization Theorem) Let � be a view, B a bounds mapping

for �, and let p; q be two points in �. Let d be the distance function in the synchronization

graph ��B. Then for all executions � with view � satisfying B we have that

RT (p) � RT (q) 2 [virt del (p; q)� d(q; p); virt del (p; q) + d(p; q)] :

Furthermore, there exist executions �0 and �1 with view � satisfying B such that in �0 we

have RT (p) � RT (q) = virt del (p; q) � d(q; p), and in �1 we have that RT (p) � RT (q) =

virt del (p; q) + d(p; q).

The clock synchronization theorem essentially says that the output of an optimal clock syn-

chronization algorithm is simply distances in the corresponding synchronization graph. These

distances are easily computable in principle, as demonstrated by the following algorithm.

General optimal algorithm for external synchronization. Send, in every message, the

complete local view from the send point. Merge local views in the natural way. At any point,

compute the synchronization graph de�ned by the local view from that point and the associated

bounds mapping. Set ext L = LT (p)� d(sp; p) and ext U = LT (p) + d(p; sp), where sp is any

point which occurs at the source processor, and d is the distance function in the synchronization

graph.

It is easy to verify (by substituting LT (sp) = RT (sp)) that the bounds in the algorithm

above coincide with the bounds in Theorem 2.1, and hence it attains optimal synchronization

bounds. However, the algorithm is hardly practical: the size of the synchronization graph is

usually linear in the number of the events in the execution (this is the case if the real-time

speci�cations are given for messages and bounded-drift clocks). The complexity of the simple

algorithm, thus, cannot be bounded by a function of the network size. Moreover, it has been

proven that under a certain variant of the branching-program model [4, 3], one cannot have a

bounded-complexity algorithm for general synchronization which gives optimal synchronization

bounds [19].

3 Optimal Synchronization With Drifting Clocks

In this section we present and analyze a new external clock synchronization algorithm. The

algorithm is general and optimal, and thus not always e�cient. However, the complexity of the
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algorithm is expressed in terms which are bounded by a polynomial in the size of the system

in most practical scenarios, as we discuss in Section 4.

We construct the new algorithm in two steps. We �rst reduce the problem to a pure dynamic

graph problem, using the Clock Synchronization Theorem, and then give an algorithm for the

graph problem.

Our starting point is the general algorithm sketched in Section 2.3. Fix an external synchro-

nization system. By Theorem 2.1, we know that the output of an optimal clock synchronization

algorithm at point p is essentially the distance between p and the source point in the synchro-

nization graph associated with the view of the execution from p. Thus, we can restate the

problem as computing, at every point p, the distances between p and the source point. We can

further abstract the problem as the following more general dynamic graph problem.

Accumulated Graph Distance Problem (AGDP).

� Initially, there is a graph with exactly one node marked as source. The source is marked

live .

� Thereafter, the input is given in steps. In each step a new node and a few edges are added

to the graph. The new node is marked live , and the new edges connect only other live

nodes to the new node. At the end of each step, some of the nodes at the endpoints of

new edges are unmarked as live (they will be called \dead" later).

� The task is to compute, at all times, the distance from the source point to each live point.

The central concept we need for the reduction of external synchronization to AGDP is

formalized in the following de�nition.

De�nition 3.1 Let � be a view. The live points of � are all points p such that either

� p is the last point at some processor v, or

� p is a send event of a message whose receive event is not in �.

