
Universal Service-Providers

for Database Private Information Retrieval
�

Giovanni Di-Crescenzoy Yuval Ishai z Rafail Ostrovskyx

December 21, 1999

Abstract

A private information retrieval scheme allows a user to retrieve a data item of his
choice from a remote database (or several copies of a database) while hiding from the
database owner which particular data item he is interested in. We consider the ques-
tion of private information retrieval in the so-called \commodity-based" model, recently
proposed by Beaver for practically-oriented service-provider Internet applications. We
present simple and modular schemes allowing to dramatically reduce the overall com-
munication involving users, and substantially reduce their computation, using o�-line
messages sent from service-providers to databases and users. The service-providers do
not need to know neither the database contents nor the future user's requests; all they
need to know is an upper bound on the data size. Our solutions can be made resilient
against collusions of databases with more than a majority (in fact, all-but-one) of the
service-providers.

�An extended abstract of this work appeared in Proceedings of the Seventeenth Annual ACM Symposium
on Principles of Distributed Computing, PODC '98.

yUniversity of California San Diego and Telcordia Technologies (formerly Bellcore), E-mail: gio-
vanni@cs.ucsd.edu.

zDepartment of Computer Science, Technion, Haifa 32000, Israel. E-mail: yuvali@cs.technion.ac.il. Part
of this work was done while visiting Bellcore.

xTelcordia Technologies (formerly Bellcore), 445 South Street, Morristown, New Jersey, 07960-6438, USA.
E-mail: rafail@research.telcordia.com.

1 Introduction

Cryptography in the 90's. With the wide-spread use of World-Wide Web and Internet
applications, cryptographic protocols are increasingly used in commercial settings. Hence,
while the trend of the 1980's was to establish general plausibility results, the trend of the
1990's is to consider solutions which are both provably secure and e�ciently implementable
in practical applications (for a more general discussion on this topic see surveys by Goldreich
[15] and Goldwasser [19, 18]). This is the case of the current work as well | here we show
how with the help of service-providers one can maintain the user's privacy while retrieving
information from a remote database with almost the same total communication cost to/from
the user as if we do not care about privacy at all.

Commodity-Based Cryptography. Motivated by a client-server paradigm, Beaver [2]
proposed a new \commodity-based" approach for the design of e�cient cryptographic proto-
cols. In his model there are several independent service-providers, called commodity servers
(or simply servers for short), which o�-line sell \security commodities" to their clients; these
commodities can be later utilized by the clients to perform more cheaply various crypto-
graphic tasks. An advantage of this model is that the servers do not need to know private
inputs of their clients, do not need to know which or how many other servers are being used,
and only send a single message (commodity) to each client. On the other hand, this setting
is clearly much more restrictive than the usual setting for secure multi-party protocols (as
in [31, 17, 6, 8]), which allows point-to-point multi-round communication. In [2], Beaver
showed how to achieve so-called \1-out-of-2 Oblivious Transfer" and \multicast" in this
model, provided that the majority of the servers are honest. We consider this model in the
context of remote database information retrieval.

Private Information Retrieval. Private information retrieval (PIR) schemes allow
a user to retrieve a data item of his choice from a remote database while hiding which
particular data item he is interested in. In the basic PIR setting the database content is
modeled by an n-bit string x, possibly replicated (for a reason that will be explained shortly)
in k � 1 distinct databases. The user, holding a retrieval index i, wishes to learn the i-th
data bit xi. A t-private PIR scheme is a protocol between the user and the databases in
which the user learns xi while keeping i private from any collusion of t databases (where the
user's privacy is either information-theoretic or computational, depending on the setting).
By default, PIR refers to 1-private PIR.

A trivial single-database solution to this problem is to let the database send its entire
content x to the user; however, while being information-theoretically private, the commu-
nication complexity of this solution may be prohibitively large. (For example, consider
retrieval from a Web search-engine.) While it is impossible to do better using a single-
database and maintaining information-theoretic user privacy [10], it turns out that if x is
replicated in two or more databases then there are much better solutions. We now brie
y
mention some of the work done in this area in the past. Private information retrieval with
information-theoretic user privacy was introduced by Chor, Goldreich, Kushilevitz, and Su-
dan [10], who constructed (1-private) schemes with communication complexity of O(n1=3)

bits for k = 2 databases, O(n1=k) bits for a constant number k � 3 of databases, and
O(log2 n log logn) bits for k = O(logn) databases. Ambainis [1] improved the k-database

upper bound to O(n1=(2k�1)) for any constant k (see [22] for an improved dependence on
k). Generalizations to t-private PIR were given in [10, 22].

Computational PIR schemes, in which the user's privacy should only hold with respect
to computationally bounded databases (relying on certain intractability assumptions), were

1

�rst considered by Chor and Gilboa [9], who constructed a 2-database scheme with sub-
polynomial communication and by Ostrovsky and Shoup [28] who considered private reading
and writing to/from multiple databases.

Kushilevitz and Ostrovsky [23] constructed the �rst single-database scheme with sub-
polynomial communication, thereby demonstrating that in the computational setting data
replication can be totally avoided. Subsequent improvements to the communication com-
plexity of their scheme (relying on stronger assumptions) were given by Stern [30] and most
recently by Cachin, Micali, and Stadler [7], the latter achieving poly-logarithmic communi-
cation. Single-database schemes were shown to imply the existance of one-way functions [5]
and Oblivious Trasnfer protocols [11]. Moreover, single-database scheme with communica-
tion complexity strictly smaller then the database size were recently shown to exist based
on any one-way trapdoor permutation [24].

Our Setting. The setting may be informally described as follows. Similarly to the original
PIR scenario, there is a user holding a retrieval index i and k � 1 databases holding copies
of an n-bit data string x. As before, the user wishes to retrieve xi without revealing i to the
databases. However, in our setting there are additionally one or more commodity servers
which may o�-line send randomized messages, called commodities, to the user and to each
of the databases. A commodity-based PIR scheme (or commodity scheme for short) consists
of the following two stages:

1. (o�-line commodity distribution stage): Each server, on input 1n and an optional
security parameter 1�, independently runs a probabilistic polynomial time sampling
algorithm, outputting k+1 strings (commodities) sent via secure channels to the user
and the k databases.

2. (on-line retrieval stage): With commodities from the o�-line stage as private inputs,
the user and the databases execute some private information retrieval protocol in which
the user sends queries to the databases and receives answers in return.

In a real-life setting, we envision many (perhaps competing) servers, where the user decides
which and how many of them to use. We measure both the o�-line communication in the
commodity distribution stage (i.e., size of commodities) and the on-line communication
between the user and the databases in the retrieval stage. Our main objectives are to
minimize the total communication involving the user (in both stages) and to shift most of
the overall communication to the o�-line stage. It should be noted that one clearly cannot
expect to achieve a better total complexity than that of ordinary (i.e., server-less) PIR
schemes, since the servers in any commodity scheme can be simulated by the user to obtain
an ordinary scheme of the same total complexity. We stress though that all of our schemes
allow minimizing the total communication involving the user to be logarithmic in n (and
polynomial in the security parameter in the single-database case).

Another major goal is to guarantee the user's privacy even when some of the servers
dishonestly collude with databases. One less obvious motivation for protecting against such
collusions is that a non-malicious yet faulty server (e.g., one with a bad random number
generator) may cause the same damage as a server which colludes with the databases. (In
contrast, faulty databases do not compromise the user's privacy, neither in our schemes nor
in previous PIR schemes.) In most of our multi-server schemes, even if all-but-one of the
servers collude with databases, the user's privacy still remains intact.

Our Results. We start by constructing single-server commodity schemes, where as long
as this server does not collude with the databases the user's privacy is guaranteed. We then
show how to compose such single-server schemes into multi-server schemes with improved

2

privacy properties. In particular, by establishing general transformations from PIR schemes
to commodity schemes (and by \plugging in" appropriate modi�cations of PIR schemes from
[10, 9, 23]) we obtain the following commodity schemes:

� Computational single database case: For any constant integers m; d � 1 we
construct an m-server, single-database computational scheme, withstanding collusions
of the database with up to m � 1 servers, with user's communication complexity
O(logn + poly(�)) (counting both the user's commodity and on-line communication)

and server-database commodity complexityO(��n1=d) (where � is a security parameter
and security is based on the Quadratic Residuosity Assumption).

� Computational multi-database case: For any constantm � 1 we construct an m-
server, 2m-database computational scheme, withstanding collusions of a database with
up to m � 1 servers, with user's communication of size O(logn) and server-database

commodity complexity � � 2O(
p
logn) (relying on the existence of a pseudo-random

generator). Schemes of this type are most appealing when the server-privacy threshold
is small and the database size is large. However, since the number of databases is
perhaps the most important complexity measure, such schemes are obviously useless
for all but very small values of m.

� Information-theoretic multi-database case: For any constant integersm; t; d � 1,
we construct anm-server, (mtd+1)-database information-theoretically private scheme,
withstanding collusions of up to t databases and m� 1 servers, with user's communi-
cation complexity O(logn) and commodity complexity O(n1=d). Schemes of this type
are most appealing when the database is moderately sized.

We then proceed to show how to make the amortized cost of our commodity schemes cheaper
and how to test commodities:

� Amortizing commodity cost for multiple queries: In most of our s-private
schemes (i.e., those that can withstand s dishonest servers), by using m > s + 1
servers the amortized commodity cost per query can be reduced to 1

s+1 � m
m�s times

the cost of a single query in the (s+ 1)-server scheme (while maintaining s-privacy).

� Commodity testing: We give procedures for verifying the validity of commodities
supplied by servers, allowing to ensure correctness of our schemes even in the presence
of faulty or malicious servers. This problem is particularly natural in a setting where
some of the (potentially many) servers may be malfunctioning. Moreover, the testing
procedure can be carried out o�-line, after the distribution of commodities and before
the actual retrieval.

We �nally discuss two extensions of the original problem; one concerns protecting privacy
of the data against a potentially dishonest user (in a sense that the user cannot get more
information than the single entry he has \paid for", see [13, 30, 27]) and another concerns
extension of our results to the related problem of private information storage [28].

Benefits for Private Information Retrieval. As discussed above, reducing the com-
munication cost of PIR serves as the main motivation for introducing commodity schemes.
Indeed, commodity schemes constructed in this work require little on-line communication
and little total communication involving the user; furthermore, their communication is typ-
ically unbalanced in a favorable direction: almost all of it is directed from servers to their
clients (namely users and databases) and from databases to their clients (namely users).
However, our transformations of PIR schemes into commodity schemes may also be ben-
e�cial for reducing the computation cost of PIR. A substantial portion of the user's com-

3

putation (to an extent depending on the underlying PIR scheme) is shifted to an o�-line
stage and is carried out by the servers. Even if better single-database PIR schemes are de-
vised1 this advantage may still justify the use of commodity schemes in the computational,
single-database case. Finally, a major disadvantage of single-database commodity schemes
over their PIR counterparts is that the user's privacy may be compromised if servers col-
lude with the database. To avoid this, one may use a degenerate form of our single-server
construction in which the user simulates the server; while obviously not reducing his total
work, this shifts most of the user's computation (and communication) to an o�-line stage
without compromising his privacy in any way.

Comparison with Related Work. It is instructive to illuminate two points of com-
parison between this work and Beaver's work [2], which introduces the commodity-based
model we use. First, protocols from [2] do not dramatically save on-line communication;
the main goals there are to provide a level of resilience which is impossible to achieve in
the information-theoretic setting without the aid of the servers, and to remove unneces-
sary interaction. Second, our solutions achieve resilience to collusions of databases with
up to m� 1 servers, in oppose to an optimal threshold of b(m � 1)=2c servers in Beaver's
Oblivious-Transfer protocol. This higher privacy threshold is made possible here because
of the di�erent setting, which allows either replication of data or computational privacy.

A very di�erent private information retrieval model using auxiliary servers was recently
proposed by Gertner, Goldwasser, and Malkin [12]. This model di�ers from Beaver's (and
our) model in that it allows servers to interact with the user and the databases. The
objective of [12] is also di�erent: it is not to decrease the total on-line work or the user's
work, but rather to reduce the amount of unprotected data replication in information-
theoretic PIR by allowing a database to \secret-share" its content with several data servers.

Organization. Section 2 contains some notation, as well as formal de�nitions of the
PIR and commodity PIR models. In Section 3 we summarize the complexity parameters of
speci�c PIR schemes which can be utilized for obtaining communication e�cient commodity
PIR schemes. Section 4 introduces atomic commodity schemes, and Section 5 deals with
composing them to improve their privacy properties. In Section 6 we construct multi-
database schemes based on the method of low-degree polynomial interpolation. In Section 7
we show that the commodity cost of our schemes can be amortized over multiple queries.
Section 8 provides procedures for testing the correctness of commodities distributed by the
servers. Section 9 discusses two extensions of the original problem. Finally, the appendices
contain a description of some PIR schemes referred to in Section 3, as well as more general
commodity testing procedures.

