
Amortizing Randomness in Private Multiparty Computations�

Eyal Kushilevitzy Rafail Ostrovskyz Adi Ros�enx

Abstract

We study the relationship between the number of rounds needed to repeatedly perform a
private computation (i.e., where there are many sets of inputs sequentially given to the players
on which the players must compute a function privately) and the overall randomness needed
for this task. For the xor function, we show that by re-using the same ` random bits we can
signi�cantly speedup the round-complexity of each computation compared to what is achieved
by the naive strategy of partitioning the ` random bits between the computations. Moreover,
we prove that our protocols are optimal in the amount of randomness they require.

1 Introduction

A very basic question in the theory of computation is the direct-sum question: Can the complexity

of solving k independent instances of a problem be smaller than the cost of independently solv-

ing the k instances? This general question was studied in various scenarios and with respect to

various complexity measures, e.g., in [10, 20, 21, 23, 26, 38, 41]. To answer such a question, one

typically needs to consider a problem whose complexity in the single instance case is reasonably

well understood.

In this work we consider a direct sum question related to the randomness complexity of private

multiparty protocols. A 1-private (or simply, private) protocol A for computing a function f is a

protocol that allows n players, Pi, 1 � i � n, each possessing an individual secret input, xi, to

compute the value of f(~x) in a way that no single player learns about the initial inputs of other

players more than what is revealed by the value of f(~x) and its own input1. Private computations in

this setting were the subject of a considerable amount of work, e.g., [5, 13, 2, 3, 15, 16, 17, 18, 21, 31,

35]. In this paper, we consider this setting for the basic xor function, and show quite unexpected

results relating the rounds complexity and the randomness complexity of such computations.

�An early version of this paper appeared in the Proc. of the 17th PODC conference, 1998, pp. 81-90.
yDept. of Computer Science, Technion, Haifa, Israel. e-mail: eyalk@cs.technion.ac.il; Part of this research was

done while visiting ICSI Berkeley. Supported by MANLAM Fund. URL: http://www.cs.technion.ac.il/�eyalk
zBell Communications Research, MCC-1C365B, 445 South Street, Morristown, New Jersey 07960-6438; e-mail:

rafail@bellcore.com
xDept. of Computer Science, University of Toronto, Toronto, Canada. Part of this work was done while with

the Dept. of Computer Science, Tel-Aviv University, Tel-Aviv, Israel, and while visiting ICSI Berkeley. e-mail:

adiro@cs.toronto.edu
1In the literature a more general de�nition of t-privacy is given. The above de�nition is the case t = 1.
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Randomness is an important resource in computation. As a result, various methods for saving

in randomness were studied [1, 6, 14, 19, 25, 27, 28, 29, 36, 37, 40, 42, 43, 44]. In addition, there

was a quantitative study of the role of randomness in speci�c contexts, e.g., [39, 34, 4, 11, 8, 9].

One such case is the study of randomness in private multiparty computations [7, 12, 30, 32, 33, 22].

In particular, in [7, 33, 30] the amount of randomness required for private computations of xor

(the exclusive-or function) was considered (this function was the subject of previous research in the

area of privacy due to its being a basic linear operation and its relative simplicity [21, 16]).

In this paper we also concentrate on the xor function. Previously, the following was known for

privately computing xor on a single instance (that is, where each player has a single input bit):

� there is no deterministic solution for the problem;

� with a single random bit the problem requires �(n) rounds (time) [33];

� with ` � 2 random bits the problem requires �( logn
log `

) rounds [33, 22].

None of the above mentioned works addressed multiple inputs.2 We study the round-complexity

question in such multiple input settings.