3.1 Transforming External Synchronization to AGDP

It is straightforward to reduce the external synchronization problem to AGDP as follows

(see Figure 2 for pseudo-code). As mentioned above, the local view of an execution can be

thought of as a graph. As the execution unfolds, the local view is extended by adding nodes

(events) and edges (e.g., message deliveries). Suppose for the moment that somehow, all events

in the local view from a point are reported to the processor at or before that point (this is

accomplished using a variant of standard techniques as we explain shortly). In cases where

the view is extended by more than just a single node and its incident edges (this may occur
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State:

Hv: set of events with local times and location of occurrence history bu�er

Cvu[w]: for each neighbor u and processor w, a pointer to Hv Cvu[w] is last

event in w v knows u knows

M : set of events current message

Event: message M sent to a neighbor u

M  fp 2 Hv j LT (p) > Cvu[loc(p)]g �ll message contents

for each w 2 V :

Cvu[w] = maxfLT (p) j p 2 Hv and loc(p) = wg

Hv  fp 2 Hv j for some neighbor u0 LT (p) � Cvu0[loc(p)]g garbage-collect

Event: message M received from a neighbor u

Hv  Hv [M

for each w 2 V :

Cvu[w] = maxfLT (p) j p 2 Hv and loc(p) = wg

Hv  fp 2 Hv j for some neighbor u0 LT (p) � Cvu0[loc(p)]g garbage collect

M  ; processing done

Figure 2: Code for the Transformation Algorithm

when a message is received), we break the insertion into a sequence of insertions. Nodes are

marked live, and unmarked, using De�nition 3.1. The edge weights are computed according to

De�nition 2.1.

To complete the reduction, we describe a way to ensure that at any point p, all events in

the local view from p are reported to the processor in which p occurs, by the time p occurs.

This is done using a technique similar to the \vector clocks" algorithm, used for asynchronous

systems [14, 9, 23]. Each processor v maintains, for each neighbor u, an array Cvu with an

entry Cvu[w] for each processor w in the system. Intuitively, Cvu[w] indicates the last event

in w which v knows that u knows: more precisely, Cvu[w] is the last event in w which was

either reported to u by v or or reported to v by u. In addition, each node v maintains a

local history bu�er Hv which records all known events p in the system such that for some u,

LT (p) > Cvu[w], where w = loc(p) is the processor in which p occurred. When a message is

sent by v to a neighbor u, all events that v does not know that u knows, i.e,. all events in

the set fp 2 H j LT (p) > Cvu[loc(p)]g are sent; the array Cvu is updated accordingly, and some

of the events in Hv may be discarded. When a message arrives from a neighbor u, the events

reported in the message are used to update Hv. They are also used to update Cvu: the new

value of Cvu[w], for each w 2 V , is the maximum (with respect to time) of the old value of
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Cvu[w] and the last event in w reported in the new message from u.

We now analyze the transformation algorithm above.

Lemma 3.1 Let p be any point in an execution of the system, and suppose that p occurs at a

processor v. Then the set of events reported to v up to point p is exactly the local view of the

execution from p.

Proof Sketch: The lemma is proven using the following stronger invariant (recall that \!"

denotes the happens-before relation).

Let v be any processor, and let p be any point occurring at v. For each neighbor u

of v, let Ru(p) be the latest between the last send event from v to u and the last

receive event of a message from u to v. Then at point p:

� Hv contains all events q in the local view from p such that q! Ru(p) for some

neighbor u.

� Cvu[w] is the last event which occurred at w such that w! Ru(p), for all nodes

w and all neighbors u.

The invariant is proven by a straightforward induction on the steps of the execution.

The following lemma is useful to amortize the communication overhead of the algorithm.

Lemma 3.2 Each event is reported at most once over each edge in each direction.

Proof: Follows from the fact that once an event which occurred at a processor w is reported in

a message from a processor v to a processor u, Cvu[w] is advanced so that the reported event

will not be reported again on that link.

The following lemma gives a bound on the space requirement under a certain assumption

for the \relative system speed," i.e., the rate in which events occur in di�erent processors in

the system.

Lemma 3.3 Suppose that the maximal number of events in the system between two successive

send events on a link is at most K1. Then the transformation algorithm above can be imple-

mented using O(K1D + �jV j) space at each node, where D is the diameter of the network, and

� is the number of neighbors of that node.