2 Preliminaries

2.1 General Notation

By Zn we denote the additive group of residues modulo n and by GF(q), where q is a prime
power, a �nite �eld of order q. Addition, subtraction, and multiplication operations will
sometimes be carried over a �nite group or �eld, as implied by the context. By y � z we

1Recent single-database PIR scheme [30, 7] fall short of being satisfactorily e�cient in two ways. First,
their computation cost is very high (for instance, the scheme from [7] requires the database to perform
n modular exponentiations over a large modulus). Second, even their communication overhead is quite
signi�cant for \realistic" choices of parameters, especially when retrieving multi-bit records.

4

denote the bitwise exclusive-or of the two binary strings y; z. By R we denote the set of
reals, by R+ the positive reals, by N the natural numbers, and by [k] the set f1; 2; : : : ; kg.
By logn we denote dlog2 ne, and by er, r 2 Zn, the r-th unit vector of length n (starting
with r = 0). We say that a function � : N !R+ is negligible if for every constant c > 0
there exists an integer �c such that �(�) < ��c for all � � �c.

By default, an algorithm refers to a probabilistic Turing Machine, and an e�cient al-
gorithm to a probabilistic polynomial time Turing Machine. We model adversaries by
nonuniform families of Boolean circuits. The size of a circuit F is the number of gates in
F . By F (y), where F is an l-input circuit and y is a string over a �nite alphabet, we denote
the value of the circuit F applied to the l-bit pre�x (or padding) of the binary encoding of
y.

Whenever referring to a random choice of an element from a �nite domain A, the asso-
ciated distribution is uniform over A, and is independent of all other random choices. We

use the following notation for de�ning probabilistic experiments and algorithms. By e
R E

we denote a choice of an element e from a distribution E (or uniformly from a �nite set
E), and by e v the assignment of the value v to e. By A(y), where A is an algorithm, we
denote the output distribution of the algorithmA running on input y, where the probability
space is induced by the random coins of A. If A is deterministic,A(y) will denote its output

value. By Pr[e
R E; f

R F ; � � � : p(e; f; � � �)], where p(�; �; � � �) is a predicate, we denote
the probability that p(e; f; � � �) will be true after the ordered execution of the assignments

e
R E; f

R F ; � � �.

2.2 Parameters for PIR and Commodity Schemes

We let k denote the number of databases, an instance of which is denoted DBj , andm denote
the number of commodity servers (or servers for short), an instance of which is denoted Sh.
A data string, denoted x, is held by all k databases and is unknown to the user and the
servers. Instead of only considering the default scenario where a single bit is retrieved, we
will occasionally be interested in the more general scenario of retrieving an `-bit record. To
this end we view the data string x as an n-tuple of length-` records, where ` = 1 by default.
The position, also called index, of a data record which the user would like to retrieve is
denoted by i, where i 2 Zn. Notice that under the above notation the data string is an
n-tuple from (f0; 1g`)n and the desired data record xi is a string in f0; 1g`. Finally, in the
computational setting � will denote a security parameter.

2.3 De�nitions

In the following de�nitions of PIR and commodity-based PIR schemes we restrict our at-
tention to the default setting of bit retrieval (i.e., ` = 1 and x 2 f0; 1gn). The more general
case is addressed in Subsection 2.4.

A PIR scheme is a randomized protocol, in which the user sends a query to each database
and receives an answer in return.2 At the end of the interaction, the user applies some re-
construction function to the answers, obtaining the desired data bit xi. A commodity-based
PIR scheme (or commodity scheme for short) consists of: (1) an o�-line commodity dis-
tribution stage, in which each server sends a (possibly di�erent) randomized string, called

2Amore general de�nition would allow multiple rounds of interaction, rather than a single queries-answers
round. However, all currently known PIR schemes require only a single round of interaction.

5

commodity, to the user and to each database; and (2) an on-line retrieval stage, which pro-
ceeds similarly to an ordinary PIR scheme except that queries, answers, and reconstruction
may also depend on commodities. Since PIR schemes may be viewed as server-less com-
modity schemes, their de�nition will be derived as a special case of the following \generic"
de�nition.

An m-server k-database commodity scheme C is de�ned by a quadruple of e�cient
algorithms (comC;queC ; ansC; recC), where:

� comC(1
�; 1n; h) is the commodity generation algorithm invoked by each of the m

servers; given a security parameter �, data size n, and server identity h, it outputs

randomized commodities (cuh; (c
db1
h ; : : : ; c

dbk
h)), where cuh is sent by Sh to the user and

each c
dbj
h to the corresponding database.

� queC(1�; 1n; i; (cu1; : : : ; cum)) outputs a k-tuple of queries (q1; : : : ; qk) generated by the
user on security parameter �, data size n, retrieval index i, and commodities cu1 ; : : : ; c

u
m

(where cuh is the commodity received from server Sh). If P is a PIR scheme, we
also need queP to output an auxiliary reconstruction information string z (possibly
containing some trapdoor information required for e�cient reconstruction) such that
reconstruction can later depend on the answers and z alone, without depending on
the index i, the queries generated by queP , or the random coins of queP . Although
taking z to include all random coins and inputs of queP will always do, it turns out
that a much shorter string z can be used in all currently known PIR schemes, without
a�ecting the computational e�ciency of reconstruction.3 This feature, which is not
very useful in the original PIR setting, turns out to be important in our context.

� ansC(j; x; qj; (cdbj1 ; : : : ; c
dbj
m)) outputs the answer of database DBj , 1 � j � k, on the

data string x, query qj , and commodities c
dbj
1 ; : : : ; c

dbj
m .

� recC((a1; : : : ; ak); (cu1; : : : ; cum); z) outputs a single bit reconstructed by the user from
the answers a1; : : : ; ak, commodities cu1 ; : : : ; c

u
m, and (in the case of PIR) reconstruction

information z.

The special case of PIR. A k-database PIR scheme P is de�ned as a 0-server k-database
commodity scheme. Hence P may be de�ned by a triple (queP ; ansP ; recP), where all
commodity-related inputs to these three algorithms are omitted.

Before proceeding to specify the semantic requirements a commodity scheme must obey,
two further syntactic remarks are in place.

1. Some inputs to the functions queC ; ansC ; recC will be omitted when they are not
needed. For instance, in most of our constructions all servers play a symmetric role,
in which case h will be omitted from the inputs of comC. We also omit the input 1�

whenever referring exclusively to information-theoretic schemes (which do not require
a security parameter). Finally, note that the parameters �; n are not given as explicit
inputs to ansP or recP ; however, they may be implicitly contained in their inputs (for
instance, the data string x determines n and a query qj may determine �).

2. For any scheme C we assume that both ansC and recC are deterministic. If C is strictly
a commodity scheme (i.e., with m � 1), we assume that queC is also deterministic,
which makes the user deterministic as well.

3In all information-theoretic schemes known to date [10, 1, 22], as well as in the computational scheme
of [9], either no such auxiliary reconstruction information is needed or only i is needed. In known single-
database computational schemes [23, 30, 7], z of length � or �+ polylog(n) su�ces (in [23], for instance, a
trapdoor consisting of the factorization of a �-bit modulus N is su�cient for e�cient reconstruction).

6

Any commodity scheme must satisfy both correctness and privacy requirements, de�ned
in the next subsections.

2.3.1 Correctness

A commodity scheme is said to be correct, if at the end of the retrieval stage the recon-
structed value is always equal to xi (assuming that all parties are honest). This requirement
may be relaxed to allow some small reconstruction error (as in [7]); we use the perfect cor-
rectness variant for simplicity.

We write two separate correctness de�nitions, one for PIR and one for commodity PIR
with m � 1, incorporating the above syntactic remarks.

A k-database PIR scheme P is correct, if for any �; n; x 2 f0; 1gn; i 2 Zn,

Pr[((q1; : : : ; qk); z)
R queP(1

�; 1n; i);

(a1; : : : ; ak) (ansP(1; x; q1); : : : ; ansP(k; x; qk)) :

recP((a1; : : : ; ak); z) = xi] = 1

where the probability is over the random coins of queP .
An m-server k-database commodity scheme C is correct if for any �; n; x 2 f0; 1gn; i 2

Zn,

Pr[(cu1 ; (c
db1
1 ; : : : ; cdbk1))

R comC(1
�; 1n; 1);

...

(cum; (c
db1
m ; : : : ; cdbkm))

R comC(1
�; 1n; m);

(q1; : : : ; qk) queC(1
�; 1n; i; (cu1; : : : ; c

u
m));

(a1; : : : ; ak) (ansC(1; x; q1; (c
db1
1 ; : : : ; cdb1m)); : : : ; ansC(k; x; qk; (c

dbk
1 ; : : : ; cdbkm))) :

recC((a1; : : : ; ak); (c
u
1; : : : ; c

u
m)) = xi] = 1

where the probability is over the random coins of the m independent invocations of comC.

2.3.2 Privacy

Informally, a commodity scheme is said to be (s; t)-private (and a PIR scheme t-private) if i
is kept private from any collusion of s (possibly dishonest) servers and t databases.4 We use
nonuniform security de�nitions for convenience; the security of our constructions extends
to the uniform setting as well.

Let T�[k] be the indices of t corrupt databases and S = fh1; : : : ; hsg�[m] the indices
of s corrupt servers, which may distribute arbitrary commodities. We do not restrict the
computation of corrupt servers during the commodity distribution stage; hence it may be
assumed without loss of generality that commodities sent by these servers are determined
by �; n.5 We will specify the (deterministic) corruption strategy of servers from S by a
function S�(�; �), such that S�(1�; 1n) returns a set f(h1; ch1); : : : ; (hs; chs)g specifying the

commodities sent by corrupt servers.6 We let V
S�;T
C = (C

�S;T
C ; Q

S�;T
C) denote the joint view

4Dishonest databases do not pose any risk to the user's privacy in our single-round setting.
5This follows from a standard \averaging argument"; namely, there is some �xed choice of the dishonest

servers' coins given which the adversary's advantage is maintained.
6Commodities sent by corrupt servers to databases are irrelevant to the user's privacy.

7

of databases from T , consisting of both commodities received from incorrupt servers in �S
def
=

[m]nS (included in the random variable C
�S;T
C) and on-line queries (included in Q

S�;T
C). More

formally, for any �; n; i 2 Zn and S; S�; T as above, the random variable V
S�;T
C (�; n; i) =

(C
�S;T
C (�; n); Q

S�;T
C (�; n; i)) is obtained as follows: (1) conduct the probabilistic experiment

appearing in the correctness de�nition above, except that for l = 1; 2; : : : ; s replace the

hl-th invocation of comC by an assignment from the corresponding entry of S�; (2) let C
�S;T
C

include all commodities c
dbj
h with h 2 �S and j 2 T ; and (3) let Q

S�;T
C include all queries

qj with j 2 T .7 Finally, for any (�xed) �; n, we let C(�; n) denote a restriction of C to

these speci�c parameters. Thus, V
S�;T
C(�;n)

(i) and C
�S;T
C(�;n)

are di�erent names for the random

variables V
S�;T
C (�; n; i) and C

�S;T
C (�; n), respectively.

Information-theoretic privacy. We say that the scheme C is information-theoretically
(s; t)-private (and refer to it as an information-theoretic scheme) if for any number of records
n, retrieval indices i1; i2 2 Zn, collusion S�[m] of s servers with corruption strategy S�,

and collusion T � [k] of t databases, the random variables V
S�;T
C(n) (i1) and V

S�;T
C(n) (i2) are

identically distributed.

Computational privacy. In the computational setting, the above perfect privacy re-
quirement is relaxed to computational indistinguishability, parameterized by the security
parameter � and the data size n.8 Formally, let F be a class of functions f : N � N !N ,
specifying a bound on the adversary's resources (as a function of �; n), and E be a class of
functions " : N �N !R+, specifying a bound on the tolerated advantage of an adversary
in distinguishing between di�erent retrieval indices.

For any two distributions D1; D2, circuit F , and constant � > 0, we say that F distin-
guishes between D1 and D2 with an �-advantage if jPr[F (D1) = 1]�Pr[F (D2) = 1]j � �.
For any S�[m],T�[k], � > 0, and positive integers f; �; n, we say that the collusion (S; T)
can (f; �)-break C(�; n), if there exists a corruption strategy S� for servers in S, retrieval

indices i1; i2 2 Zn, and a circuit F of size f , such that F distinguishes between V
S�;T
C(�;n)(i1)

and V
S�;T
C(�;n)(i2) with an �-advantage.

We say that the scheme C is (computationally) (S; T)-private with privacy level (F ; E),
if for any function f 2 F , there exists a function " 2 E , such that for any �; n the collusion
(S; T) cannot (f(�; n); "(�; n))-break C(�; n). In other words, every F -bounded adversary
corrupting (S; T) should gain from its view only an E-bounded advantage in distinguishing
between any two retrieval indices. Finally, we say that C is (s; t)-private (with privacy
level (F ; E)), if it is (S; T)-private for all collusions (S; T) with jSj = s and jT j = t. The
parameters (s; t) will sometimes be referred to as the privacy threshold (in contrast to the
privacy level (F ; E)). Since the default database privacy threshold considered in other PIR
works is t = 1, in the context of commodity schemes \s-private" will stand for (s; 1)-private.

Note that C is information-theoretically (s; t) private if and only if it is computationally
(s; t)-private with privacy level (F ; E) for all function classes F ; E . This observation will
allow us to use the computational framework in theorems and proofs that apply to both the
computational and the information-theoretic settings.

