
Fast Digital Identity Revocation

(Extended Abstract)

William Aiello1 Sachin Lodha2 Rafail Ostrovsky3

1 Bell Communications Research, email: aiello@bellcore.com
2 Rutgers University Computer Science Department,

e-mail: lodha@paul.rutgers.edu. Part of this work was done while this
author visited Bellcore, also partially supported by DIMACS.
3 Bell Communications Research, email: rafail@bellcore.com

Abstract. The availability of fast and reliable Digital Identities is an
essential ingredient for the successful implementation of the public-key
infrastructure of the Internet. All digital identity schemes must include
a method for revoking someone's digital identity in the case that this
identity is stolen (or canceled) before its expiration date (similar to the
cancelation of a credit-cards in the case that they are stolen). In 1995, S.
Micali proposed an elegant method of identity revocation which requires
very little communication between users and veri�ers in the system. In
this paper, we extend his scheme by reducing the overall CA to Directory
communication, while still maintaining the same tiny user to vendor
communication. We contrast our scheme to other proposals as well.

KEYWORDS: Certi�cate authority, certi�cate revocation, signatures,
public-key infrastructure, digital identities.

1 Introduction

MOTIVATION:Digital identities (and author-identities of messages) are essen-
tial for business, private, and government use of the Internet. For example, they
are needed for on-line shopping, business-to-business transactions, on-line bank-
ing, code-authentication, company-internal identities, etc. (see, for example, [16,
17]). The U.S. Federal government, NIST, the U.S. Post-o�ce, Visa and Mas-
ter Card, some major banks, and private companies (like VeriSign, SIAC, IBM,
GTE, and Microsoft) are all building digital identity infrastructures. While the
general design of all these schemes is similar, and relies on public-key cryptog-
raphy and Certi�cate Authority services, the details (and hence the e�ciency)
of what it means for a digital identity to be valid , and how it can be revoked
di�ers from scheme to scheme.

THE GENERAL SETTING: The general setting consists of two ingredients
blended together, namely, public-key cryptography [1] and a Certi�cate Author-
ity Infrastructure (PKI). We brie
y review both notions.

Public-key cryptography encompasses digital signatures and public-key en-
cryption. A digital signature scheme is a triple of algorithms, a key generation
algorithm which generates a public key and a secret key, the signing algorithm
and the veri�cation algorithm. The signing algorithm uses the public and private
key to generate a signature for an arbitrary document. The veri�cation algorithm
uses just the public key to verify the signature of a document. The speci�cations
require that all signatures generated with the valid secret key are veri�ed by
the veri�cation algorithm; and, without the private key it is computationally
infeasible to generate a signature for a (previously unsigned) message which the
veri�cation algorithm would accept. Public-key encryption is also a triple of al-
gorithms, a key-generation algorithm which produces private and secret keys an
encryption algorithm and a decryption algorithm. Anyone, given the public key
can encrypt a message using the encryption algorithm, but only those who have
the secret key can e�ciently decrypt. For formal de�nitions and further details
see [13,3, 4].

When using public-key cryptography over the Internet, the main issue is the
ability to associate the right public-keys to the right individuals/organizations.
The overall strategy for doing so is as follows. In its simplest form, we assume one
or more trusted Certi�cate Authority (CA) centers which initially run the
signature key generation algorithm to compute its own public and secret keys.
Each CA holds its secret key under great security but widely distributes (say,
publishes in NY-Times) its public key (or uses some other method to \bind"
the public key to the CA). Now, any entity, who wishes to establish its digital
identity with this CA, �rst generates its own public-key/private-key pair. Then,
it submits its public key along with its name and other required identifying
information to this CA. The CA checks the name and identifying information and
if satis�ed signs the public key and the name of the individual along with some
subset of the identifying information, including expiration date a serial number,
and possibly other information. (The amount of identifying information and the
scrutiny of the information checking establish the level of trust with which a
public key is \bound" to the identi�ed entity.)

Now, any user can verify that a message came from this individual by ver-
ifying both the signature of the message against a given public key and also
verifying that this public key together with the right name and the valid ex-
piration date are properly signed by CA. The above simple scheme extends to
various hierarchies of CA structures (such as Federal Public Key Infrastructure
(PKI) hierarchy, banks, company-internal CA, etc.) where a user will belong to
many such hierarchies [14]. (See also [15] and references therein for more general
structures.) For all these schemes, no matter what the structure is, one of the
main bottlenecks is the issue of revocation.

THE MAIN BOTTLENECK:When a public-key, together with an expiration
date, is signed by a CA, there remains a risk. That is, a user's private key and
certi�cate may be stolen/compromised, or a company's private key and certi�-
cate may be retained by a former employee. Without a method for certi�cate
revocation, these keys may be used by unauthorized parties. Just as with credit-
cards, occasional revocation is a fact of life. According to some estimates, about
10% of public keys will usually be revoked before they expire [9]. Thus, an im-
portant element of any CA scheme (or hierarchy) is its revocation procedure.

Notice, that with revocation, the above simple setting becomes more involved,
since now to verify that some public key is valid, one must not only check that
it has been signed by the proper CA, but also that is has not been revoked.
(Moreover, in case of CA hierarchy, one must certify that the CA public key has
not been revoked either). Thus, the de�nition of one's identity depends on the
revocation rules in an essential way. In this paper, we extend an elegant method
of S. Micali [9, 10] of doing revocations. Before we explain our approach, let us
review the design objectives and previous work done on this issue.