Proof: The space required to implement the algorithm consists of two parts: the C arrays and

the H bu�er. Implementing the arrays C requires, at each processor, � � jV j pointers to the H

bu�er. We now prove that for all v 2 V , jHvj � K1(D + 1), where jHvj denotes the number of

events stored in Hv. Fix a time t. For each w 2 V , let pw be an event occurring at processor

w such that LT (p) � Cvu[w] for all neighbors u of v, and de�ne Svt = fpw j w 2 V g. Svt is the

set of all \oldest" events in Hv in the following sense: if an event p0 occurring at processor w

is added to Hv after t, then LT (p0) > LT (pw). Using the assumptions of the lemma, we bound
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the number of events occurring in the system until all events in Svt are purged from Hv. Fix

a node w 2 V , and let qw be the event immediately following pw at w. Consider a shortest

path from w to v. By the assumptions, the report of qw is progressing along this path and

will therefore arrive at v after no more than K1D events have occurred in the system. After

no more than additional K1 events, qw is reported by v to all neighbors of v. Since at this

point, qw ! Cvu[w] for all neighbors u of v, and since pw ! qw, pw must have been purged

from Hv. Thus at that point in time, all events in Svt have been purged from Hv. Since at any

point in time, Hv contains only events which occurred before that point, we may conclude that

jHvj = O(K1D) always.

Remark: bit and word complexity. The complexity analysis above is for the \word

model" where we assume that a memory word is su�cient to contain a node identi�er. In our

case, a the natural node identi�er is a pair consisting of processor ID and local time. In the

case of in�nite executions, the local time grows unboundedly. For node labels under in�nite

executions, it is possible to use the bound on the system relative speed to apply a garbage

collection scheme which recycles node labels. Thus the bit-complexity of the algorithm can be

bounded. Details will be provided in the �nal version of the paper.

Another subtle point in our analysis for the bit-complexity model is that edge weights are

treated as real numbers. From the information theoretic point of view, the space complexity of

a real number is in�nite. We avoid this di�culty by assuming that we can store time-stamps in

special slots in messages and in memory, and apply to them only linear transformations. (This

is the model under which the space lower bound was proven [19].)

We remark that from the practical viewpoint, both di�culties above are non-problems: a

time-stamp is represented by a �xed-length structure (e.g., 64 bits in NTP [16])

3.2 A Solution to AGDP

We now describe an algorithm solving AGDP (see Figure�g-agdp for pseudo-code). Intu-

itively, the AGDP speci�cation allows edges to be linked only to live nodes; we shall see that

dead nodes can be completely ignored, so long as we keep track of distances between live nodes.

Speci�cally, the algorithm is as follows.

Algorithm for AGDP. Let � = (V;E;w) be the graph de�ned by the input to AGDP.

The idea of the algorithm is to maintain a directed weighted graph G = (V 0; E 0; w0) which is

a succinct representation of �. Initially, G = �, i.e., G consists of a single node (the source

node). In each input step, the new node is added to V 0, and the new edges are added to E0 (we

later prove that all live nodes of V are in V 0, so that edge insertion to G is well de�ned). Let

H denote the graph G extended by the new node and edges. Next, construct a fully-connected

graph whose nodes are the all nodes in H, where the weight of an edge is the distance between
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State:

G, succinct representation of accumulated input

H : directed weighted graphs intermediate graph for computation

Input step: insert node p, edges F , unmark nodes Y

V (H) V (G)[ fpg

E(H) V (G)[ F

wH(e) 

(
wG(e); if e 2 E(G)

wF (e); if e 2 F

V (G) V (H)� Y

E(G) V (G)� V (G)� f(p; p) j p 2 V (G)g

for each (p; q) 2 E(G)

wG(p; q) dH(p; q)

Figure 3: Code for the AGDP Algorithm.

the nodes in H: this is done by running a dynamic version of all-pairs shortest-paths algorithm

on H, to be explained later. From the fully-connected graph we �nally delete all dead nodes

and their incident edges, to obtain the graph used by the algorithm in the next step.

We claim that the distance between any two live points in G is exactly the same as the

distance between these points in the original graph. This claim is proven by the following

invariant.