Our Results: Before we make a precise statement of our general result, we start with a statement

of a somewhat weaker version of our result which is simpler to state (and still is quite surprising): let

us consider the case where n players are sequentially given n sets of inputs, of a single bit each, and

for each such set the players wish to privately compute the xor of these bits. In this case, by [33], if

the players use only a single independent random bit for each set of inputs, they can compute all n

xors, using n=2 rounds for each set of inputs. It is impossible to compute the xor's privately using

the single random bit (per computation) with less than 
(n) rounds per computation. If the players

wish to compute n independent xor's with O(1) rounds per computation, and using independent

random bits for each computation, they will need at least 
(n1+") random bits overall (i.e. at least


(n") for each input set) [22]. Surprisingly, we show how to re-use the same O(n) random bits

for all computations and achieve optimal rounds-performance each time, i.e., each computation

will be performed in O(1) rounds. Moreover, we accompany this result by a corresponding lower

bound showing that in order to privately compute the n xor's the players need 
(n) random bits

regardless of the number of rounds. Thus, using the minimum number of random bits possible, we

achieve by a \recycling" procedure the optimal round-complexity.

More generally, we consider the setting where the players are sequentially given k input bits

each, and the goal is to sequentially compute k times the xor function immediately after the input

bits for each set are provided. First, we prove that no solution exists which uses less than (1� 2
n
)k

random bits (hence, generalizing the claim that in the single input case there is no deterministic

solution for n � 3). If we have ` � k random bits, the naive solution would be to partition these

bits into sets of d �= `=k random bits and to use the best single-input solution with d random bits

for each sequential input. For example, if ` = k then d = 1 and this solution requires �(n) rounds,

and if ` = �(k) then d = O(1) and this solution takes �(logn) rounds [33, 22]. We present much

better solutions than the above. In particular, we show that if ` = k = c � (n� 1) the problem can

be solved in O(1) rounds per computation (rather than �(n)), and for ` = O(k) we can solve the

problem in O( logn
logk

) rounds (rather than �(logn)).

2Amortization of the communication complexity in private computation of xor was shown in [21].
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Organization: In Section 2 we provide the required de�nitions, including the model and the

de�nition of privacy. In Section 3 we present our protocols that show our technique for recycling

the random bits. Section 4 includes the lower bound which is technically more involved.

2 Preliminaries

In this section we give a description of the protocols we consider, and de�ne the privacy property

of protocols as well as the required complexity measures.

A set of n players Pi (1 � i � n), each receiving sequentially k input bits x1i ; : : : ; x
k
i (known

only to it), collaborate in a protocol to compute the k values

xor(x11; x
1
2; : : : ; x

1
n)

xor(x21; x
2
2; : : : ; x

2
n)

...

xor(xk1; x
k
2; : : : ; x

k
n):

(In general, we may be interested in computing any function f .) More speci�cally, a protocol works

in k phases. In phase j each player Pi gets the input bit x
j
i . Then, the players have to compute the

j'th value xor(x
j
1; x

j
2; : : : ; x

j
n) and only after this computation is completed they get the (j + 1)-

st input bit. The computation in each phase operates in rounds. In each round each player Pi

may toss some coins, and then sends messages to the other players (messages are sent over private

channels so that other than the intended receiver no other player can listen to them). Player Pi

then receives the messages sent to it by the other players. The content of these messages may

depend on all the information available to Pi: its input (in the current and the previous phases),

its random coins and the messages it received so far (in the current and the previous phases). Each

player Pi receives during the execution of the protocol a sequence of messages Ci. We denote by

C
j
i those messages sent to Pi during phase j. We also use xi to denote the input seen by Pi during

the whole protocol, i.e. xi = x1i ; : : : ; x
k
i , and ~x to denote the vector of inputs seen by all players, i.e.

~x = (x1; : : : ; xn). We denote by xj the vector of inputs received by all players in the j-th phase,

i.e. xj = (x
j
1; : : : ; x

j
n). Finally, we use f

k(~x) to denote the vector of the k outputs of the protocol,

i.e. fk(~x) = (f(x1); : : : ; f(xk)).

Informally, privacy with respect to player Pi means that player Pi cannot learn anything (in

particular, the inputs of the other players) from Ci, except what is implied by its input bits, and

the value of the function computed. Formally,

De�nition 1: (Privacy) A (k phase) protocol A for computing a function f is private with respect

to player Pi if for any two input vectors ~x and ~y, such that fk(~x) = fk(~y) and xi = yi, for any

sequence of messages C, and for any random coins, Ri, tossed by Pi,

Pr[Ci = CjRi; ~x] = Pr[Ci = CjRi; ~y];

where the probability is over the random coin tosses of all other players.