THE SETTING: Our setting is the one identical to [9]. We review it here.
We consider some �nite universe of users. The setting consists of one or several
trusted certi�cate authorities, which distribute, at regular intervals (for exam-
ple, each day), information regarding revoked certi�cates to several untrusted
directories D. (The reason for having many directories is to allow replication of
data) For each day, any directory should be able to provide a proof whether any
user's u public key is valid or revoked. Of course, we insist that the directory
(which is untrusted) can not cheat and change revocation status for any user.
The proof of the revocation status the Directory can provide either to user him-
self (who can then pass it along to any vendor or any other user who wishes to
check that the user's identity is still valid). The critical costs of the scheme are
of course the size of the proof of the validity of user's identity (i.e., this proof
should be as small as possible, since this is the most frequently used operation,)
as well as the communication from Certi�cate Authority to the Directories for
each period.

PREVIOUS WORK: We brie
y discuss some of the earlier work done on this
problem. Previous to our work, three possible revocation strategies were pro-
posed: the \centralized on-line solution"; Certi�cate Revocation Lists (see, for
example, [16]) and Micali's proposal and patent [9,10]. Independent of our work,
two other schemes by Kocher [6] and Naor and Nissim [11] have been proposed.
We review all these schemes below and point out the di�erences.

In the centralized on-line solution, similar to credit-cards, there is a CA
trusted central database, which maintains the status of all public-keys that have
not expired. The user, in order to verify that a public-key has not been revoked
makes a query to this central database, and receives an answer. The answer
must be authenticated, either implicitly by use of a private network, with a CA
signature, or with CA private-key authentication, provided that the CA shares
with this user a private authentication key. This centralized solution has several
drawbacks: the CA must be accessed for the veri�cation processes on-line (or
risk using revoked public-key) and its answer must be authenticated (to prevent
man-in-the-middle attacks of somebody impersonating to the CA).

The centralized on-line solution is not acceptable in many cases, and thus
a distributed solution is sought. One such solution is the so-called Certi�cate
Revocation List (CRL) (see, for example, VeriSign [16]). In this approach the
CA composes a list, say each day, of all keys thus far revoked and signs this list.
This list along with the CA's signature of the list is the CRL for that day. Each
day the CA sends the CRL to all the untrusted revocation directories all over the
network. To verify a public key certi�cate, the veri�er �rst checks the expiration
date. If the certi�cate has not expired it contacts any directory for that day's

CRL. If the public key does not appear in the CRL it is still valid. This solution
is better than the centralized solution, since now many sites maintain the CRL
list, and every such site, instead of maintaining the status of all public-keys
must only maintain a list of revoked public-keys, where typically R, the number
of revoked keys is much less than the number of keys N . The drawback is that
the proof that some key is still valid is the entire CRL list, signed by the CA.

In 1995 Micali proposed a scheme in which a veri�er needs only a small
number of additional bits beyond a user's signature and the user's public key
certi�cate and only a small amount of extra computation to insure that the user
has not been revoked [9, 10]. In this scheme, Micali uses the idea of o�-line/on-
line signatures [2], which in turn builds on the work of Lamport [7]. The basic
idea is as follows. Let f be a one-way permutation which is easy to compute but
hard to invert (in practice, MD5 or other hash-functions are used). Now, for each
user, u, the CA picks a random xu and computes yu = f(f(f � � �f(xu))), where
f is applied, for example, for 365 times to compute yu. This yu is called user u's
\0-token." For each user the CA includes the user's 0-token along with the users
public key, and expiration date and other certi�cate information in its signed
certi�cate. Now, after the �rst day, for each user u whose public key has not been
revoked that day, the CA releases user u's \1-token", f�1(yu), to the directories
in the network (which is can compute from xu or from cached intermediate values
of f i(xu)). Note that, given a 0-token for a user u it is easy to check whether
a candidate token is a 1-token for user u, but computationally infeasible to
compute a 1-token for user u. To verify on the second day that the public key
of a user u was not revoked on the �rst day, a veri�er gets a candidate token
from a directory or a candidate token from the user (who retrieved it already
from a directory). The veri�er then checks whether the candidate is a 1-token
for the user. In general, if u's certi�cate is not revoked up through day i, the CA
provides u's i-token, f�i(yu), to the directories. Veri�er on the i+1st day check
whether candidate tokens are i-tokens for users. The advantage of the scheme
is that communication between a directory and a user (or veri�er) is small and
need not be authenticated. If a given protocol calls for the user to retrieve the
day i-token from the directory then the token remains a short certi�cate for
day i + 1 that user has not been revoked. In addition, verifying a day i-token
is less expensive then verifying the signature of a CRL. The disadvantage is
that the scheme requires (for each day) the CA to send N � R tokens to each
directory where N is the number of public keys and R is the number of revoked
keys. Micali also considers (as in our setting) the case where a directory may act
maliciously by not forwarding the day i-token of a user it received from the CA
to the user or veri�er. A non-revoked user could thus be considered revoked by
a veri�er. To prevent this Micali modi�es his scheme as follows. For each user
the CA also chooses a random x0u, the \revocation token," and includes f(x0u) in
u's certi�cate, along with the 0-token and other certi�cate information. When
u's public key is revoked the CA sends the revocation token to the directories.
When a directory is queried about a user on day i+ 1 it must return either the
day i-token or the revocation token for that user.