7Note that QS� ;T

C
depends on the corruption strategy S�, as the user's queries depend on his commodities.

8It seems more natural to let the level of privacy depend on the security parameter � alone. However,
allowing the privacy level to depend on n as well better �ts constructions (as in [9, 7]) whose security slightly
degrades with n, even when the adversary's resources are bounded by a �xed function of �.

8

When referring to speci�c schemes the privacy level (F ; E) will usually be omitted,
under the implicit understanding that it is closely related to the strength of an underlying
intractability assumption. As a default privacy level (which takes over whenever F ; E are
omitted) F can be taken to be the class of all polynomials in � (or equivalently in � +
n), and E to be the class of all functions "(�; �) which become negligible in � whenever
n is polynomially bounded in �. That is, " 2 E if for any polynomial p(�) there is a
negligible function "0(�) such that "(�; n) � "0(�) whenever n � p(�). This default de�nition
corresponds to the usual \conservative" security assumptions which limit the problem size
and the adversary's power to be polynomial in the security parameter and the adversary's
advantage to be negligible.

We �nally remark that the above de�nition of computational privacy implies privacy in
the sense of the single-parameter de�nition used in [9], where n serves both as a data size
parameter and as a security parameter. Speci�cally, if a scheme P is private under our two-
parameter de�nition with the default privacy level, then for any c > 0 the single-parameter
scheme Pc de�ned by Pc(n) = P(nc; n) is private under the single-parameter de�nition.
Moreover, if P is private with a stronger privacy level, then smaller functions of n can be
substituted for �, as small as polylog(n) in an extreme case (e.g., when when F = f2c1�g
and E = f2�c2�g for some constants 0 < c1; c2 < 1).

2.3.3 Complexity

Complexity is measured, by default, in terms of communication. The communication com-
plexity of a PIR scheme or a commodity scheme is denoted (�; �), where � (called query
complexity) is the maximal number of query bits sent from the user to any database, and
� (called answer complexity) is the maximal number of answer bits sent from any database
to the user. The reconstruction information complexity of a PIR scheme P , denoted
, is
the maximal length of the reconstruction information string z output by queP .

Note that the communication complexity re
ects only the communication cost of the
retrieval stage. The commodity complexity of a commodity scheme is denoted (�u; �db), where
�u (resp. �db) is the maximal number of commodity bits sent from any server to the user
(resp. to any database). Since PIR schemes and commodity schemes are parameterized by
the number of records n, a security parameter � (in the computational case), and the record
size ` (to be addressed in the next subsection) the complexity measures �; �;
; �u; �db may
depend on these parameters. Finally, whenever the parameter ` is omitted it is understood
to be equal to 1. For instance, �(�; n) will be used to denote the answer complexity on an
n-bit data string with security parameter �.

2.4 Extending Bit Retrieval to Block Retrieval

The de�nitions in Subsection 2.3 only address the default case of bit retrieval. A more
general scheme C0, allowing retrieval of multi-bit records (also referred to as blocks), may be
de�ned by applying the following modi�cations to the original de�nitions. First, a record
length parameter ` should be optionally given as an additional input to the algorithms
comprising C0 (as we shall see, this option will not be used in our context). Second, the
correctness de�nition should be strengthened to apply to every ` and x 2 (f0; 1g`)n (where
recC0 should not be restricted to return a single bit). Finally, we will require the privacy
level to be independent of the record length `; i.e., we use the same de�nitions except for
extra universal quanti�ers on ` where appropriate. In the remainder of this subsection

9

we address the special case of block retrieval for PIR schemes; the more general case of
commodity schemes can be handled similarly.

Let P be any PIR scheme, as de�ned in Subsection 2.3. We will de�ne a default extension
of P into a block retrieval scheme P 0 in the following \naive" way, which is used in [10] as
a basis for further optimization.9 For any data string x 2 (f0; 1g`)n and 1 � w � `, let xw

denote the n-bit string obtained by taking only the w-th bit from each record. To retrieve
an `-bit record using P 0: (1) the user invokes queP as in P ; (2) each database answers the
user's query by invoking ansP ` times, once under each n-bit data string xw; and (3) the
user applies the reconstruction function recP ` times, once for each answer.

Note that the user's queries in the scheme P 0 are independent of the record length `.
Hence, we have:

Claim 1. [10] Any PIR scheme P (for bit retrieval) can be extended into a private block
retrieval scheme P 0, such that queP 0 = queP . Moreover, if the answer complexity of
P is �(�; n), then the answer complexity of P 0 is �0(�; n; `) = ` � �(�; n) (and the query
complexity, reconstruction information complexity, and privacy level of P 0 are the same as
of P).
Relying on Claim 1 we will freely use any PIR scheme P (or similarly any commodity
scheme C) on data strings of arbitrary record size, and will not involve the record size in
the privacy analysis.

3 PIR Schemes with Low Answer Complexity

Most of the commodity schemes constructed in this work can use any PIR scheme as a
building block. However, for the commodity schemes to be e�cient, we will typically be
interested in PIR schemes whose answer complexity is very low.

The following table summarizes the parameters of some PIR schemes whose answer
complexity is minimized to either a single bit, in the multi-database case, or �O(1) bits, in
the computational single-database case. The parameters of some of these schemes will be
explicitly referred to in the sequel. The parameter d appearing in the table can be substi-
tuted by any positive integer (including 1). In the \security type" column, \i.t." stands
for information-theoretic security, \comp." for computational security, \PRG" for the ex-
istence of a pseudo-random generator (or equivalently one-way functions [21]), \QRA" for
the Quadratic Residuosity Assumption [20], \PRA" for the Prime Residuosity Assump-
tion (see [30] and references therein), and \�-H" stands for the newly introduced �-Hiding
assumption (see [7]).

name k t � �
 security type

Pk
1 k k � 1 n 1 0 i.t.

P t;d
2 td+ 1 t O(n1=d) 1 0 i.t.

P3 2 1 � � 2O(
p
logn) 1 0 comp. (PRG)

Pd
4 1 1 O(d�n1=d) �d � comp. (QRA)

Pd
5 1 1 O(d�n1=d) � � 2O(d) � comp. (PRA)

P6 1 1 (�+ logn)O(1) (�+ logn)O(1) (�+ logn)O(1) comp. (�-H)

9We will use schemes P with the smallest answer complexity possible; optimization techniques from [10, 9]
do not yield any improvement for such schemes.

10

The scheme Pk
1 is the simplest one to describe: The user picks k otherwise-random

queries q1; : : : ; qk 2 f0; 1gn whose bitwise exclusive-or is equal to ei, each database DBj
replies with the inner product (over GF(2)) x �qj , and the user reconstructs xi by taking the
exclusive-or of the k answer bits. (This is a simple generalization of an elementary scheme
from [10]). The other schemes are variants of schemes from [10, 9, 23, 30, 7].

P t;d
2 is obtained by applying a small optimization to the polynomial interpolation based

scheme from [10] (see Remark 2 in Section 6). P3 is a variant of the 2-database compu-
tational scheme from [9]; in this scheme the user's queries are interpreted as two short
pseudo-random \seeds", which are expanded (independently) by the two databases to two
n-bit strings whose exclusive-or is ei. The scheme can then proceed as P2

1 . Details of this
scheme will appear in the journal version of [9].

The remaining schemes are all single-database schemes. Pd
4 is a variant of the scheme

from [23]. This variant and some optimized version of it (in a setting where a public random
string is available) are described in Appendix A. Pd

5 , which generalizes the construction of
Pd
4 , is from [30]. Finally, P6 is from [7]. Since the main focus of this work is on obtaining

general and provably secure reductions, we use the less e�cient scheme Pd
4 (which is based

on a more \standard" security assumption) to instantiate our single-database results.
We stress that while the scheme P6 is essentially optimal as far as its asymptotic com-

plexity is concerned, the relative performance of the di�erent schemes under \real-life"
parameters may vary. In particular, the information-theoretic schemes and the 2-database
computational scheme P3 have a better communication complexity on small to moder-
ately sized data strings (say, with n = 106), or on larger strings with larger records.
Moreover, these schemes are signi�cantly more computationally-e�cient than the single-
database schemes, roughly corresponding to the e�ciency di�erence between a private-key
and a public-key encryption of the entire data.

4 Atomic Single-Server Commodity Schemes

In this section we present a simple transformation from any t-private k-database (compu-
tational or information-theoretic) PIR scheme to a (0; t)-private, single-server, k-database
commodity scheme. Single-server schemes obtained via this transformation will be referred
to as atomic schemes, and will subsequently be composed into schemes with improved
privacy properties.

We start with an informal description of how atomic commodity schemes are con-
structed, where for simplicity we refer here to the single-database case; a formal treatment
of the general case will follow.

Consider any 1-round single-database (computational) PIR scheme P . Such a scheme
may be viewed as the following three-stage procedure: (1) the user computes a randomized
query q corresponding to the retrieval index i (to which we will sometimes refer as a query
pointing to the i-th data record); (2) the database computes an answer to this query based
on the database contents; and (3) the user reconstructs the i-th data record, xi, from the
answer and some auxiliary reconstruction information z generated along with the query.
While the communication and computation costs of each such step may vary from one
scheme to another, none of the known PIR schemes is satisfactorily e�cient in both of
these aspects. The following simple idea allows to shift most of the communication cost
and a substantial part of the user's computation from the on-line protocol to an o�-line
stage, and from the user's hands to an external commodity server. Instead of having the
user compute on line a query pointing to the desired data record, we let the server perform

11

Atomic-Scheme-CP
P: a k-database PIR scheme
CP : a single-server k-database commodity scheme

comC
P

(1�; 1n)

r
R
 Zn;

((q1; q2; : : : ; qk); z)
R
 queP(1

�; 1n; r);
return ((r; z); (q1; : : : ; qk));

queC
P

(1n; i; (r; z))
� i� r (mod n);
return (�;�; : : :;�);

ansC
P

(j; x;�; qj)

return aj
def
= ansP(j; x << �; qj);

(where x << � denotes a cyclic shift of x by � records to the left).

recC
P

((a1; : : : ; ak); (r; z))
return recP((a1; : : : ; ak); z);

Figure 1: Atomic single-server commodity scheme CP

o� line the following operations:

� Pick a random retrieval index r;

� Compute a random query q pointing to the r-th data record, along with its associated
reconstruction information z;

� Send the index r along with z to the user, and the query q to the database.

Such commodities supplied by the server can then serve as an oblivious window, pointing
to a random location in the data string which is known to the user but is computationally
hidden from the database. All that is left to the user, knowing the location of this window
relative to his retrieval index, is to specify by how much the data string should be cyclically
shifted (say, to the left) so that the desired record will be aligned with this window. Then,
using the database's answer on the shifted data string and the reconstruction information
supplied by the server, the user can e�ciently reconstruct the desired data record. Note
that since the privacy of P guarantees that r is kept private from the database, the shift
amount � = i� r (mod n) sent by the user gives the database no useful information.

The procedure we have just described will be referred to as the atomic commodity scheme
based on P , and will be denoted CP . Formalizing and generalizing the above procedure, we
have:

Theorem 1. Let P be any t-private, k-database PIR scheme (k � 1) with communication
complexity (�; �) and reconstruction information complexity
. Then, there is a (0; t)-
private, single-server, k-database commodity scheme CP with communication complexity
(logn; �), commodity complexity (logn +
; �), and the same privacy level as P .10
Proof. A commodity scheme CP as required is formally described in Figure 1. The
correctness of CP follows from observing that when cyclically shifting x by � places to the
left, the desired record xi moves to position i � � = r, to which the commodity queries
point.

We turn to show that CP is (0; t)-private with the same privacy level as P . Fix �,n,
and a collusion T�[k] of t databases. We reduce the privacy of CP to the privacy of P

10In particular, if P is information-theoretically private then so is CP .

12

by showing that if the collusion (;; T) can (f; �)-break CP(�; n), then the collusion T can
(f; �)-break P(�; n). Let V T

C (i) denote the view of T -databases in CP(�; n) on index i

(more precisely, V T
C (i) is the random variable V

S�;T
CP(�;n)

(i), de�ned in Subsection 2.3, with

S� = ;), and similarly let QT
P(i) denote the view of T -databases in P . Now, suppose that

F is a circuit of size f distinguishing with an �-advantage between V T
C (i1) and V T

C (i2),

for some i1; i2 2 Zn. By the de�nition of CP , the view V T
C (up to replicated components)

is V T
C (i) = (QT

P(R); i� R), where R is a random variable uniformly distributed over Zn.
Since the random variable (R; i� R) is distributed identically to (i� R;R) (and since the
randomness of QT

P is independent of R), the random variable V T
C (i) is distributed identically

to (QT
P(i� R); R). Now, since

���Pr[F (QT
P(i1 �R); R) = 1]�Pr[F (QT

P(i2 �R); R) = 1]
��� � �

then, using a standard averaging argument, there exists r0 2 Zn such that this �-advantage
is maintained conditioned by R = r0. That is,

���Pr[F (QT
P(i1 � r0); r0) = 1]� Pr[F (QT

P(i2 � r0); r0) = 1]
��� � �:

Therefore, the circuit F 0 de�ned by F 0(q)
def
= F (q; r0) is a circuit of size f distinguishing

between retrieval indices i1 � r0 and i2 � r0 with an �-advantage, as required.
Finally, the communication and commodity complexity of CP are clearly as speci�ed,

and if P is computationally e�cient then so is CP .
Note that total communication involving the user in CP , counting both the o�-line

commodity distribution stage and the on-line retrieval stage, is dominated by the answer
complexity of P . Section 3 contains an overview of some known PIR schemes with low
answer complexity. Such schemes, which are not very useful in the usual PIR setting, serve
as the most natural building blocks for commodity schemes.