A protocol is called private if it is private with respect to every Pi.
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Due to the nature of k-phase protocols, it might be convenient to consider each \piece" C
j
i

of the communication separately. That is, given all the information available to Pi when phase j

starts, the communication in that phase does not provide any additional information (other than

what is implied by its input bits and the value of the function computed). While the two de�nitions

are equivalent the second de�nition is sometimes easier to use.

De�nition 2: (Privacy { 2nd variant) A (k phase) protocol A for computing a function f is

private with respect to player Pi if for every phase j (1 � j � k) for any two input vectors ~x and ~y,

such that f(xj) = f(yj) and xi = yi, for any sequence of messages C, for any history C1
i ; : : : ; C

j�1
i ,

and for any random coins, Ri, tossed by Pi,

Pr[C
j
i = CjRi; ~x; C

1
i ; : : : ; C

j�1
i ] = Pr[C

j
i = CjRi; ~y; C

1
i ; : : : ; C

j�1
i ];

where the probability is over the random coin tosses of all other players.

A protocol is called private if it is private with respect to every Pi.

To measure the amount of randomness used by a protocol and its round complexity we give the

following de�nitions:

De�nition 3: An `-random protocol is a protocol such that for every input assignment ~x, the

total number of coins tossed by all players in every execution (during all phases) is at most `.

De�nition 4: An r-round protocol is a protocol such that for every input assignment ~x, and

every sequence of coin tosses the number of rounds in each phase j is at most r.

We emphasize that the de�nitions allow, for example, that in di�erent executions di�erent

players will toss the coins. This may depend both on the input of the players, and on the previous

coin tosses.

3 Upper Bound

In this section we present our positive results. First, we consider the case k = n� 1. By the lower

bound of Section 4, at least n � 2 random bits are needed for such a computation, regardless of

the number of rounds per phase. The protocol below uses n � 1 random bits. Of course, there is

a naive way to perform this computation using only n � 1 random bits, which is to use a single

random bit for each of the n� 1 phases. However, such computation takes �(n) rounds per phase

and by [33] this is the best one can do with a single random bit (per phase). Our protocol takes a

di�erent direction that allows it to use only O(1) rounds per phase.

Lemma 1: There is a private, k-phase protocol that computes xor on k = n � 1 inputs with

` = n� 1 random bits and r = O(1) rounds per phase.

Proof: For the proof we present an appropriate k-phase protocol.

Initialization: Player Pn chooses n � 1 random bits, denoted r1; : : : ; rn�1. It sends bit ri to

player Pi. (This step can be performed as part of phase 1.)
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Phase j:

1. Each player Pi, 1 � i � n� 1, sends a bit bi;j = x
j
i + ri to player Pj .

In addition, player Pn sends to Pj the bit bn;j = xjn +
Pn�1

m=1 rm. (The summations here and

elsewhere are all modulo 2.)

2. Player Pj sums the n bits bi;j it received in the previous step. It announces
Pn

i=1 bi;j as the

output for the j-th phase.

For the correctness, consider the sum computed by player Pj in Step (2). This sum equals:

nX
i=1

bi;j =
n�1X
i=1

(x
j
i + ri) + (xjn +

n�1X
m=1

rm)

= xor(x
j
1; x

j
2; : : : ; x

j
n):

For the privacy, note that Pn receives no message during the protocol (except the output values),

hence the privacy with respect to Pn certainly holds. Also, observe that during phase j only player

Pj receives any message (other than the output of the phase). Finally, C
j
j (the communication

received by Pj in phase j) is a sequence of messages b1;j; : : : ; bn�1;j; bn;j. Note that for every input

~xj = (x
j
1; x

j
2; : : : ; x

j
n), every communication rj ; c1; : : : ; cn�1; cn which is consistent with the output

has the same probability, 2�(n�1). This is because each of c1; : : : ; cn�1 determines one of the n� 1

random bits (which are all independent) and cn (and rj) are determined by the value of the function

and the previously determined values. The privacy of the protocol follows.

The main idea in the above protocol is that we can compute the xor of each of the n�1 inputs,

using n � 1 random bits, in a way that allows to use the same n� 1 random bits for all the n � 1

inputs. We can use the same idea, with a bit more of precaution, to do it for other parameters.