Recently, Naor-Nissim [11] have improved upon a scheme of Kocher [6]. We
will describe the requirements of their scheme. For the details of the scheme
see [11]. For R revoked keys, in the Naor-Nissim scheme the CA maintains an
authenticated 2-3 tree of hash values of depth O(logR). For each public key

which is revoked in an update period, the CA must update this special tree
by computing O(logR) new hash values. As long as one key is added to this
revocation tree the root must be recomputed and signed. The CA sends to the
directories the lists of users to insert and delete, and a signature of the root.
The directories insert and delete the users from the tree, recompute the hash
values and check the signature of the root. When a user queries a directory
concerning the revocation status of a key, the directory sends O(logR) hash
values and the signature of the root. To verify the revocation status of a key,
a user must compute O(logR) hash values, compare them in a speci�ed way
with the hash values from the directory and verify the signature of the root hash
value. In summary, the CA to Directory communication of Naor-Nissim scheme
is superior to our scheme (as well as Micali's scheme) but the veri�cation of the
revocation status of the user (or vendor) is smaller for Micali scheme and our
scheme.

OUR RESULTS:We will build on Micali's scheme [9, 10] to maintain its advan-
tage of e�cient veri�cation. Recall that in Micali's scheme every user's certi�cate
contains one 0-token. In order for the user to remain unrevoked on day i+1 the
CA must publish the i-token associated with the user's 0-token. In our scheme
the CA will incorporate k 0-tokens into the certi�cate for each user rather than
just one, where k will be a parameter of our scheme. The sets of 0-tokens for the
users will be distinct, however, the sets may intersect substantially. The rule for
remaining unrevoked will now be slightly di�erent. In order for a user to remain
unrevoked on day i+1 the CA need only publish an i-token associated with one
of the user's 0-tokens. Since the sets of 0-tokens may intersect, one i-token may
act as a certi�cate of non-revocation for many users. Thus the CA may not need
to publish N �R tokens when R keys have been revoked as in Micali's scheme.
For example, we show that if the number of 0-tokens in each certi�cate is logN ,
and the sets of 0-tokens in each user's certi�cate are selected properly, then the
number of tokens a CA must publish during an update period is R logN=R.

In this paper we insist that the proof from user to vendor of the validity of
user's ID remains very small, as in Micali's scheme. For the scheme of Naor-
Nissim, this is not the case (i.e., while [11] substantially save on the CA to
Directories communication over [9], their proof of validity is bigger). In this pa-
per, we study the tradeo� between the number of 0-tokens needed in a certi�cate
and the number of tokens a CA must publish per update period. We summa-
rize our results (and compare it to Micali's scheme) below. Note that N stands
for the number of not-yet-expired certi�cates, R stands for number of revoked
certi�cates, and c is a parameter in the general scheme, typically a constant.

Scheme # Tokens from # Tokens per
Name CA to directories Certi�cate

Micali's Scheme N �R 1
Our Hierarchical Scheme R log (N=R) logN

Our Generalized Scheme R log
c
(N=R) + R (2c�1 � 1) log

c
N

Table 1. Comparison of Our Results and Micali's scheme

Notice that if the number of revocations is small our scheme is faster then
Micali's approach. However, even if the number of revocations is large, and in
fact for any value of R, 0 � R � N we show that the information update cost is
better then the above table indicates, and in fact is always smaller then N � R
of Micali's scheme. In practical settings, both our hierarchical scheme and our
general scheme with c = 3 provide savings in communication compared to the
Micali's approach. (For example, for the hierarchical scheme, with 10% revoca-
tion rate we gain 2:7 multiplicative factor improvement, and for 1% revocation
rate we gain 14:9-fold improvement over Micali's communication from CA to
Directories, while still required a single hash-value (i.e. 128 bits) proof of the
validity of one's identity. For the generalized scheme with c = 3 we get 2:9-fold
improvement for the 10% revocation rate and 19-fold improvement for 1% re-
vocation rate) If the percentage of revoked users is smaller then the savings are
more substantial. We should remark here that Micali's method to avoid mali-
cious directories by including one extra token in each certi�cate applies to our
scheme as well and we will not explicitly include this in the description of our
scheme.

In the Naor-Nissim scheme [11], the communication from CA to Directories
is smaller then our scheme and Micali's scheme. However, both Micali's scheme
and our scheme, the directories need only send one token (of 128 bits) in response
to a query about any key.

Paper outline: In the next section we describe our scheme and prove a bound
of R logR=N on the number of tokens the CA must send the directories. In
Section 3 we describe a generalization of our scheme which requires the CA to
send asymptotically fewer tokens to the directories using a novel complement
cover construction. (We believe that this construction is of independent interest,
and might be useful for other purposes as well.) In Section 4 we describe a variant
of our scheme which includes an incremental feature. That is, if some public key
is revoked on day i, we do not have to pay for this on the following days (i.e.
we pay for each revocation only once.) We now proceed with the details of our
scheme.

2 Hierarchical Scheme

2.1 Description of the Scheme

For concreteness, we will assume that certi�cates are valid for D days and that
certi�cates are revoked once per day. Let f be a one-way permutation from n
bits to n bits. Consider the following sequence: (r; f(r); f2(r); : : : ; fD(r)) where
r is a uniformly chosen n bit string. We will call this the chain of r and denote
it by cr . We will index this sequence in reverse order and starting from 0. That
is, the 0th element of the sequence,cr (0), is fD(r). We will call this the 0-token
of the chain of r. Similarly, cr(1) = fD�1(r) which we will call the 1-token of
the chain of r. Note that the 1-token is the inverse of the 0-token, i.e., cr(1) =
f�1(cr(0)) = fD�1(r). More generally, de�ne cr(j) = f�j(cr(0)) = fD�j(r),
j � 1. We will call cr(j) the j-token of the chain of r.