Finally, it is important to observe that in any atomic scheme CP , a collusion of the
server with a single database can easily learn i, regardless of the privacy threshold of P .
Moreover, even an honest server with a faulty source of randomness will compromise the
user's privacy in CP . This obvious weakness of atomic schemes is dealt with in the following
two sections.

5 Composing Commodity Schemes

As observed above, in any atomic commodity scheme the user's privacy is totally dependent
on a proper behavior of the single server. A natural approach for alleviating this problem
is to distribute the user's trust among several servers rather than one. We achieve this
by composing atomic commodity schemes into multi-server schemes with improved privacy
properties.

5.1 The Single-Database Case

We start by describing the special case of composing atomic, single-database commodity
schemes; a more general composition operator will be de�ned and formally analyzed in the
next subsection.

Consider two atomic single-database commodity schemes: CP1
with server S1, and CP2

with server S2. The composed scheme will proceed as follows:

13

Commodities: Each of the two servers independently distributes commodities as in the
corresponding atomic scheme. Let r1; r2 denote the random retrieval indices picked, respec-
tively, by S1;S2, and q1; q2 denote the corresponding P1- and P2-queries.
Retrieval: The database simulates all possible queries made by the user in the retrieval
stage of CP1

, and constructs a virtual data string x0 whose records consist of answers to
these queries. Speci�cally, the l-th record of x0, 0 � l < n, will consist of the answer
according to P1 to the commodity-query q1 on the original data string x shifted by l records
to the left. The retrieval of the i-th record of x can now be reduced to retrieval of the �-th
record of x0, where � = i � r1 (mod n) is the query used in CP1

for retrieving the i-th
record of x. The user retrieves this �-th record of x0 using the retrieval procedure of CP2

,
based on commodities supplied by S2. Knowing this record, the user can apply to it the
reconstruction procedure of CP1

to obtain xi. Note that x0 has n records, exactly as the
number of records in x. The larger record size of x0 will only a�ect the database's answer,
whose size may be proportional to this record size.11

The query sent by the user in the composed scheme is i � r1 � r2. Since both r1; r2
are hidden from the database and exactly one of them is hidden from each server, i is kept
private from any collusion of the database with a single server.

Intuitively, the transformation from the original data string x to the virtual data string
x0 corresponds to an oblivious shift of x by a random amount r1, which is known to the user
and S1 but is unknown to the database and S2. Indeed, each record of x0 may be viewed as
an encoding, according to P1, of a corresponding shifted record from x. Using this notion of
oblivious shifts, the retrieval stage of the composed scheme described above can be viewed
as follows:

� Using q1, the database obliviously shifts x by r1 records to obtain a virtual data string
x0; then, using q2 the database obliviously shifts x0 by r2 records to obtain a virtual
data string x00.

� The user explicitly asks for the (i � r1 � r2)-th record of x00, from which he can
reconstruct xi.

(Note that we have slightly modi�ed the previous scheme; there the database only computes
the single record of x00 required by the user.)

The above presentation makes it conceptually easy to generalize the two-server composed
scheme into an m-server scheme, which keeps i private from any collusion of the database
with m � 1 servers. In such an m-server scheme the database successively performs m
oblivious shifts on the data, using commodities from the m di�erent servers, and the user
reconstructs xi from the (i� �m

h=1rh)-th record of the resultant virtual data string. Notice
that with our default implementation of block retrieval (using Claim 1) each oblivious shift
increases the record size of the virtual data string by a multiplicative factor equal to the
answer size of the underlying PIR scheme. Thus, for all but very small values of m this
approach will yield schemes with unrealistically large answer complexity. One potential way
of avoiding this problem is by using more e�cient block retrieval techniques. This problem
can also be avoided in the multi-database case, which will be discussed in Subsection 5.2
and Section 6.

Before introducing a more general multi-database composition operator, we state the re-
sult obtained by composing atomic single-database schemes in the manner described above.

11In the single-database case we consider the \naive" block retrieval of Claim 1 as a worst-case scenario.
The complexity of the composed scheme can be substantially improved if C2 implements block retrieval in a
more e�cient way. Some amortization of the cost of retrieving blocks is obtained by the scheme from [30].

14

Theorem 2. Let P be a single-database PIR scheme with communication complexity
(�; �) and reconstruction information complexity
. Then, for any constant m � 1 there is
an m-server, (m� 1)-private, single-database commodity scheme CmP , with communication
complexity (logn; �m), commodity complexity (logn+
; �), and the same privacy level as
P .

A generalization of Theorem 2 will be formally proved in the next subsection. As a
special case, we may obtain the following:

Corollary 1. For any constant integers m; d � 1 there is an m-server, single-database,
(m � 1)-private computational commodity scheme (assuming QRA), with communication

complexity (logn; �O(1)) and commodity complexity (logn;O(� � n1=d)).

Proof. Such a scheme can be obtained by applying Theorem 2 to the PIR scheme Pd
4 .

More precisely, the actual communication complexity is (logn;O(�md)); for constantm and
d, this is polynomial in �.12

We note that since the scheme Pd
4 allows to trade answer complexity for query complexity

(an extreme case is d = 1, in which the query complexity is linear in n and the answer
complexity is only �), a similar tradeo� can be established between commodity complexity
and communication complexity in the m-server scheme of Corollary 1. Finally, this scheme
can be made more e�cient if Pd

5 or P6 are used instead of Pd
4 (see Section 3).

5.2 Multi-Database Composition

Known multi-database PIR schemes possess several advantages over their single-database
counterparts. First, they allow information-theoretic user privacy, which cannot be achieved
at all in the single database case (unless the entire database is sent to the user [10]). Other
advantages are their computational complexity, which is typically much more modest, and
their superior communication complexity on moderately sized data strings. Finally, and
in our context most importantly, they can potentially have the smallest answer complexity

possible | as low as a single bit (this is the case for the schemes Pk
1 ;P t;d

2 ;P3). In contrast, it
is not hard to observe that a very low answer complexity implies poor level of computational
privacy in single-database PIR schemes. Since the bottleneck of the previous multi-server
solutions was the answer complexity of the underlying PIR schemes, multi-database schemes
seem like better candidates for commodity schemes with a high threshold of server-privacy.

However, when trying to apply the composition technique described in the previous
subsection to multi-database commodity schemes, the following problem arises. Consider
an attempt to compose two atomic multi-database schemes, CP1

and CP2
. When letting

each database compute a virtual data string as de�ned for the single-database case, strings
computed by di�erent databases may di�er; indeed, these strings depend on di�erent P1-
queries sent as commodities to the databases. Consequently, there is no su�cient data
replication to allow using the multi-database scheme P2 for retrieval from the virtual data
strings. The latter problemmay be overcome by increasing the number of databases, thereby
introducing su�cient additional data replication to allow the second-level retrieval. This
idea is used in the following formalization of a composition operator, which generalizes the
composition technique described in the previous subsection.

12Fixing the number of databases [10, 1], or the complexity parameter d [23], has been the convention in
other PIR related works. In Section 6 we will present a (multi-database) scheme whose complexity is also
polynomial in m.

15

Consider any two commodity schemes, C1 and C2, where each Cb is an mb-server kb-
database scheme with communication complexity (�b; �b) and commodity complexity (�ub ;

�dbb). We de�ne a composed scheme C = C1 � C2 using m = m1 +m2 servers and k = k1k2
databases. For convenience, server indices will be taken from the set (f1g� [m1])[(f2g �
[m2]) and database indices from the set [k1]� [k2].

The composed scheme C, on parameters �
def
= (�; n), will invoke the scheme C1 on the

same parameters � and the scheme C2 on the parameters �0
def
= (�; n0(�)), where n0(�; n)

is the size of the query domain of C1(�; n). Note that if C1 is an atomic scheme then

n0(�) = n, and n0(�) � 2�1(�) in general. Hence, we require that �1(�) = O(logn) for C to
be computationally e�cient. The scheme C proceeds as follows.
Commodities: Each server S1;h1 generates commodities as Sh1 in C1(�), except that each
commodity originally sent from Sh1 to DBj1 will now be sent from S1;h1 to all databases
DBj1;j , j 2 [k2]. Similarly, each server S2;h2 generates commodities as Sh2 in C2(�0), except
that each commodity originally sent from Sh2 to DBj2 will now be sent from S2;h2 to all
DBj;j2 , j 2 [k1].
Retrieval:

1. The user computes k1 queries (q1; : : : ; qk1) pointing to the retrieval index i as in C1(�)
(with commodities from servers S1;h); then, viewing each query qj1 as a retrieval index,
the user computes k2 queries (qj1;1; : : : ; qj1;k2) pointing to qj1 according to C2(�0) (using
C2-commodities from the servers S2;h). Each query qj1;j2 is sent to the databaseDBj1;j2 .

2. Each database DBj1;j2 computes a virtual data string x(j1), consisting of n0 records
of size �1, where each record contains an answer to a possible user's query in C1.
Speci�cally, the l-th record of x(j1) is the answer, according to C1 (and using C1-
commodities), to the l-th retrieval query on x. The database DBj1;j2 replies to the

user's query by simulating C2 on the data string x(j1) and the user's query qj1;j2 .

3. The user reconstructs xi by �rst recovering each entry x
(j1)
qj1

, j1 2 [k1], from the answers
of DBj1;1; : : : ;DBj1;k2 (using the reconstruction function and commodities of C2), and
then applying the reconstruction function of C1 to the resultant values.

A formal de�nition of the composed scheme C is given in Figure 2. Its correctness follows
directly from the correctness of C1; C2. The following lemma includes a straightforward
complexity analysis.

Lemma 1. The communication complexity of C is (�2(�
0); �1(�) � �2(�0)), and its com-

modity complexity is (maxf�u1 (�); �u2 (�0)g; maxf�db1 (�); �db2 (�0)g). Furthermore, if the query
domains of C1; C2 are of size n each, then � = �0 = (�; n); hence in this case the commu-
nication complexity of C becomes (logn; �1 � �2) (with query domain of size n). Finally, if
�1 = O(logn) then C is computationally e�cient.

We turn to analyze the privacy of C. Let S = (f1g � S1) [(f2g � S2) be a set of
corrupt servers, and T = T1 � T2 be a set of databases. We reduce the (S; T)-privacy of C
to both the (S1; T1)-privacy of C1 and the (S2; T2)-privacy of C2. The reduction can be made
tighter and cleaner in the case that C1 and C2 are either atomic schemes or compositions of
atomic schemes. More generally, such a tighter reduction is possible whenever the composed
schemes meet the following stronger privacy requirement.

16

Composed-Scheme-C1 � C2
C1: an m1-server k1-database commodity scheme.
C2: an m2-server k2-database commodity scheme.
C = C1 � C2: an (m1 +m2)-server k1k2-database commodity scheme,
with server indices (f1g � [m1]) [(f2g � [m2]) and database indices [k1]� [k2].

comC(1
�; 1n; (b; h)) /* b 2 [2], h 2 [mb] */

(cu
b;h

; (cdb1
b;h

; : : : ; c
dbkb

b;h
))

R
 comCb(1

�; 1nb; h),

where n1 = n and n2 = n0(�; n) (the size of the query domain of C1(�; n)).

for all (j1; j2) 2 [k1]� [k2], c
dbj1;j2

b;h
 c

dbjb

b;h
;

return (cu
b;h

; (c
db1;1

b;h
; : : : ; c

dbk1;k2

b;h
));

queC(1
�; 1n; i; (cu1;1; : : : ; c

u

1;m1
; cu2;1; : : : ; c

u

2;m2
))

(q1; : : : ; qk1) queC1(1
�; 1n; i; (cu1;1; : : : ; c

u

1;m1
));

for all j1 2 [k1], (qj1;1; : : : ; qj1;k2) queC2(1
�; 1n

0(�;n); qj1; (c
u

2;1; : : : ; c
u

2;m2
))

(where each string in the query domain of C1(�; n) is identi�ed with an index in Zn0);
return (q1;1; : : : ; qk1;k2);

ansC((j1; j2); x; qj1;j2) /* j1 2 [k1], j2 2 [k2] */

let x(j1) be a virtual data string de�ned by:

x
(j1)
qj1
 ansC1 (j1; x; qj1; (c

dbj1;j2

1;1 ; : : : ; c
dbj1;j2

1;m1
)), qj1 2 Zn0 ;

return ansC2 (j2; x
(j1); qj1;j2 ; (c

dbj1;j2

2;1 ; : : : ; c
dbj1;j2

2;m2
));

recC((a1;1 : : : ; ak1;k2); (c
u

1;1; : : : ; c
u

1;m1
; cu2;1; : : : ; c

u

2;m2
))

for all j1 2 [k1], aj1 recC2((aj1;1; : : : ; aj1;k2); (c
u

2;1; : : : ; c
u

2;m2
));

return recC1 ((a1; : : : ; ak1); (c
u

1;1; : : : ; c
u

1;m1
));

Figure 2: Composed commodity scheme C1 � C2

De�nition 1. We say that a strong collusion (S; T) can (f; �)-break C(�; n) if for some
circuit F of size f , indices i1; i2 2 Zn, corruption strategy S�, and arbitrary function help,

jPr[F (CC(i1); help(QC(i1))) = 1]� Pr[F (CC(i2); help(QC(i2))) = 1]j � �;

where CC(i) = C
�S;T
C(�;n)(i) and QC(i) = Q

S�;T
C(�;n)(i). We say that C is strongly (s; t)-private

(with a speci�ed privacy level) if it satis�es the privacy de�nition from Subsection 2.3 with
respect to strong collusions.