Lemma 3.4 Let G = (V 0; E0; w0) be the graph generated by the algorithm above for input

describing � = (V;E;w). Then:

1. V 0 is exactly the set of all non-dead nodes of V .

2. For each ordered pair (x; y) of non-dead nodes of V we have that (x; y) 2 E0 and that

d�(x; y) = w(x; y).

Proof: By induction on the inputs. The base case is trivial, since initially, G = � and they

both contain a single live node and no edges. Suppose now that a new node p is added to �

with some incident edges. To �x notation, let �� denote the extended � , and G� denote the

the graph generated by the algorithm after the insertion. H will denote the intermediate graph

computed before G� is determined. We also use the following additional notation: for a path

P , let jP j denote its length, and let �rst(P ); last(P ) denote its �rst and last node, respectively.

Assertion (1) of the lemma follows directly from the induction hypothesis and the fact that H

contains all nodes which are live in ��. We now prove Assertion (2). Let x; y be any pair of

nodes in G�. We prove �rst that wG�(x; y) � d��(x; y), and then the reverse inequality.
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By construction, there exists an edge (x; y) in G�, which corresponds to a shortest path

P in H. Since P is a shortest path, it is simple, and hence we may decompose P into three

segments P = P0P1P2 where:

� P1 contains all edges incident to the new node p,

� P0 is the pre�x of P up to P1, and

� P2 is the su�x of P from P1.

(Each of the segments may be empty.) Clearly, only P1 can contain new edges. Hence P1

appears in ��, while P0 and P2 consist of edges of G only. Furthermore, we claim that each of

P0 and P2 consist of one edge, if it exists. This follows from the fact that P0 (and similarly P2)

is a shortest path between its endpoints, and by the induction hypothesis. Next, we consider

the path Q in �� obtained by concatenating the path corresponding to P0 (whose existence

is guaranteed by the induction hypothesis), then P1, and then the path corresponding to P2
(which, again, exists by induction). Since Q is a path in ��, and since jQj = jP j = wG�(x; y),

we may conclude that wG�(x; y) � d��(x; y).

We now turn to prove that wG�(x; y) � d��(x; y). Let Q be a shortest path between two

non-dead nodes x; y in ��. We decompose Q = Q0Q1Q2 as above, i.e., only Q1 may contain

edges incident to the new node p. By the algorithm, Q1 is also a path in H. Furthermore, since

Q0 and Q2 are shortest paths in �, we have by induction that there exist edges e0 = (x; last(Q0))

and e2 = (�rst(Q2); y) in G such that wG(e0) = jQ0j and wG(e2) = jQ2j. It follows that the

path P obtained by concatenating e0; Q1 and e2 is a path in H and that jQj = jP j. Therefore,

d��(x; y) = jQj � dH(x; y) = wG�(x; y).

We summarize the properties of the AGDP algorithm in the following lemma.

Lemma 3.5 Suppose that the number of live points in an instance of AGDP is always smaller

than L, for some given L. Then AGDP can be solved in space O(L2) and time O(L2) per edge

insert operation.

Proof: The space bound is immediate from the fact that the number of nodes in G and H

is always O(L). The time bound follows from a simple observation due to Ausiello et al. [2]:

Whenever an edge (p; q) is inserted, the distance function can be updated by comparing, for

pair of nodes r; s, d(r; s) to d(r; p)+w(p; q)+d(q; s), where d denotes the old distance function.

We conclude with the following theorem, which is the main result of this paper.

Theorem 3.6 Suppose that in all executions of some external clock synchronization system of

diameter D, the number of live points in a local view of a processor never exceeds L, and that

between any two events on any processor, there are at most K1 events in the system. Then the

algorithm speci�ed above is an optimal external synchronization algorithm with space complexity
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at most O(L2 +K1D), time complexity at most O(L2) per message, and message size bounded

by O(K1D + �jV j), where � is the maximum degree in the system.