Note it is easy to verify whether a token � is an i-token of a chain once
the 0-token (or a j-token, 0 � j < i) of a chain is known. Simply compute

f i(�) (f i�j(�)) and check for equality with the 0-token (j-token). However, by
the properties of a one-way permutation, given any number of the j-tokens of a
chain, 0 � j < i, it is computationally infeasible to compute the i-token of the
chain.

Before we describe our revocation scheme it will be useful to review Micali's
revocation scheme. In the Micali scheme, for each user v there is a random n
bit string rv and a chain crv . For notational simplicity we will hereafter refer to
this as the chain of v and denote it by cv. In this scheme the 0-token of v, cv(0),
is incorporated into the certi�cate of v which is signed by the CA. If user v has
not been revoked up to and including day i then the CA will issue the i-token of
v in response to queries about the status of user v's certi�cate. Otherwise, the
CA will not issue an i-token.

To verify that signer v has not been revoked up to and including day i, a
veri�er must have v's certi�cate and a candidate i-token � for v which he obtains
from either the CA, a directory, or v (who had previously obtained it from the
CA or a directory). He accepts that v has not been revoked up to and including
day i if � is veri�ed to be the i-token of v.

We will now describe our �rst and simplest scheme for revocation. For sim-
plicity we will assume that the number of users N = 2l is a power of 2 and that
all users are issued certi�cates at the beginning of day 1. (We remark that these
assumptions can be relaxed. We introduce them here for the clarity of exposi-
tion.) Each user is given an l bit id v 2 f0; 1gl. We associate these ids with the
leaves of a labeled complete binary tree of height l in the natural way. That is,
label the root by the null string �, and label its two children by 0 and 1. Given
any node in the tree whose label is a binary string s of length less than l, label
one child with s0 and the other with s1. For each node u in this tree the CA
computes a chain cu.

For an l bit id, v, let (� = v0; v1; : : : ; vl�1; vl = v) denote the nodes on the
path from the root to v in this tree. Call the set of chains for this path the path
of chains of v which we denote by pcv, i.e., pcv = (cv0 ; : : : ; cvl). Furthermore,
call the set of i-tokens of this path of chains the path of i-tokens of v and denote
this symbolically as pcv(i), i.e., pcv(i) = (cv0(i); : : : ; cvl(i)). Of course, given
the path of 0-tokens of v it is easy to verify whether a token � is on the path of
i-tokens of v (and even easier to verify whether � is the i-token of, say, the jth
node on the path).

The CA's Certi�cates: When creating a certi�cate for user v, the CA includes
pcv(0), the path of 0-tokens of v, in the certi�cate (rather than just including
the 0-token of chain cv in the certi�cate as in the Micali scheme). Note that this
path consists of logN + 1 0-tokens.

The CA's Update Operation: Let Ri be the set users which have been revoked at
some point up to and including day i. At the end of day i, the CA will calculate
a subset of nodes of the labelled tree, called the day-i veri�cation nodes with the
following two properties.

1. For every v =2 Ri, there is at least one node of the path of v which is a day-i
veri�cation node.

2. For every user r 2 Ri, none of the nodes on the path of r is a day-i veri�cation
node.

For each node which is a day-i veri�cation node, the CA can compute (or has
cached) the i-token of that node. Call the collection of all such i-tokens the day-i
veri�cation tokens.

The CA sends the day-i veri�cation tokens to the directories.

A Directory's Query Response: In response to queries on day i + 1 concerning
user u, if u has not been revoked through the end of day i, then at least one node
on the path of u is a day-i veri�cation node. The directory issues the i-token of
one such node. This i-token is, by de�nition, a member of the day-i veri�cation
tokens. If u has been revoked, no node on the path of u is a member of the day-i
veri�cation nodes and, hence, the directory cannot issue an i-token.

The Veri�er's Operation: A veri�er v must verify both the signature of a signer
u and u's certi�cate. This certi�cate contains the path of 0-tokens of u. We
assume that the veri�er has retrieved u's certi�cate and a candidate i-token, � ,
from either the signer, the CA, or a directory. He accepts that u has not been
revoked up to and including day i if � is veri�ed to be an i token of one of the
nodes on the path of u.

By property 1 of the day-i veri�cation nodes, for a non-revoked signer u, an
i token of one of the nodes on the path of v will be available for the veri�er and
the veri�er will thus accept v.

By property 2 of the day-i veri�cation nodes, and the de�nition of one-
way permutation, it is computationally infeasible for a revoked user, u, or any
accomplice to deliver a token to the veri�er which the veri�er will accept as
being an i-token of a node on the path of u.

Calculating the Day-i Veri�cation Nodes Given a set of revoked users Ri, the
CA can calculate the day-i veri�cation nodes by operating on the labelled tree
as follows. First, mark as \revoked" every node in the path of every revoked
user. Now, the day-i veri�cation nodes consists of all non-revoked nodes which
are children of a revoked node. It is easy to verify that this set satis�es the two
properties above and moreover, that it is the minimal set which satis�es these
two properties.

As an example, suppose that none of the users have been revoked on day one,
then the set of day-1 veri�cation tokens consists of a single token: the 1-token of
the root. Since this 1-token is on every users' path of 1-tokens, a veri�er which
is given this token will accept every user.