Note that a strong collusion may perform an arbitrary (unbounded) computation help on
the queries alone, followed by a bounded computation on the commodities and the output
of help.

The following lemma may be proved very similarly to Theorem 1.

Lemma 2. For any t-private PIR scheme P , the atomic commodity scheme CP is strongly
(0; t)-private with the same privacy level as P .

Lemma 3. Fix �; n (which determine �; n0; �0), and suppose that the strong collusion
(respectively, collusion) (S; T) can (f; �)-break C(�). Then:
1. The strong collusion (resp. collusion) (S1; T1) can (f; �)-break C1(�) (resp. (f+f2(�0); �)-

break C1(�), where f2(�0) is the size of circuitry required for computing queC2(�0));

2. The strong collusion (resp. collusion) (S2; T2) can (f; �)-break C2(�0).

17

Proof. We use the following simpli�ed notation. By (C1; C2; Q1(i; C1); Q(i; C1; C2)) we
denote the joint random variables associated with the invocation of C(�), where C1 and
C2 are, respectively, the C1(�)- and C2(�0)-commodities, Q1(i; C1) are the intermediate C1-
queries computed by the user as a function of the index i and his commodities from C1, and
Q(i; C1; C2) are the �nal C-queries. We write Q(i; C1; C2) = Q2(Q1(i; C1); C2), indicating
that Q is obtained by applying queC2(�0), with commodities C2, to each of the k1 entries of
Q1. Finally, using the usual superscripts to denote restrictions of these variables or specify
a corruption strategy, the view of the (S; T)-collusion with corruption strategy S� is (up to
replicated components):

�
(C

�S1;T1
1 ; C

�S2;T2
2); Q

S�
2
;T2

2 (Q
S�
1
;T1

1 (i; C1); C2)
�

where S�
b is the restriction of S� to Cb-servers.

If the strong collusion (S; T) can (f; �)-break C(�), then there is a corruption strategy
S�, a circuit F of size f , indices i1; i2 2 Zn, and function help, such that F distinguishes
between �

(C
�S1;T1
1 ; C

�S2;T2
2); help(Q

S�
2
;T2

2 (Q
S�
1
;T1

1 (ib; C1); C2))
�
; (1)

b = 1; 2; with an �-advantage. If an ordinary collusion (S; T) can (f; �)-break C(�), then the
above holds with help restricted to be the identity function.

We start by proving the �rst claim. Using an averaging argument, there exist some �xed
commodities c2 output by all C2-servers (extending S�

2) given which the �-advantage of F is
maintained. That is, conditioning by c2 and slightly bending corruption strategy notation,
F distinguishes between

�
(C

�S1;T1
1 ; c

�S2;T2
2); help(Q

c2;T2
2 (Q

S�
1
;T1

1 (ib; C1); c2))
�
;

b = 1; 2, with an �-advantage. Hence, letting help0(q) = help(Q
c2;T2
2 (q; c2)), there is a circuit

of size f distinguishing between (C
�S1;T1
1 ; help0(Q

S�
1
;T1

1 (ib; C1))), b = 1; 2, with an �-advantage,
implying that the strong collusion (S1; T1) can (f; �)-break C1. The case of an ordinary
collusion can be handled similarly: if help in (1) is the identity function, to (f + f2(�

0); �)-

break C1(�) one may use a circuit F1 such that F1(c;q) = F ((c; c
�S2;T2
2); Q

c2;T2
2 (q; c2)), where

the evaluation of Q2 can be handled with at most an f2(�
0) extra cost to the size of F .

Finally, to prove the second claim, we condition the view (1) by �xed C1-commodities
c1 which maintain the �-advantage of F . That is, the circuit F distinguishes between

�
(c

�S1;T1
1 ; C

�S2;T2
2); help(Q

S�
2
;T2

2 (Q
c1;T1
1 (ib; c1); C2))

�
;

b = 1; 2, with an �-advantage. Letting i0b = Q
c1;T1
1 (ib; c1), there is a circuit of size f

distinguishing between (C
�S2;T2
2 ; help(Q

S�
2
;T2

2 (i0b; C2))), b = 1; 2. We may conclude that the
strong collusion (S2; T2) can (f; �)-break C2(�0), and if help is the identity function then this
holds for an ordinary collusion as well.

Lemma 4. If C1 is strongly (s1; t)-private and C2 is strongly (s2; t)-private, both with
privacy level (F ; E) and query domain of size n, then C is strongly (s1 + s2 + 1; t)-private
with privacy level (F ; E).

18

Composed-Scheme-Cm
Pk

Pk: a k-database PIR scheme
C = Cm

Pk : an m-server km-database commodity scheme with database names
DB� ; � = �1 : : : �m 2 [k]m.

comC(1
�; 1n; h) /* h 2 [m] */

rh
R
 Zn;

((q1
h
; : : : ; qk

h
); zh)

R
 quePk (1�; 1n; rh);

cu
h
 (rh; zh);

for all � 2 [k]m, cdb�
h
 q�h

h
;

return (cu
h
; (cdb�

h
)�2[k]m);

queC(1
n; i; ((r1; z1); : : : ; (rm; zm)))

� i�
P

m

h=1 rh (mod n);
return (�;�; : : :;�);

ansC(�; x;�; (q�11 ; : : : ; q�m
m

)) /* � 2 [k]m */
x" x; /* " denotes the empty string */

for h 1 to m, iteratively compute n-record data strings x�
0

, such that � 0 = �1 : : : �h,

and x�
0

l
 ansPk (�h; x

�1:::�h�1 << l; q
�h

h
), l 2 Zn;

return a�
def
= x��; /* only this entry of x� should be computed. */

recC((a1; : : : ; ak); ((r1; z1); : : : ; (rm; zm)))
for h m � 1 down-to 0, for all � 0 2 [k]h, a� 0 recPk((a� 01; a� 02; : : : ; a� 0k); zh+1);
return a";

Figure 3: Composed m-server commodity scheme Cm
Pk

Proof. Since both query domains are of size n, we have �0 = � = (�; n). Now �x �,
and suppose that some strong collusion (S; T), where jSj = s1 + s2 + 1 and jT j = t, can
(f; �)-break C(�). For b = 1; 2, let Sb = fh : (b; h) 2 Sg, and let T1 = fj1 : 9j (j1; j) 2 Tg
and T2 = fj2 : 9j (j; j2) 2 Tg. The strong collusion (S; ~T), where ~T = T1 � T2, can also

(f; �)-break C(�), since T� ~T . Moreover, both jT1j � t and jT2j � t, and either jS1j � s1
or jS2j � s2. It follows by Lemma 3 that in the �rst case (jS1j � s1) there is a strong
(s1; t)-collusion which can (f; �)-break C1(�), and in the second case (jS2j � s2) there is a
strong (s2; t)-collusion which can (f; �)-break C2(�).

A direct application of the composition tool to atomic schemes of the previous section
thus gives the following.

Theorem 3. Let Pk be a t-private, k-database PIR scheme with communication com-
plexity (�; �), and reconstruction information complexity
. Then, for any constant m � 1
there is an m-server, (m� 1; t)-private, km-database commodity scheme Cm

Pk , with commu-
nication complexity (logn; �m), commodity complexity (logn+
; �), and the same privacy
level as Pk.

Proof. A scheme Cm
Pk as required can be obtained by composing m atomic commod-

ity schemes based on Pk in an arbitrary order. Complexity, privacy, and computational
e�ciency (for a constant m) follow by induction from the claims about the composition
operator. (Complexity and e�ciency follow from Lemma 1 and privacy from Lemma 2 and
Lemma 3). For the sake of concreteness, an explicit description of such a composed scheme
is given in Figure 3.

19

Remark 1. It can be readily veri�ed that in the single-database case (k = 1), all servers in
the composed scheme Cm

Pk play a symmetric role (i.e., comC(�; n; h) is independent of h). In
the multi-database case, however, despite using the same commodity generation algorithm,
each server sends its commodities to a di�erent set of databases. By letting each server
simulate all m servers, the servers' role can always be made symmetric at the expense of
increasing the commodity complexity by a factor of m.

\Plugging in" the scheme P3 in Theorem 3, we obtain the following:

Corollary 2. For any constant m � 1 there is an m-server, (m� 1)-private, 2m-database
computational commodity scheme, with communication complexity (logn; 1) and commod-

ity complexity (logn; � �2O(
p
logn)) (assuming the existence of a pseudo-random generator).

We remark that although the number of databases in the above corollary grows expo-
nentially with the privacy threshold s, this overhead is arguably tolerable for small values
of s such as 1 or 2.

6 Polynomial Interpolation Based Commodity Schemes

In all of the schemes obtained in the previous section, the total communication cost of
retrieval grows exponentially with the server-privacy threshold s (though polynomial in logn
and � for a �xed s). This is clearly the case with the single-database scheme of Theorem 2,
where the answer of this single database grows exponentially with m, but is also the case
with schemes obtained via Theorem 3, where communication with each database may be
only logarithmic in n (and independent of m when � = 1), but the number of databases
grows exponentially with m.

In this section we extend techniques from [10], based on the method of low-degree
polynomial interpolation (cf. [3, 4]), to obtain multi-database commodity schemes which
avoid this exponential growth of communication. In particular, achieving s-privacy would
require s + 1 servers, s + 2 databases, and logn + 1 communication with each database.
This makes the total communication cost of retrieval grow only logarithmically in n and
linearly in the privacy threshold s.

We will use the following two lemmas.

Lemma 5. Let n be an integer and q a prime power, let yh represent a sequence of variables
yh0 ; y

h
1 ; : : : ; y

h
n�1, and let �i1;i2 denote Kronecker's function (i.e., �i1;i2 equals 1 if i1 = i2 and 0

otherwise). Then for anym � 1 and i 2 Zn there exists a degree-m multivariate polynomial
Pm
i (y1;y2; : : : ;ym) in m � n variables over GF(q), such that for every r1; : : : ; rm 2 Zn,

Pm
i (er1 ; : : : ; erm) = �i;r;

where r =
Pm

h=1 rh (mod n).
Moreover, Pm

i can be evaluated in polynomial time (in the size of its inputs).

Proof. Fixing n and q, de�ne the following sequence of polynomials: P 1
i (y

1) = y1i , and

Pm
i (y1; : : : ;ym) =

X
w2Zn

Pm�1
w (y1; : : : ;ym�1) � ymi�w ;

where the subtraction i � w is taken modulo n. It easily follows by induction on h that

Pm
i as de�ned above meets the speci�ed requirements. Since Ph def

= (Ph
0 ; : : : ; P

h
n�1) can be

20

e�ciently evaluated given the values of Ph�1, the values of Pm can be e�ciently computed
on a given assignment by iterating the evaluation of all Ph, where h runs from 1 to m.

The next lemma slightly improves a similar bound implicit in [10].

Lemma 6. Let l; d be positive integers, and q > d+ 1 a prime power. Then there exist

nl;d
def
=
�l+d

d

�
degree-d multivariate polynomials pi(y1; : : : ; yl), 0 � i < nl;d, and assignments

vi 2 GF(q)l, 0 � i < nl;d, such that pi1(vi2) = �i1;i2 for all 0 � i1; i2 < nl;d.

Proof. The existence of such pi;vi can be easily derived from the following facts:

� The number of degree-d monic monomials13 over y1; : : : ; yl is
�l+d

d

�
(as the number of

ways for placing at most d identical balls in l distinct bins);

� when d < q � 1 these monomials are linearly independent, where each monomial

p is identi�ed in a natural way with the vector up 2 GF(q)q
l

such that upy1:::yl =
p(y1; : : : ; yl).

Now, since the nl;d � ql matrix whose rows are all the vectors up is of full rank,14 it is row-
equivalent to a matrix A of which nl;d columns induce an identity matrix. Identifying each

of these nl;d columns with an assignment vi and each linear combination used for obtaining

a row of A with a corresponding polynomial pi, the desired result is obtained.
An explicit construction of such pi;vi, slightly improving a construction from [10],15 is

described in the following. Let mi(y1; : : : ; yl) be the i-th degree-d monic monomial (say,
according to lexicographic order). With each mi associate a \characteristic vector" vi =

(vi1; : : : ; v
i
l), such thatm

i =
Ql

j=1 y
vij
j . Letting y0

def
= d�Pl

j=1 yj and v
i
0

def
= d�Pl

j=1 v
i
j(= d�

deg(mi)), de�ne pi as:

pi(y1; : : : ; yl) =
lY

j=0

vij�1Y
k=0

yj � k

vij � k
:

Since
Pl

j=0 v
i
j = d, each pi is of degree d. It is straightforward to verify that the constructed

pi;vi meet the requirements.