The following is a simple corollary of the previous construction.

Lemma 2: There is a private, k-phase protocol that computes xor on k = d(n� 1) inputs with

` = d(n� 1) random bits and r = O(1) rounds.

Proof: Simply partition the d(n� 1) inputs into d sets of size n� 1. For each set of n� 1 inputs

use the (n� 1)-phase protocol of Lemma 1 that requires n� 1 random bits and O(1) rounds. If we

do this each time with new and independent random bits, we get the desired result.

Again note that, by the results of Section 4, the above lemma is (almost) optimal in terms of

the number of random bits required for this computation. Moreover, if k (the number of inputs)

is not divisible by n � 1 we can always add some dummy inputs to each player so as to make the

number of inputs be some k0 which is divisible by n � 1. For example, if n�1
2

� k < n � 1, then

` = n� 1 random bits and r = O(1) rounds su�ce. The only case where this is ine�cient is when

k � n � 1; in such a case increasing the number of inputs to k0 = n � 1 would be wasteful. For

such cases, we use the following construction:

Lemma 3: Let s be an integer (1 � s � n). There is a private, k-phase protocol that computes

xor on k inputs, k < (n � 1)=2 with ` = 2k + s random bits and r � logn= log s rounds per

computation.
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Proof: As in the previous protocols, Pn will be the player that makes the random choices. We

partition the other n�1 players into g groups of size k. Assume for simplicity that n�1 is divisible

by k. Moreover, assume that g = (n � 1)=k is even (later we describe the modi�cations required

when this is not the case).

Initialization: Player Pn chooses k random bits, denoted r1; : : : ; rk. It sends the bit ri to the

i-th player of each of the g groups. Pn chooses additional s bits �1; : : : ; �s to be used later.

Phase j:

1. The i-th player in each group t (1 � i � k, 1 � t � g), denoted Pi;t, sends a bit b
j
i;t = x

j
i;t+ ri

to player Pj;t (where x
j
i;t denotes the input of Pi;t in the current phase, j).

2. Each player Pj;t computes Y
j
t =

Pk
i=1 b

j
i;t.

3. The j-th players of all groups together with Pn involve in a private protocol to compute the

sum of g + 1 bits: Y 1
j ; : : : ; Y

g
j and xjn. They announce the output as the xor of the j-th

input. The players do this computation using the protocol of [33]. This protocol, when using

s random bits, terminates within log(g+1)= log s rounds. In addition, all the random bits in

this protocol are chosen by one player which other than that receives no message during the

protocol; we choose this player to be Pn and �1; : : : ; �s to be these random bits (note that

Pn uses the same s random bits in all k phases).

For the correctness note that

gX
t=1

Y t
j + xjn =

gX
t=1

kX
i=1

b
j
i;t + xjn

=

gX
t=1

kX
i=1

(x
j
i;t + ri) + xjn

=
nX

i=1

x
j
i + g � (

kX
i=1

ri):

Since we assumed that g is even, the last term contributes 0 to the sum (modulo 2) and so the j-th

output is
Pn

i=1 x
j
i , as needed. The number of random bits used is k + s.

For the privacy, note again that Pn only sends messages during the whole protocol and that

in phase j only the j-th player of each group receives messages. Each of the players Pj;t receives

in Step 1 from the members of its group, k bits b
j
1;t; : : : ; b

j
k;t which are distributed uniformly and

independently. Then, it involves in a private protocol which guarantees that no matter what is the

input to the protocol each player sees the same distribution of communications, for all the possible

inputs that Pj;t may have, and all possible outputs. (Note that the s random bits used for this

sub-protocol are independent of the random bits used in Step 1.) Altogether, the privacy follows.

Now, there are some technical issues that we still need to take care of. First, if the number of

groups g is odd then Pn can always make sure that there will be no contribution of random bits

to the result by using as its input in Step 3 of phase j the bit xjn xored with these random bits.