As another example, suppose that the user denoted by the string of all 1s is
revoked the 1st day. The day-1 veri�cation tokens consists of the 1-tokens of the
l nodes 0; 10; 110; : : : ; 11 � � �110. It is easy to verify that this set can be used to
accept all but the revoked user.

In the next section we analyze the size of the set of veri�cation nodes as a
function of the number of revoked users.

2.2 Size of the Set of Veri�cation Nodes

In this section we derive an upper bound on the number of day-i veri�cation
nodes (and hence the number of day-i veri�cation tokens) as a function of the
number of nodes which have been revoked up to and including day i. Let N
denote the number of users and r be the number of revoked users.

De�nition 1. Let �T (N;R) be the number of veri�cation nodes in the labelled
tree for N users when the set of revoked users (leaves) is R. Let T (N; r) =
maxjRj=r �T (N;R).

We will assume that N is a power of 2. We now prove the following.

Theorem 1. For r = 0, T (N; r) = 1. For 1 < r � N=2, T (N; r) � r log (N=r).
And, for N=2 � N T (N; r) � N � r.

Proof Sketch: Let N = 2l so that the labelled tree is a complete binary tree
of height l. When jRj = r = 0, the set of veri�cation nodes just consists of
the root of the labelled tree and thus T (N; 0) = 1 for all N . When r = 1, our
algorithm will mark as revoked all the nodes on the path of this revoked user.
The algorithm puts all nodes which are children of revoked nodes into the set of
veri�cation nodes. There are logN such children. So, T (N; 1) = logN 8N .

Now consider the case when r > 1. First consider the case when r = 2k,
k � 1, is a power of 2. Consider the r subtrees in the labelled tree whose roots
are the nodes at depth k in the labelled tree. These trees have height l � k. We
de�ne the family of revoked sets ~R as follows. ~R, for j ~Rj = r, is in ~R if there is

exactly one revoked user of ~R in each of the subtrees of height l � k.
By our previous analysis for one revoked user in a tree, for any ~R 2 ~R each

subtree of height l � k requires l � k veri�cation nodes. Note that no other
veri�cation nodes are required. Hence, for any ~R 2 ~R, the total number of
veri�cation nodes, T (N; ~R), is just r(l � k) = r logN=r. We will now show that

for any set R =2 ~R, that �T (N;R) < r logN=r. Actually we will prove the stronger
statement in the lemma below. We will use the following de�nition. For any set
of revoked users R let sR be the number of subtrees of height l � k with no
elements of R.

Lemma 1. For r a power of 2 and for any set of revoked users R of size r there
is a ~R in ~R such that �T (N;R) � �T (N; ~R)� sR.

Proof: We begin with two simple lemmas.

Lemma 2. Let R be the set of revoked leaves and consider a maximal subtree
with no revoked leaves of height h. Let u be a leaf of this subtree. Then, �T (N;R[
fug) = �T (N;R) + h� 1.

To see this note that for the set R the subtree was covered by one veri�cation
node at the root of the subtree. However, the number of veri�cation nodes in
the subtree after u is added to the revoked set is h. ut

Lemma 3. Let R, for jRj � 2 be the set of revoked leaves and consider a min-
imal subtree containing exactly two elements of R of height h0. Let u be one of
the two elements. Then �T (N;R� fvg) = �T (N;R)� (h0 � 2).

To see this note that in R the subtree has 2h� 2 veri�cation nodes whereas
R� fvg it has h veri�cation nodes.

We will prove the Lemma 1 by induction. That is, we will show that for any
R with jRj = r and sR � 1, there is an R0 with jR0j = r such that sR0 = sR � 1
and T (N;R) � T (N;R0) � 1. Clearly, the lemma will then follow. ut

So, consider an R with jRj = r and sR � 1 subtrees of height l � k with
no elements of R. Let u be one of the leaves of one of these subtrees. Let v be
a leaf in R of a subtree of height l � k with two or more leaves in R. Such a
subtree must exists. Let R0 = (R=fvg) [fug. Note that the number of subtrees
of height l�k with no elements of R0 is sR�1. The maximal subtree containing
u but containing no elements of R has height at least l�k. The minimal subtree
containing v and exactly one other element of R has height at most l� k. Thus
using the two claims, we conclude that �T (N;R) � �T (N;R0)� 1. This concludes
the proof of the lemma. ut

We now consider the case when r is not a power of 2. We write r as 2k +m
where k = blog rc and 0 < m < 2k. We de�ne the family of revocation sets ~R in

a similar fashion to the case when r is a power of two. The revocation set ~R is in
~R if ~R has the following properties. Call a subtree of height l� k� 1 a i-subtree
if i of its leaves are in ~R. Now, of the 2k+1 subtrees of height l�k�1, r = 2k+m
of them are 1-subtrees and 2k � m of them are 0-subtrees. Furthermore, each
of the 0-subtrees is \paired" with a 1-subtree. That is, the sibling of the root
of each 0-subtree is a root of a 1-subtree. (Note that such a pairing is possible
since the number of 0-subtrees is strictly less than the number of 1-subtrees.)

Now let us consider the number of veri�cation tokens required for a ~R in
~R. Because each 0-subtree is paired with a 1-subtree, the root of each 0-subtree
must be a veri�cation node. The number of veri�cation nodes required for each 1-
subtree is just l� k� 1. Thus, for each ~R in ~R, T (N; ~R) = r(l� k� 1)+ 2k�m.
If r > N=2 so that k = l � 1, then T (N; ~R) = 2k � m = N � r. Otherwise

T (N; ~R) = r(l � k)� 2m. Since

r log (r=2k) = r log (1 +
m

2k
) � m

r

2k
< 2m

it follows that r log (N=2k)� 2m � r log (N=r).
As before, for an arbitrary revocation set R we de�ne sR to be the number

of 0-subtrees for R. Note that sR � 2k�m for every R of size r = 2k+m. As in
the case when r is a power of two, the revocations sets in ~R have the maximum
number of veri�cation nodes. This follows from the following lemma.