It is interesting to note that the bound
�l+d

d

�
in the lemma is tight, as it coincides with

the dimension of the linear space of degree-d multivariate polynomials (which is spanned
by the degree-d monic monomials). This means that the application of the polynomial
interpolation technique to PIR, as in [10], in a sense cannot be pushed any further.

Theorem 4. Let m; t; d be positive integers, let k
def
= mtd + 1 and q be a prime power

greater than k + 1. Let ln;d denote the smallest integer l such that
�l+d

d

� � n. Then, there
is an (m � 1; t)-private information-theoretic commodity scheme Cm;t;d, with m servers, k
databases, communication complexity (logn; log q), and commodity complexity (logn; ln;d �
log q). Moreover, this scheme can be applied to data strings whose records are elements of
GF(q) (rather than single bits) at the same cost.

13We de�ne a degree-d monic monomial to be the product of at most d, not necessarily distinct, variables;
\monic" indicates that the coe�cient is 1.

14Here and in the following, an a� b matrix is said to be of full rank if its rank is equal to min(a; b).
15The construction in [10] implies a similar bound with nl;d =

�
l+d�1

d

�
, utilizing only the

�
l+d�1

d

�
mono-

mials whose degree is exactly d.

21

Proof. Let k = mtd + 1 and l = ln;d, let p
i;vi be as promised by Lemma 6, and Pm

as promised by Lemma 5. We view the data bits (or records) as elements of GF(q). A
commodity scheme Cm;t;d as required is described in the following.

Commodities: Each server Sh, 1 � h � m:

1. Picks a random index rh 2 Zn, which is sent as commodity to the user, and computes
the corresponding assignment vrh ;

2. Independently shares each entry of vrh according to Shamir's secret sharing scheme [29]
with privacy threshold t, over GF(q). Formally, for each w-th entry vrhw , 1 � w � l,
and each database DBj , Sh sends to DBj the share fhw(�j), where fhw is a random
degree-t (univariate) polynomial with free coe�cient vrhw , and each �j , 1 � j � k, is a

distinct nonzero element in GF(q) associated with DBj . We let �h;j denote the l-tuple
of shares sent from Sh to DBj .

Retrieval:

1. U sends to each database the query �
def
= i�Pm

h=1 rh (mod n).

2. Each database DBj replies with

aj
def
=
X
w2Zn

xw+� � Pm
w (p(�1;j); : : : ;p(�m;j));

where p = (p0; p1; : : : ; pn�1), and w + � is computed modulo n.

3. U reconstructs by interpolation: xi is taken to be the free coe�cient of the (unique)
degree-mtd univariate polynomial p over GF(q) such that p(�j) = aj , j = 1; : : : ; k.

Privacy: Let S = [m] n fh0g be a set of m � 1 corrupt servers with corruption strategy
S�, and T�[k] a set of t corrupt databases. The privacy of the scheme follows from the fact
that the collusion S; T cannot obtain any information about the index rh0 picked by the

remaining server. More formally, for any n; i the view V
S�;T
Cm;t;d

(n; i) includes:

� commodities cTh0 sent by the incorrupt server Sh0 to databases from T ;

� the user's query � = i�Pm
h=1 rh (mod n), where all indices rh except rh0 are deter-

mined by corrupt servers (as speci�ed by S�).

Now, the commodities cTh0 consist of l independent t-tuples of elements from GF(q), each

containing t shares generated by a t-private Shamir's secret-sharing. It follows that cTh0 is

distributed uniformly over GF(q)lt, independently of rh0 . Since rh0 is uniformly distributed
over Zn, we may conclude that the joint view (cTh0 ;�) is uniformly distributed over GF(q)lt�
Zn, independently of i.

Correctness: It su�ces to show that the points (�j ; aj), j 2 [k], lie on a degree-mtd
(univariate) polynomial whose free coe�cient is xi. This can be argued in a straightforward
way by tracing the computation of the answers aj . For each h 2 [m] and u 2 [l], the

points (�j ; �
h;j
u), j 2 [k], lie on a degree-t polynomial (namely, the polynomial fhu picked

by the user) whose free coe�cient is vrhu . Since each pw is of degree d, for any h 2 [m]
and w 2 Zn the points (�j ; p

w(�h;j)) lie on a degree-td polynomial whose free coe�cient is
pw(vrh), which by Lemma 6 equals �e;rh . Finally, since each Pm

w is of degree d, for each
w 2 Zn the points (�j ; P

m
w (p(�1;j); : : : ;p(�m;j))) lie on a degree-mtd polynomial whose

free coe�cient is Pm
w (er1 ; : : : ; erm), which by Lemma 5 is equal to �w;r (where r =

P
rh).

22

It follows that the points (�j ; aj) lie on a degree-mtd polynomial whose free coe�cient isP
w2Zn xw+� � �w;r = xr+� = xi. This concludes the proof of Theorem 4.

Remark 2. When retrieving a single-bit, the scheme Cm;t;d can be converted into a
similar scheme, in which each database replies with a single answer bit, and the user takes
the exclusive-or of the answers to obtain xi. We brie
y describe how this is done. Observe
that in Cm;t;d the user reconstructs xi by computing a �xed linear combination over GF(q) of
the k �eld elements replied by the databases. Thus, as a �rst step we can let each database
multiply its original answer by the corresponding coe�cient, so that reconstruction consists
of computing the sum of all answers over GF(q). Then, if q is chosen to be a power of 2

(q = 2dlog(k+1)e will su�ce) it is enough to send the user only the \least signi�cant bit" of
each answer.

Combining the above remark with the fact that ln;d = O(n1=d) for any constant d, we
have the following corollary of Theorem 4:

Corollary 3. For any constants s; t; d there is an (s; t)-private information theoretic
commodity scheme with s+1 servers, k = dt(s+1)+1 databases, communication complexity

(logn; 1) and commodity complexity (logn;O(n1=d)).

7 Multiple-Query Schemes

In this section we show that the commodity complexity of previous schemes can be amortized
over multiple queries made by the user.

A �-query PIR or commodity scheme can be de�ned using a straightforward extension
of the single-query de�nitions; the generalized privacy requirement should assert that any
two retrieval index vectors i = (i1; : : : ; i�) and i0 = (i01; : : : ; i

0
�) cannot be distinguished (in

the appropriate sense) by the adversary. Any commodity scheme C (or PIR scheme P)
can be extended into a �-query scheme using � parallel and independent repetitions. This
extension will be referred to as the naive q-query extension of C. It follows by a standard
hybrid argument (cf. [14]) that if C is private with privacy level (F ; E), then its naive �-query
extension is private with privacy level (F ; �E), where �E def

= f�" : " 2 Eg. We show that in
the case of our commodity schemes, the commodity cost of the naive �-query extension can
be reduced.

We start with a motivating example. Suppose that the user wishes to retrieve two
records, with (arbitrary) indices i1; i2, using a 1-private single-database commodity scheme
C2P , where P is some single-database PIR scheme. In the naive 2-query extension of C2P ,
the scheme is independently invoked twice in parallel. The retrieval cost of this solution is
twice as large as that for a single query, and so is its commodity cost. The total number of
commodity pairs cu; cdb generated by the two servers will thus be 4 (each server generates
two pairs, one for each retrieval). Note that one cannot use the same commodities for
the two retrievals, since this would reveal the di�erence i1� i2 to the database, potentially
disclosing too much information about what the user is looking for. We now show that using
an additional server, the total commodity cost of the above scheme can be improved to 3
commodity pairs of the same size as before. Consider a scheme in which each of the 3 servers
S1;S2;S3 sends a single commodity pair, as in the original single-query scheme, and then i1
is retrieved using the scheme C2P with commodities from S1;S2, and i2 is retrieved using the
same scheme with commodities from S2;S3. The view of the database will consist of the

23

three commodities supplied by the di�erent servers, as well as the user's queries i1� r1� r2
and i2 � r2 � r3. It is not hard to verify that the joint distribution of these queries reveals
nothing about (i1; i2) as long as at least two of r1; r2; r3 are kept private. Assuming that at
most one server is dishonest, the (computational) privacy of at least two of the three indices
is ensured. Summarizing, we have obtained a 1-private 3-server scheme for retrieving two
records, with the same retrieval complexity as the naive 2-server scheme, but with a lower
commodity cost (3 commodities instead of 4). In the following we show how this can be
generalized to obtain substantial savings in the commodity cost, asymptotically by up to a
multiplicative factor of s+ 1.

Theorem 5. Assume n is a prime power, and let G be a full-rank � � m matrix over
GF(n) such that the Hamming weight of every row in G is w, and G generates a linear code
whose minimal distance is d. Let Cw be a commodity scheme obtained via Theorems 2 or
4; in particular, Cw is a w-server, k-database, (w � 1; t)-private commodity scheme with
communication complexity (logn; �) and commodity complexity (logn; �db), in which all
servers play a symmetric role. Then, there is an m-server, k-database, (d � 1; t)-private
commodity scheme Cm� for � retrievals, with communication complexity (� logn; ��), and

commodity complexity (logn; �db). Moreover, Cm� has the privacy level of the naive �-query
extension of its underlying PIR scheme P (and is information-theoretically private if Cw is
obtained via Theorem 4).

Proof. Observe that in every scheme Cw as above, the user's query is of the form
i�Pw

h=1 rh, where each rh is supplied by a di�erent server. We denote by Cw[�1; : : : ; �w],
where �1; : : : ; �w are �xed nonzero elements of GF(n), a generalization of Cw in which the
user's query is i �Pw

h=1 �hrh (i.e., Cw = Cw[1; 1; : : : ; 1]). In case of a scheme Cw obtained
via composition of w atomic single-database schemes (Theorem 2), such a generalization
can be realized by modifying the de�nition of the h-th composed atomic scheme so that
the user's query is � = i � �hr (instead of i � r), and each database replies with an
answer on a database x0 such that x0j = x�h�j+� (instead of replying on x cyclically shifted

by �). Schemes obtained via the polynomial interpolation technique (Theorem 4) can be
appropriately generalized by a straightforward modi�cation of the polynomials Pm

i from
Lemma 5.

We now de�ne the scheme Cm� .
Commodities: Each server Sh, 1 � h � m, sends commodities as a single server in Cw.
Retrieval: Let gu1 ; : : : ; g

u
w denote the nonzero entries in the u-th row of G, and hu1 ; : : : ; h

u
w

their corresponding columns. Then, for each retrieval index iu, 1 � u � �, the user and the
databases execute the retrieval protocol of Cw[gu1 ; : : : ; guw], using commodities supplied by
Shu

1
; : : : ;Shuw .
The correctness of Cm� follows directly from the correctness of the schemes Cw and from

the fact that all servers in Cw play a symmetric role. Since each of the m servers sends
commodities for a single retrieval, as in Cw, the commodity complexity is as indicated. The
communication complexity is the same as that of � retrievals using Cw.

It remains to show that the scheme Cm� is (d�1; t)-private. Let S be a set of d�1 corrupt
servers and T be a set of t databases. Since G generates a linear code with minimal distance
d, the � � (m � d + 1) matrix G �S , obtained by restricting G to its columns with indices
from �S, is of full rank (otherwise there exists a nonzero codeword whose Hamming weight
is smaller than d). It follows that there is a server set S0 of size m� �, S�S0, such that the

24

(square) matrix G �S0 is nonsingular. If the collusion (S; T) can (f; �)-break Cm� (�; n), then
the same holds for the (larger) collusion (S0; T).

Now, �x �; n, and corruption strategy S0�, and let R = (R1; : : : ; Rm) be a random
variable consisting of the indices sent as commodities to the user. Note that the entries Rh

with h 2 �S0 are uniformly and independently distributed over GF(n), and each remaining
entry Rh, h 2 S0, has some �xed value rh determined by S0�(�; n). The user's query (to
each database) is i� GR, where i = (i1; : : : ; i�) is his index vector. The commodities sent
from servers in �S0 to databases in T include queries from j �S0j independent invocations of an
underlying PIR scheme P(�; n), where each invocation uses a corresponding entry of R as
its retrieval index; we denote this joint distribution of commodities by QP(R �S0). The joint
view of databases from T on index vector i is VC(i) = (QP(R); i� GR).

Now, suppose there are two index vectors i1; i2 and a circuit F of size f such that
F distinguishes between VC(i1) and VC(i2) with an �-advantage. That is, F distinguishes
with an �-advantage between (QP(R �S0)QP(rS0); ib �G �S0R �S0 � GS0rS0), b = 1; 2. Using the
independence of QP(R �S0) and QP(rS0), there exists a circuit F 0 of size f distinguishing
with an �-advantage between (QP(R �S0); i

0
b � G �S0R �S0), b = 1; 2, where i0b = ib � GS0rS0 .