3.3 Dealing with Message Loss

Message loss presents a few problems for the algorithm above. For the AGDP algorithm, the

send events of lost messages may be considered as live points inde�nitely. The only way to avoid

that is to assume the existence of some detection mechanism which eventually 
ags messages

as lost, thus allowing us to mark the corresponding point as not live. Another problem arises

for Lemma 3.3, since with arbitrary message loss, we cannot know how many events will occur

until a report reaches some node. One way to overcome this problem is to have a re�ned

assumption, stating that the number of event in the system between two consecutive successful

message deliveries is no more than K1.

4 Applications

The complexity of the algorithm speci�ed in Section 3 depends on the number of live points in

the system. The following simple lemma bounds this number in most practical systems.

Lemma 4.1 Suppose that in all executions of a given connected systems, there are at most K2

messages sent over a link in one direction between two consecutive message sends in the other

direction. Then the number of live points in any local view in an execution is O(K2jEj).

Combining Lemma 4.1 with Theorem 3.6, we get the following useful corollary.

Corollary 4.1.1 Suppose that in all executions of a given system with diameter D, between any

two events on any processor, there are at most K1 events in the system, and that between any two

consecutive sends events in one direction on a link, there are at most K2 send events in the other

direction of that link. Then there exists an optimal external clock synchronization algorithm with

space complexity at most O((K2jEj)
2+K1D), time complexity at most O((K2jEj)

2) per message,

and message size bounded by O(K1D + jV j2)

Using Corollary 4.1.1 we can derive complexity bounds on most synchronization systems.

We demonstrate with two prominent examples: NTP and Probabilistic Clock Synchronization.

The infra-structure of NTP [15, 16], used for clock synchronization over the Internet, consists

of a distributed system of time servers. Time servers connected to a radio clock or to an atomic

clock are declared to be level 0 servers; other servers obtain their time from (usually more than

one) lower level servers, and their level is essentially the number of hops to the closest server.

A client gets a time estimate by consulting one (or more) of the servers. Using the terminology

of Section 2, one can model this situation by assuming an abstract source node representing

standard time, connected to level 0 servers with links representing the accuracy of those servers;

14



the rest of the network is represented by its underlying graph. NTP uses remote procedure

call mechanism for communication. The servers are probed periodically, where the length of

the period is C minutes, where 1 � C � 16. This organization has the property that the

number of events in the system between two consecutive sends on a link is linear in the number

of nodes, and the number of live points in any given time are linear in the number of edges.

More speci�cally, in the language of Corollary 4.1.1, we have that K1 � 16jV j and K2 � 2. We

can therefore conclude that that under the communication pattern of NTP systems, the space

complexity of the new algorithm is O(jEj2).

Probabilistic clock synchronization [5] is founded on a di�erent idea. The basic observation

is that the behavior of a link can be roughly described as obeying a probability distribution

under which a quick round-trip is likely to occur within a few trials. When a client in a typical

system notices that its synchronization bounds have become too loose (due to clock drift with

the passage of time), it will initiate a burst of round-trip probes until it can deduce su�ciently

tight synchronization bounds. Probabilistic clock synchronization is not very detailed about

the organization of the servers for more than a two-level hierarchy: we shall assume that they

are organized in a similar fashion to NTP. Let us now do a crude analysis of such a system.

In line with the basic assumptions underlying probabilistic clock synchronization, let us denote

by Xe a random variable which take the value 1 when a successful (i.e., quick) round trip is

made on a link e. Let us further denote by Ye(t) the random variable which takes the time

duration of a succession of trials starting at time t until Xe = 1. We assume that the Ye are

mutually independent, and that for each e, Pr(Ye � T ) � p0 for some parameters T and p0.

We further assume that for all times t, the probability that a processor v loses synchronization

(and hence starts a series of trials) is at most p1, for some parameter p1 � p0. Under these

simplistic assumptions, we can apply Corollary 4.1.1 with K1 = O(p1jV jT ) and K2 = 2 and

conclude that with high probability (polynomial in p2), the space and time complexities of our

algorithm are O(jEj2).
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