Lemma 4. Consider a set of revoked users R whose size, 2k+m, is not a power
of 2. For each such R there is a ~R in ~R such that �T (N;R) � �T (N; ~R) � (sR �
(2k �m)).

Proof: The proof is in two stages. In the �rst stage we start with an arbitrary
R and �nd an R0 with 2k�m 0-subtrees such that �T (N;R) � �T (N;R0)� (sR �
(2k �m)). The �rst stage is identical to the proof of Lemma 1. It proceeds by
induction. Each step reduces the number of 0-subtrees by one and increases the
number of veri�cation nodes by at least one. The second stage begins with R0

and ends with an ~R 2 ~R. We will illustrate the �rst step of this stage. If R0 =2 ~R
then there are two 0-subtrees whose roots are siblings and two 1-subtrees whose
roots are subtrees. Let v be one of the elements of R0 in one of the two 1-subtrees
and let u be a leaf of one of the 0-subtrees. Let R00 = (R0=fvg) [fug. By our
previous claims T (N;R0) � T (N;R00)�1. This process can proceed by induction
on the number of 0-subtrees paired with 1-subtrees until we have a veri�cation
set ~R 2 ~R. ut

We remark that T (N; r) � N � r. This can be shown algebraically or just by
observing that by construction, the number of veri�cation nodes is never more
than the number of non-revoked users. The number of tokens the CA needs to
issue after r users have become revoked is at most T (N; r) in our scheme, and
hence, this is at most the number of tokens the CA needs to issue in the Micali
scheme which is N � r. For small r there is a large gap between the number of
tokens which need to be issued in both schemes. For example, if r = N=64 (i.e.,
a revocation rate of approximately 1.5%), then N � r = (63=64)N is larger than
T (N; r) � (6=64)N by almost a factor of ten.

3 Generalized Hierarchical Scheme

In this section we will �rst describe a set-theoretic object we call a complement
cover family . We will then show that it properly captures the idea of assigning
tokens to the non-revoked users. Finally, we will describe several complement
cover families which thus yield constructions for the revocations problem.

3.1 Complement Cover Families

Consider a universe U of size N . Let R be any subset of U and let S and F
denote families of subsets of U . Let �R = U �R denote the complement of R.

De�nition 2. S is a complement cover of R i�
S
W2S W = �R.

De�nition 3. F is a complement cover family of U i� for every subset R of U ,
F contains a complement cover of R. That is, for every subset R of U , there is a

subset S of F such that S is a complement cover of R,

We will see below that for all of our constructions of a complement cover
family F , for every subset R of U , there is a unique subset S of F which is
a complement cover of V . We will call such families unique complement cover
families.

For any unique complement cover family F , and every subset R of U , let
CCF(R) denote the unique complement cover of R which is contained in F .
Furthermore, denote the function �F as the size of the complement cover of F
which is de�ned as follows: �F (r) = maxR2U;jRj=r jCCF(R)j.

For every complement cover F and every element of u 2 U , de�ne HF(u) as
the sets in F which contain u. Let hF (u) = jHF(u)j denote the height of u in F .
By abuse of notation, de�ne the height of F , hF as maxu2U hF (u). Note that if
u =2 R then the intersection of CCF(R) and HF(u) is not empty, otherwise it is
empty. This follows from the de�nition of a complement cover family.

We will now show how a unique complement cover family can be used as
a data structure for certi�cate revocation. Let U be the set of users and F a
unique complement cover family of U . The CA creates a chain for each set S of
F . Call this chain cS .

The CA's Certi�cates: Recall that for every user u, HF(u) is the collection of
subsets which contain u. For each such subset there is a chain. Call this set of
chains the chains of HF(u). Denote the set of i-tokens of the chains of HF (u) as
the i-tokens of HF(u). The certi�cate signed by the CA of each user u contains
the 0-tokens of HF (u).

The CA's Update Operation: As before, let Ri denote the set of users which have
been revoked at some point up to and including day i. At the end of day i, The
CA will set the day-i veri�cation sets to be CCF(Ri), the complement cover of
Ri. De�ne the set of day-i veri�cation tokens to be the i-tokens of each set in
the complement cover of Ri. The CA sends the day-i veri�cation tokens to the
directories.

A Directory's Query Response: In response to queries on day i + 1 concerning
user v, if v has not been revoked through the end of day i, the directory computes
the intersection ofHF(v) and CCF (Ri). The directory issues an i-token of one of
the sets in the intersection. Note that this i-token is in the set of day-i veri�cation
tokens. If v has been revoked, the intersection is empty and, hence, the directory
cannot issue a token.

The Veri�er's Operation: The day-i veri�cation tokens are used by veri�ers on
day i+ 1 to test whether users have or have not been revoked at some point up
through the end of day i. This is done as follows. For a signer, v, as before a
veri�er is given v's certi�cate. This certi�cate contains the 0-tokens of HF(v).
In addition the veri�er retrieves a candidate i-token, � , from either the signer,
the CA, or some other source. He accepts that v has not been revoked up to and
including day i if � is veri�ed to be one of the i-tokens of HF(v).