Finally, since for any index vector i the random variable (QP(R �S0); i�G �S0R �S0) is identically

distributed to (QP(G
�1
�S0
(i�R �S0));R �S0), we may apply yet another averaging argument to

conclude that for some index vectors i001; i
00
2 there is a circuit F 00 of size f distinguishing

between QP(i
00
1) and QP(i

00
2) with an �-advantage. Hence we have shown that Cm� is (d�1; t)-

private, with the same privacy level as that of the naive �-query extension of its underlying
PIR scheme P .
Remark: The condition on G in Theorem 5 can be relaxed to allow rows with di�erent
Hamming weight in G; in such case, w can be taken as the maximal row weight in G. This
generalization, however, will not be very useful for our purposes.

In the following we focus on the case where w = d, in which Theorem 5 induces no
penalty in the communication cost or the number of databases of the multi-query scheme.
This restriction motivates the following problem: Given a prime power n and positive in-
tegers �; d, �nd a minimal-length linear code over GF(n) which is generated by � linearly
independent codewords of weight d and whose minimal distance is d. We let m(n; �; d) de-
note this minimal length, corresponding to the minimal number of commodity-tuples which
by Theorem 5 are su�cient for performing � independent (d� 1)-private retrievals from an
n-record data string, with no penalty in the communication complexity or the number of
databases. The commodity cost m(n; �; d) should be compared with the cost of the corre-
sponding naive extension scheme, whose d servers distribute a total of d� commodity-tuples.
For instance, m(n; �; 2) = �+ 1, as the �� (�+ 1) matrix

G =

0
BBB@

1 1 0 0 � � � 0
0 1 1 0 � � � 0

. . .

0 0 : : : 0 1 1

1
CCCA

generates (over GF(n)) a code of distance 2, thus generalizing the motivating example from
the beginning of the section to an asymptotic savings factor of 2 for 1-private schemes.

More generally, we have:

Fact 1. For any n; �; d such that n � �� 1, m(n; �; d) = �+ d� 1.

25

Proof. For n; �; d as above, there exist [�+ d� 1; �; d] linear codes over GF(n) (see [25,
Chapter 11]). The �� (�+ d� 1) generating matrix G of such code can be transformed via
elementary row operations to a matrix G0 generating the same code, which contains a ���
identity submatrix. Since the Hamming weight of each row of G0 is at most (�+ d� 1) �
�+ 1 = d, we have shown that m(n; �; d) � �+ d� 1. On the other hand, it follows from
Singleton bound (cf. [25, p. 33]) that m(n; �; d)� �+ d� 1.

We remark that the requirement n � � � 1 is necessary for the above bound to hold.
Luckily, in most plausible situations n is signi�cantly larger than �,16 in which case the
following corollary of Fact 1 applies.

Corollary 4. Assuming that the number of queries � is smaller than the database size
n, Theorem 5 can asymptotically save a factor of s+1 in the amortized commodity cost of
multi-query (s; t)-private schemes obtained via Theorems 2,3 or 4. If the number of servers
is limited to m0, m0 > s, the amortized savings factor is (s+ 1) � m0�s

m0
.

8 Commodity Testing

So far we have only addressed the goal of protecting the user's privacy, without considering
issues of correctness in the presence of faulty parties. In this section we consider the problem
of commodity testing, that is verifying whether commodities provided by a given server are
valid.

We restrict our attention to commodities for which there exists a PIR scheme P , such
that the user's commodity is some retrieval index r (possibly along with reconstruction
information), and the databases' commodities consist of queries, generated according to
P , pointing to r. We note that commodities used in atomic schemes, and hence also in
composition of such schemes, are of this type. Correctness of such commodities is de�ned
as follows.

De�nition 2. Given a PIR scheme P , data size n, and corresponding commodities
c = ((r; z); (q1; : : : ; qk)) (supposedly output by comCP(�;n) for some �), the commodities c
are said to be correct on a data string x, x 2 f0; 1gn, if recP((a1; : : : ; ak); z) = xr, where
aj = ansP(j; x; qj); their correctness ratio is the proportion of data strings on which they
are correct. The commodities are said to be correct if they are correct on all data strings
of length n.

Notice that in any commodity scheme which is composed of atomic schemes, ensuring
correctness of all commodities distributed by the servers guarantees correct execution of the
retrieval procedure, assuming that the databases are honest.

We give two types of procedures for testing correctness of commodities, the second being
more general than the �rst; however, procedures of the �rst type are much more e�cient,
and despite their lack of generality can be applied to most PIR schemes known to date.
Both procedures treat the underlying PIR scheme as a black box, verifying correctness of
commodities by testing them on some (small) sample of data strings. While their validity
relies on an honest behavior of the databases, none of them compromises the user's privacy,
even when there are dishonest databases. Finally, both procedures require a single round
of (o�-line) interaction, and their communication complexity involves an error probability
parameter �.

16Frequently-changing small databases can yield exceptions to this rule.

26

In the remainder of this section we describe the more e�cient (and less general) testing
procedure. The more general type is discussed in Appendix B.

8.1 Linear Schemes

Fix a security parameter �, data size n, and a �nite �eld F. A PIR scheme P(�; n) is said
to be linear over F if for any strings q1; : : : ; qk; z, there exists a linear functional g : F

n!F,
such that for any x 2 f0; 1gn recP((a1; : : : ; ak); z) = g(x) where aj = ansP(j; x; qj). That is,
even if the queries and the reconstruction information are badly formed, the reconstructed
value is \well-behaved" in the sense that it is equal to some linear combination of the data.
All known multi-database PIR schemes [10, 1, 9, 22] �t into this category.17

In the linear case, the goal of the testing procedure is to e�ciently verify that the linear
combination corresponding to the commodities c is correct, i.e. equal to xr, while keeping
r private from the databases. Note that to achieve absolute con�dence in commodities'
correctness, the \black-box approach" requires that the tested strings span the linear space
GF(q)n, implying that at least n data strings must be tested. However, settling for a small
probability of one-sided error, a much more e�cient solution to this problem can be obtained
as a typical application of small-bias probability spaces [26]. The following fact is proved in
[26].

Fact 2. For any n 2 N and � > 0, there is (an e�ciently constructible) meta-test-set
Tn;� � (GF(q)n)l, where l = O(log 1

�
), such that:

� jTn;�j is polynomial in n and 1=�.

� For every y 2 GF(q)n, y 6= 0, at most an �-fraction of the test-tuples (w1; : : : ; wl) 2 Tn;�
satisfy: y � wb = 0 for all 1 � b � l.

We now use Fact 2 to verify commodities with error probability �:

1. The user picks a random index d 2 [jTn;�j] and sends it to each database.

2. Each database DBj �nds the d-th test-tuple in Tn;�, (w1; : : : ; wl), and replies with

(a1j ; : : : ; a
l
j), where a

b
j = ansP(j; wb; qj).

3. The user accepts if the commodities were correct on all l selected test strings; that is,
if for every 1 � b � l, recP((a

b
1; : : : ; a

b
k); z) is equal to the r-th entry of wb.

Since the random test index d is independent of the commodities, the above testing
procedure does not compromise the user's privacy. If the tested commodities are correct,
the user always accepts. If they are incorrect, the user accepts with probability at most �;
to see this, note that if v 6= er represents the linear combination corresponding to incorrect
commodities, then v � er 6= 0, implying that with probability at least 1 � � there is a test
vector wb from the selected test-tuple such that v � wb 6= er � wb.

The communication complexity of the scheme is O(logn+� log 1
�), where � is the answer

complexity of P . We note that one can use a simpler construction of Tn;� for constant � (see
[26]) and amplify success probability by independent repetitions, yielding a computationally
easier procedure with a slightly worse asymptotic communication of O((logn+ �) log 1

�
).

We �nally remark that while our de�nition of commodity correctness does not directly
apply to the polynomial interpolation scheme from Section 6 (as it is not composed of atomic
schemes), it is possible to handle this scheme as well within the same linear framework as
above.

17While known single-database schemes do not directly �t into this category, similar methods can be
applied to the schemes from [23, 30].

27

9 Extensions

In this section we discuss two extensions of the results presented in previous sections.

9.1 Protecting data privacy

Ordinary PIR schemes may reveal to the user (and especially to a dishonest user who does
not follow his protocol) more information about the data string x than just a single data
record xi. This is a serious disadvantage in some scenarios, e.g. when the user is required to
pay for each data item he retrieves. In [13, 27] it is shown how to transform ordinary PIR
schemes into stronger schemes, which protect the privacy of the data in the sense that any
user, even a dishonest one, cannot learn more than a single data record in each invocation.

All the results of this work can be directly applied to such stronger schemes as well.
Moreover, our use of PIR schemes with a very simple answer structure (see Section 3) makes
it particularly easy to satisfy the extra data privacy requirement. In fact, the (moderate)
overhead incurred by the transformations in [13, 27] can be almost totally eliminated in the
commodity-based setting, provided that not all servers collude with the user. For instance,
consider commodity schemes in which the user reconstructs xi by taking the exclusive-or of
k answer bits a1; : : : ; ak. This is the case for the optimized version of the scheme Cm;t;d (see
Corollary 3), as well as for commodity schemes constructed from the computational PIR
scheme P3. If each answer bit aj in these schemes is masked with a bit rj such that the
k bits r1; : : : ; rk are random subject to the constraint that their exclusive-or is 0, then the
only information about x revealed by the masked answers is a single data bit xi. Letting the
servers provide random masks rj as above, we obtain commodity schemes that maintain
data privacy with respect to an honest user, who sends the same shift amount � to all
databases. A technique from [10] can be used to prevent a dishonest user, sending di�erent
shift amounts to di�erent databases, from learning any information about the data. This
requires only O(logn) additional commodity bits, and yields a commodity scheme which
protects the privacy of the data against any (possibly dishonest) user.18

9.2 Application to Private Information Storage

Most of the results presented in this work can be adapted to the related problem of Private
Information Storage introduced in [28]. Private information storage schemes allow a user
to privately write and read data to/from a data string which is secret-shared (rather than
replicated) among several databases. In the case of writing, this means that both the
address of the written record and its contents should be hidden from each collusion of t
databases.

In the following we will only deal with 1-round storage schemes; this is contrasted with
the main construction of [28], which requires logarithmically many rounds of interaction.
We also assume that the \write" operation speci�es an additive change to the i-th record,
say over a �nite �eld, rather than overwrite it with a speci�c value (e.g., in the case of single
bit records, the user determines whether or not to
ip the i-th data bit). An \overwrite"
operation can then be implemented using one read operation for retrieving the i-th record,
followed by one write operation to change (or unchange) its value.

18Note that in the underlying PIR schemes the user has much more cheating power; by choosing invalid
queries the user can learn linear combinations of large sets of data bits. In the commodity schemes the user's
cheating is restricted to specifying di�erent shift amounts, which can be more easily taken care of.

28

More formally, a 1-round storage scheme is de�ned as follows. The \read" operation
proceeds as in the case of PIR, except that the distributed representation of the data string is
di�erent (i.e., the data string is secret-shared rather than replicated). In a \write" operation,
the user sends to each database a query string, called command, which is interpreted by each
database to represent some transformation of its share of the data string. After performing
these transformations, the shares held by the databases should represent an appropriately
modi�ed data string, in a way that will be consistent with subsequent read and write
operations performed by any user. Such a scheme is said to be t-private if the commands
viewed by any t databases give them no information (in the appropriate sense) on the write
address or the change amount.

The notion of commodity storage scheme can be de�ned in the natural way. We now
argue that an analogue of the atomic commodity PIR schemes from Section 4 exists for
storage schemes as well. Consider any 1-round k-database storage scheme in which the
data string is shared record-wise (implying that shifting all shares by the same amount
results in a valid representation of the shifted data string). For simplicity, we also assume
that this storage scheme applies to single-bit data records, and that there is a dummy
location which is not considered a part of the data string (so that to unchange the data the
user may
ip the dummy bit). A \write" operation in a corresponding commodity storage
scheme can then proceed as follows:

� The server picks a random storage index r 2 Zn and a k-tuple of commands for
ipping
xr. Each command is sent to the corresponding database and the index r to the user.

� In the on-line stage, the user sends to each database a shift amount � = i�r (mod n).
Each database: (1) cyclically shifts its share by � records to the left; (2) interprets its
commodity command and performs the required transformation on the shifted share;
and (3) shifts the transformed share back by � records to the right.

The read operation for the commodity scheme can be obtained from the original read
operation as in atomic commodity PIR schemes.

Single-round storage schemes on which the above transformation may operate can be

based on any of the PIR schemes Pk
1 , P t;d

2 , and P3, with similar storage cost as the retrieval
cost of the PIR schemes.19 In fact, a 1-round storage scheme can be based on any PIR
scheme in which the user's query is interpreted as asking for a single linear combination of
the data records, over some �nite �eld. In a corresponding storage scheme, the data string
will be equal to the sum of all its shares; a write operation, adding 1 to xi, is implemented
by having each database add to its share the coe�cient vector of the linear combination
corresponding to a query pointing to xi.