By the de�nition of the complement cover of Ri, for a non-revoked user v
one of the i-tokens of HF(v) will be available for the veri�er and the veri�er
will thus accept v. In addition, by the de�nition of one-way permutation, it is
computationally infeasible for a revoked user or any accomplice to deliver a token
to the veri�er which the veri�er will accept as being an i-token of HF(v).

Since unique complement cover families are useful as revocation data struc-
tures we are interested in �nding a family F of U such that

1. jFj is O(N c) for some small constant c, i.e., number of chains required in
the system is practical.

2. hF is small, i.e., the number of 0-tokens in the certi�cate of every user is
small.

3. The complement cover of every set, CCF , can be e�ciently computed.
4. The size of the complement covers, �F (�) as a function of the size of the

revoked users is small.

3.2 Example Complement Cover Families

We consider two extreme, but simple, solutions for this problem :

{ F = ff1g; f2g; : : : ; fNgg. Given any R, U � R =
S
x=2Rfxg. Thus, F is a

complement cover of U . Clearly, jFj = N . Note that �F (r) = N � r and
hF = 1. Observe that this corresponds to Micali's scheme.
Note that since �F (r) = N � r, the number of tokens the CA must issue
when r is small is quite large.

{ F = 2U . Given any R, U � R 2 F . So, �F (r) = 1. Thus, the number
of day-i veri�cation tokens is 1 regardless of the number of revoked users.
However, the certi�cate size is hF = 2N�1 and jFj = 2N . Thus, the solution
is obviously not practical because the size of the certi�cates and the CA's
data structure is exponential.

These two families stand at two opposite poles - the �rst family has small
size and small hF but a large �F , and the second family has a small �F but large
size and large hF . Below we will describe a scheme which has the advantages of
both of the above.

3.3 Description of General Scheme

We will now describe a construction for a unique complement cover family which
is parameterized by integer c � 2. For simplicity, suppose that N = cl for some
positive l. The �rst subset we put into the family is the entire set of cl elements.
We next divide the elements into c subsets of size cl�1 each and put these subsets
into the family. These are level 1 subsets. Further divide each level 1 subset into
c subsets of size cl�2. These are level 2 subsets. Continue dividing the subsets
and adding them to the family until all the level l subsets of size one have been
added to the family. The collection of level i subsets which are subsets of the
same level i�1 subset are called siblings and the level i�1 subset is called their
parent. For example, in Fig. 1, f4g; f5g and f6g are siblings in level 2 and their
parent is f4; 5; 6g. Note that thus far we have (cl+1 � 1)=(c � 1) subsets in the
family and every element of U is in l + 1 sets.

If c = 2 we are done. Otherwise, we will continue to add to this family as
follows. For each collection of sibling subsets do the following. First, form subsets
which are the union of any two siblings. There are

�
c
2

�
such subsets. Add these

to the family. Then, form the subsets which are the union of any three siblings.
There are

�
c
3

�
such subsets. Add these to the family. In general, form the

�
c
i

�

subsets which are the union of i siblings, for 1 < i < c, and add these to the
family. This completes the subsets of the family.

Using edges to represent the (maximal, nontrivial) subset relation, this com-
plement cover family can be represented by a graph. See Fig. 1 for an example
when c = 3 and N = 32.

The size of this family is

cl � 1

c� 1
(2c � 2) + 1 � N

2c

c � 1
:

Also, it is easy to see that every element of U is in l(2c � 1) + 1 = hF �
2c logN= log c subsets of F .

The complement cover of a revoked set R, CCF(R), can be computed as
follows. As in the hierarchical scheme, �rst mark as revoked each singleton set
whose sole member is a member of R. In Fig. 1 these sets are denoted by an as-
terisk. Then mark as revoked each subset of F which is a superset of any of these
marked sets. In the graph representation, start by marking the revoked leaves.
Then mark the immediate supersets of the marked leaves. Continue working up
the graph until every superset of a marked set has been marked. In Fig. 1, the
marked sets are marked with an asterisk. The elements of CCF(R) are the max-
imal subsets of F which have not been marked. In Fig. 1, they are circled. These
elements are easy to �nd. For each set of siblings at a given level in which at
least one of the sets, but not all, is marked as revoked do the following. If exactly
one of the siblings is not marked, it is a member of CCF(R). For example, node
f3g in Fig. 1. Otherwise, there is a unique subset of the parent of the siblings

{4}

{4,5} {4,6} {5,6}

{7,8,9}

{7,8} {7,9} {8,9}

{7} {8} {9}{6}{5}

{4,5,6}

{2,3}*{1,3}*{1,2}*

{1,23}*

{1,2,3,4,5,6}* {1,2,3,7,8,9}*

{1,2,3,4,5,6,7,8,9}*

{1}* {2}*

{4,5,6,7,8,9}

{3}

Level 1

Siblings

Level 2
Siblings

Fig. 1. An example of the complement cover of f1; 2g for c = 3 and N = 9. The revoked
nodes are marked with an asterisk. The sets which comprise the complement cover are
circled.

which is the union of the unmarked siblings. For example, node f4; 5; 6; 7; 8;9g
in Fig. 1. This set is a member of CCF(R).

The size of the complement covers is given by �F (r) � r logcN=c
k � m �

r logcN=r � ck. This can be shown using methods similar to those for the hier-
archical scheme.

It is instructive to instantiate the scheme for several values of c.

1. c = 2 : This is the Hierarchical scheme. The size of the complement cover is
jFj = 2N � 1, �F (r) � r log (N=r) and hF = logN + 1.

2. c = 3 : This is an interesting case. It gives us a complement cover family of
size 3N�2 with �F (v) =

v
log 3

log N
v
). Note that there is a 50% increase in size

of F compared to the Hierarchical scheme, but more than a 50% decrease
in � (since log 3 = 1:585). So, it could be an alternative to the Hierarchical
scheme.

3. c = logN : jFj = (O(N2), �F (v) � v
logN=v

log logN
) and hF � N

logN
log logN

. Although

this setting achieves the lowest value for the size of the complement cover,
jFj and hF may not be practical for moderately large N .

4 Incremental Version

Under the current scheme, if r1 users are revoked on day 1 and r2 users are
revoked on day 2, the number of day 2 veri�cation nodes is a function of r1
whereas the number of day 3 veri�cation nodes is based on r1+ r2 although the
number of users revoked the previous day was only r2. We propose the following
modi�cation to our scheme such that the number of veri�cation nodes needed
for a given day depends only on the number of users revoked the previous day
and not on all of the users revoked thus far.

For the �rst modi�cation we replace each chain of tokens of length 365 with
a hash tree of depth 2 � 365, analogous to [8, 5]. The root value of the hash tree
becomes the 0-token. There is one such hash tree and 0-token associated with
every node in the labelled tree of N elements. On day i, for each node v in the
day-i veri�cation set, the CA gives the log(2 � 365) + 1 hash values needed to
compute the path from leaf 2i in the the hash tree to the 0-token associated
with the node v. Call this the day-i veri�cation path for node v.

Note that given the day-j, for 1 � j < i, veri�cation paths for node v,
it is computationally infeasible to compute the day-i veri�cation path for v.
This motivates our second modi�cation to the scheme. Recall that each user's
certi�cate contains logN 0-tokens, one for each node in the labelled tree on
the path from the user's id to the root. Previously, for a user to be veri�ed on
day i, the veri�er would a need a day-i veri�cation path for one of the user's
0-tokens. We change the protocol as follows. On day i, the CA computes the
day-i veri�cation set of nodes in the labelled tree using just the users revoked
the previous day. The CA sends to the directory a day-i veri�cation path for
each node in the day-i veri�cation set. Now, for a user to be veri�ed on day i,
the veri�er will need a day-1 through day-i veri�cation path with the additional
property that the root of each of the veri�cation paths is contained in the set of
0-tokens in the user's certi�cate.

This scheme reduces the CA to directory communication costs substan-
tially. It can be shown that the average daily cost is proportional to at most
(R=365) log(365N=R) where R is the total number of revocations throughout
the year. Of course, this reduction is gained at the expense of a larger commu-
nication requirement for the veri�er which is proportional to i for day i. This
latter communication requirement can be reduced to log365 by requiring the
CA to produce incremental veri�cation paths for the log 365 times scales of 2
days, 4 days, 8 days, etc. This only increases the average daily communication
cost of the CA by a factor of 2.

References

1. W. Di�e, M. Hellman, \New directions in cryptography", IEEE Trans. on Inf.
Theory, IT-22, pp. 644{654, 1976.

2. S. Even, O. Goldreich and S. Micali \On-line/O�-line Digital Signatures"
CRYPTO 1989.

3. S. Goldwasser, S. Micali \Probabilistic Encryption" JCSS Vol. 28 No. 22. April
1984.

4. S. Goldwasser, S. Micali, R. Rivest \A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks" SIAM Journal of Computing, Vol. 17, No
2, April 1988, pp. 281-308.

5. C. Jutla and M. Yung \Paytree: amortized signature for
exible micropay-
ments" In Second USENIX workshop on Electronic Commerce, November 1996.

6. P. Kocker, \A quick introduction to Certi�cate Revocation Trees (CRTs),"
http://www.valicert.com/company/crt.html.

7. L. Lamport \Password authentication with insecure communication" Commu-
nications of ACM, 24(11):770-771, November 1981.

8. R. C. Merkle, \A Certi�ed Digital Signature," Proceedings of Crypto`89,
pp. 234{246, 1989.

9. S. Micali \Enhanced Certi�cate Revoca-
tion System" Technical memo MIT/LCS/TM-542 , November 1995. available
online URL ftp://ftp-pubs.lcs.mit.edu/pub/lcs-pubs/tm.outbox/

10. S. Micali \Certi�cate Revocation System" U.S. Patent number 5666416, issued
Sep. 9, 1997.

11. M. Naor and K. Nissim, \Certi�cate Revocation and Certi�cate Update," Pro-
ceedings of USENIX `98.

12. R. Rivest \The MD5 message-digest algorithm"
Internet Request for Comments, April 1992. RFC 1321 available online URL
http://theory.lcs.mit.edu/rivest/publications.html

13. R. Rivest, A. Shamir, L. Adleman \A Method for Obtaining Digital Signature
and Public Key Cryptosystems" Comm. ACM, Vol 21, No. 2, 1978.

14. R. Rivest, B. Lampson \SDSI-A Simple Distributed Security Infrastructure"
available online URL http://theory.lcs.mit.edu/ rivest/sdsi10.html

15. M. Reiter, S. Stubblebine \Towards Acceptable Metrics of Authentication" In
Proc. of 1997 IEEE Symposium on Security and Privacy.

16. VeriSign Corporation, available online URL http://www.verisign.com/
17. Microsoft \Proposal

for Authenticating Code Via the Internet" April 1996, available online URL
http://www.eu.microsoft.com/security/tech/authcode/authcode.htm