Attempting to generally construct storage schemes with higher server-privacy thresholds
turns out to be more problematic, as the composition technique of Section 5 does not seem
to be applicable in its full generality to the case of storage. However, it is possible to
directly construct multi-server storage schemes with similar parameters to the commodity
PIR schemes of Corollary 2 or Theorem 4.

References

[1] A. Ambainis. Upper bound on the communication complexity of private information
retrieval. In Proc. of 24th ICALP, 1997.

19If the \read" operation is implemented via a multi-database PIR scheme, the number of databases should
be increased (as in [28]) to allow su�cient replication of each share.

29

[2] D. Beaver. Commodity-based cryptography. In Proc. of 29th STOC, pages 446{455,
1997.

[3] D. Beaver and J. Feigenbaum. Hiding instances in multioracle queries. In STACS,
1990.

[4] D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway. Security with low communication
overhead. In Proc. of CRYPTO, 1990.

[5] A. Beimel, Y. Ishai, E. Kushilevitz, and T. Malkin. One-way functions are essential
for single database private information retrieval. In Proc. of 31st STOC, pages 89{98,
1999.

[6] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-crypto-
graphic fault-tolerant distributed computation. In Proc. of 20th STOC, pages 1{10,
1988.

[7] C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval
with polylogarithmic communication. In Advances in Cryptology { Eurocrypt '99, 1999.

[8] D. Chaum, C. Cr�epeau, and I. Damg�ard. Multiparty unconditionally secure protocols
(extended abstract). In Proc. of 20th STOC, pages 11{19, 1988.

[9] B. Chor and N. Gilboa. Computationally private information retrieval. In Proc. of
29th STOC, pages 304{313, 1997.

[10] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval.
In Proc. of 36th FOCS, pages 41{50, 1995.

[11] G. Di Crescenzo, T. Malkin, and R. Ostrovsky. Single database private information
retrieval implies oblivious transfer. manuscript, November 1998.

[12] Y. Gertner, S. Goldwasser, and T. Malkin. A random server model for private in-
formation retrieval. In Proc. of 2nd. International Workshop on Randomization and
Approximation Techniques in Computer Science, RANDOM98, 1998.

[13] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy in private
information retrieval schemes. In Proc. of 30th STOC, pages 151{160, 1998.

[14] O. Goldreich. Foundations of Cryptography (fragments of a book). Elec-
tronic Colloquium on Computational Complexity, 1995. Electronic publication:
http://www.eccc.uni-trier.de/eccc-local/ECCC-Books/eccc-books.html.

[15] O. Goldreich. On the foundations of modern cryptography. In Proc. of CRYPTO'97,
pages 46{74, 1997.

[16] O. Goldreich. Modern Cryptography, Probabilstic Methods and Pseudo-Randomness.
Springer-Verlag, 1999.

[17] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game (extended
abstract). In Proc. of 19th STOC, pages 218{229, 1987.

[18] S. Goldwasser. Multi-party computations: Past and present. In Proc. of 16th PODC,
pages 1{6, 1997.

30

[19] S. Goldwasser. New directions in cryptography: Twenty some years later. In Proc. of
38th FOCS, pages 314{324, 1997.

[20] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of computer and systems
sciences, 28:270{299, 1984.

[21] J. Hastad, R. Impagliazzo, L. A. Levin, and M. Luby. Construction of a pseudo-random
generator from any one-way function. Technical Report TR-91-068, International Com-
puter Science Institute, 1991. To appear in SIAM Journal on on Computing.

[22] Y. Ishai and E. Kushilevitz. Improved upper bounds on information-theoretic private
information retrieval. In Proc. of 31st STOC, pages 79{88, 1999.

[23] E. Kushilevitz and R. Ostrovsky. Single-database computationally private information
retrieval. In Proc. of 38th FOCS, 1997.

[24] E. Kushilevitz and R. Ostrovsky. One-way trapdoor permutations are su�cient for
single-server private information retrieval. Technical Report CS-09-62, Techion, 1999.

[25] F.J. Macwilliams and N.J. Sloane. The theory of error correcting codes. North Holland,
1978.

[26] J. Naor and M. Naor. Small-bias probability spaces: E�cient constructions and appli-
cations. In Proc. of 22th STOC, pages 213{223, 1990.

[27] M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation. In Proc. of 31st
STOC, pages 245{254, 1999.

[28] R. Ostrovsky and V. Shoup. Private information storage. In Proc. of 29th STOC,
pages 294{303, 1997.

[29] A. Shamir. How to share a secret. Commun. ACM, 22(6):612{613, June 1979.

[30] J. P. Stern. A new and e�cient all{or-nothing disclosure of secrets protocol. In ASI-
ACRYPT'98, pages 357{371. Springer-Verlag, 1998.

[31] A.C. Yao. Protocols for secure computations (extended abstract). In Proc. of 23rd
FOCS, pages 160{164, 1982.

A The PIR Scheme Pd
4

In this appendix we describe the PIR scheme Pd
4 and some possible optimization of this

scheme in a setting where a public source of randomness is available.
The scheme Pd

4 can be obtained by a straightforward modi�cation of the recursive
construction from [23]. It uses the quadratic residuosity based public-key encryption scheme
from [20] described below. The public key is a �-bit modulus N = pq, where p; q are two
large primes satisfying p � q � 3 (mod 4), and the private key is the pair (p; q). Let J+1N
denote the multiplicative group of residues modulo N with Jacobi symbol 1. To encrypt a
bit 0 we let EN(0) = r2 (mod N), and to encrypt a bit 1 we let EN(1) = �r2 (mod N)
where r is a random residue modulo N . Note that an encryption of 0 (resp. 1) is a random
quadratic residue (resp. quadratic non-residue) in J+1N . If m = m1m2 � � �m` is a message
of length `, then m is encrypted by independently encrypting each of its ` bits; that is,

31

EN(m) = EN(m1)EN(m2) � � �EN(m`). The decryption function D(p;q)(c), where c is a
�`-bit ciphertext, proceeds by parsing c into �-bit residues (c1; : : : ; c`), and extracting the
quadratic character of each residue using the private key (p; q).

The scheme Pd
4 proceeds as follows. Assume that n = ad for some integer a. The user

views the data string x as embedded in a d-dimensional cube of length a, and naturally
identi�es his retrieval index i with its coordinates (i1; : : : ; id) 2 Zd

a . The user's query consists
of the public keyN , along with da independent encryptions (c10; : : : ; c

1
a�1); : : : ; (c

d
0; : : : ; c

d
a�1),

where each cd
0

a0 is an encryption of the bit 1 if id0 = a0 and an encryption of the bit 0 otherwise.
In other words, the query includes an encryption of the d length-a unit vectors ei1 ; : : : ; eid.
The private key (p; q) is taken to be the reconstruction information. To specify how the
database computes its answer, we de�ne an operator select(y; c) as follows. Let y be an
a-record data string with record length `, and c be an a-tuple of ciphertexts, where each
ciphertext ca0 , a

0 2 Za, is an element of J+1N . We de�ne select(y; c) to be a string of length
�`, obtained by concatenating the ` residues s0; s1; � � � ; s`�1, where

s`0 = �a�1
a0=0c

(ya0)`0
a0 (mod N)

(and each s`0 , 0 � `0 < `, is represented using � bits). Note that if c encodes a length-a
unit vector ei0 and y is a data string consisting of a records of length `, then select(y; c)
is a �`-bit encoding of yi0 . The database's answer will be computed using d successive
applications of the select operator, each having the e�ect of decreasing the dimension of
the data cube by 1 and increasing the representation size of each entry by a factor of �.
Speci�cally, the database starts by letting y(d) = x, and for d0 = d� 1; d� 2; : : : ; 0 lets y(d

0)

be an ad
0

-record data string, with record length `(d
0) = �d�d

0

, de�ned by:

y
(d0)

(i1;i2;:::;id0)
= select

��
cd

0+1
0 ; : : : ; cd

0+1
a�1

�
;
�
y
(d0+1)

(i1;i2;:::;id0 ;0)
; : : : ; y

(d0+1)

(i1;i2;:::;id0 ;a�1)

��
:

The database replies with a data string y(0), whose single record may be intuitively viewed as
a \d-level encoding" of xi. Finally, the user reconstructs xi from this answer by successively
applying the decryption function D(p;q) to the answer d times.

In a setting where a public source of randomness is available, the query complexity
of Pd

4 may be improved by an asymptotic factor of � (and in fact the same improvement
applies to the query complexity of the original scheme from [23]). The idea is to modify the
scheme Pd

4 by �rst letting the user and the database parse the public random string as a

sequence of random elements in J+1N , and then replacing each residue sent by the user with
a single correction bit. Since (�1) is a quadratic non-residue modulo any Blum integer N ,
the database can
ip the quadratic character of any public residue simply by negating it.
The query complexity of the modi�ed scheme is �+ dn1=d (in oppose to �+ d�n1=d of Pd

4)
and its answer complexity is �d (as of Pd

4).

B General Commodity Testing

In this section we address the general problem of testing commodities which correspond to
an arbitrary PIR scheme. Note that in this case, achieving absolute con�dence in commodity
correctness using the \black-box approach" requires all 2n data strings to be tested. Again,
settling for a small probability of error one can do much better, using straightforward
sampling techniques.

Informally, the testing procedures will either reject commodities or give statistical ev-
idence that their correctness ratio is high. To avoid the worst case possibility of having

32

a certi�ed commodity fail on a speci�c data string x, the on-line retrieval protocol will be
augmented to include randomization of the data string, as well as repeated querying for
amplifying success probability.

We start by describing a procedure which is (statistically) secure against servers with
unlimited computational power, but requires the use of a public random string picked
independently of the commodities. This need for public randomness will be dispensed with
in the sequel. For the sake of simplicity, we refer only to an atomic scheme CP . The
techniques can be adapted to any of our multi-server schemes as well.
Commodity stage:

1. The server, on input 1�; 1n, distributes commodities c = ((r; z); (q1; : : : ; qk)) as in
CP(�; n).

2. The user and the databases parse the public random string as y1; y2; : : : ; y�, where
each yd is n-bit long, and test the commodities c on each data string. That is, for each
1 � d � �, each database DBj replies with aj = ansP(j; yd; qj), and the user veri�es
that recP((a1; : : : ; ak); z) is equal to the r-th bit of yd.

3. If the commodities fail the test, the user rejects. Otherwise, the user and the databases
proceed to the retrieval stage.

Retrieval stage:

1. The user and the databases parse the remainder of the public random string as
z1; z2; : : : ; z�, where each zd is n-bit long.

2. The user and the databases invoke the original retrieval scheme � times, where in the
d-th invocation the databases replace the data string x by the (random) string x� zd.

3. The user reconstructs l answer bits b1; : : : ; b� according to the original reconstruction
function, and outputs the majority vote of the bit values bd � (zd)i.

The second part of the next claim follows from a standard application of Cherno�
bounds.

Claim 2. The above testing procedure satis�es the following:

� If the commodities c are correct, the user will always output the correct data bit.

� For any commodities c, data string x, retrieval index i, and security parameter �, if
the user does not reject c at the commodity stage, then the probability that his output
is wrong (i.e., is di�erent from xi) is 2

�
(�).

We now argue that, under mild cryptographic assumptions, public randomness can be
replaced by a shorter seed sent from the user to each database.

Claim 3. Suppose there exists a non-uniformly secure20 pseudo-random generator G :
f0; 1g�(L)!f0; 1gL (i.e., any polynomial-size circuit family distinguishes UL from G(U�(L))
with at most a negligible advantage in L, where U` is the uniform distribution on `-bit
strings). Let L = 2�n denote the total length of the public random string in the above
testing procedure. Now, modify the procedure by replacing the public random string with
a random seed of size �(L) sent from the user to each database, so that both the user and
the databases can apply G to the seed to obtain a common pseudo-random string of length
L. Then, the modi�ed procedure satis�es the following:

20Nonuniform security may be relaxed to uniform security if a corrupt server is restricted to be computa-
tionally e�cient.

33

� If all commodities are correct, the user will always output the correct data bit.

� For any commodities c, data string x, retrieval index i, and security parameter �, if
the user does not reject c at the commodity stage, then the probability that his output
is wrong (i.e., is di�erent from xi) is negligible in �.

Proof. If (for in�nitely many �'s) there exist c�; x�; i� which make the user err with

��O(1) probability, then a truly public random string of length L � � can be distinguished
from a pseudo-random one with a ��O(1) advantage, contradicting the pseudo-randomness
assumption. Speci�cally, the �-th distinguishing circuit takes an L = 2�jx�j bit string as
input, then simulates the above procedure (with c�; x�; i�) using its input as the public
random string, and �nally outputs 0 if the user's output is equal to xi and 1 otherwise.
Since the algorithms ansP , recP , and queCP are e�cient, the size of such a circuit can be
polynomial in L, the length of its input.

Substituting a \su�ciently secure" seed size for �(L) (e.g., �(L) = Lc for any c > 0
under standard cryptographic assumptions, or �(L) = polylog(L) under more ambitious as-
sumptions), we get a communication e�cient testing procedure for the general case (though
not quite as e�cient as for the linear case). We �nally note that more general techniques
for derandomizing BPP algorithms (see [16] for a survey) may be used to improve the above
procedure.

34