Another technical issue that has to be dealt with is the case that n� 1 is not divisible by k. In this

6



case the g-th group is of size k0 < k and hence cannot use the above protocol. We solve this by

letting Pn choose for them k0 special random bits. The messages b
j
i;g will be sent to the j-th player

of group 1 instead of the j-th player of group g (who may not exist). Since this is done with new

random bits the privacy still holds, and the total number of random bits is still at most 2k+ s.

Combining Lemma 2 and Lemma 3 we get the following theorem:

Theorem 4: Let s be an integer (1 � s � n). There is a private k-phase protocol that computes

xor on k = d(n� 1)+ q inputs, with ` = d(n� 1)+2q+ s random bits and r � logn= log s rounds.

An interesting case is the following:

Corollary 5: There is a private, k-phase protocol that computes xor on k inputs, with ` = O(k)

random bits and r � logn= log k rounds per phase.

This means that we can use O(k) random bits overall, and compute the function is each phase

in the optimal time for computing xor on a single input using k bits (i.e., O(logn= log k) rounds

[33, 22]).

4 Lower Bound

In this section we prove a lower bound on the number of random bits required for a k-phase, private

computation of xor (on k instances). This lower bound holds for any number of rounds used by

the protocol. We prove the following theorem.

Theorem 6: Let A be a d-random, k-phase, n-player, private protocol to compute xor. Then

d � (1� 2
n
) � k.

Before we proceed, we give a technical proposition and a technical de�nition which will be used

in the proof.

Claim 1: For any non-negative values ai;j (1 � j � q, 1 � i � p),

qY
j=1

(

pX
i=1

ai;j) � pq min
1�i�p

f

qY
i=1

ai;jg

Proof:

qY
j=1

pX
i=1

ai;j = pq
qY

j=1

 Pp
i=1 ai;j

p

!

� pq
qY

j=1

 
pY

i=1

ai;j

! 1

p

= pq

0
@ pY

i=1

qY
j=1

ai;j

1
A

1

p

� pq min
1�i�p

0
@ qY

j=1

ai;j

1
A ;
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where the �rst inequality uses the theorem of the arithmetic and geometric means (cf. [24] p. 17).

De�nition 5: Denote by V iewt
i(~x;

~R) the view of player Pi at time t on input ~x and vector of

random tapes ~R. This view consists of the inputs to player Pi received so far, the random tape of

player Pi, i.e. Ri, and the communication received by player Pi until, and including, time t � 1.

In our proof we argue about the number of di�erent views that players can see in various

executions of the protocol. The following lemmas are useful for this argument.The proof of this

theorem is based on the following two lemmas. The �rst lemma (Lemma 7) is very similar to a

lemma in [33] and its proof appears here mainly for self-containment.

Lemma 7: [33] Consider a private d-random, k-phase, protocol to compute a boolean function f .

Fix the random tapes of the players to be ~R. Then, for any Pi, the view V iewt
i(~y;

~R) can assume

at most 22k+d di�erent values (over the 2kn values of ~y).

Proof: In the �rst step of the proof, we �x an arbitrary input ~x and consider the possible values

of V iewt
i(~x;

~R) over all di�erent choices of random tapes ~R = (R1; : : : ; Rn). The d-randomness

of the protocol implies that the total number of coins tossed is at most d; however, in di�erent

executions these coins can be tossed by di�erent players. Nevertheless, we claim that the number

of di�erent values that V iewt
i(~x;

~R) can assume is at most 2d. For each execution we can order the

coin tosses of all players (i.e., the readings from the local random tapes) according to the phases

of the protocol, within each phase according to the rounds, and within each round according to

the index of the players that toss them. The identity of the player to toss the �rst coin is �xed

by ~x. The identity of the player to toss any next coin is determined by ~x, and the outcome of the

previous coins. Therefore, the di�erent executions on input ~x can be described using the following

binary tree: In each node of the tree we have a name of a player Pj that tosses a coin. The two

outgoing edges from this node, labeled 0 and 1 according to the outcome of the coin, lead to two

nodes labeled Pk and P` respectively (j; k and ` need not be distinct) which are the identities of

the players to toss the next coin depending on the outcome of the random choice made by Pj . If

no additional coin toss occurs, the node is labeled \nil"; there are no outgoing edges from a nil

node. By the d-randomness property of the protocol, the depth of the above tree is at most d,

hence it has at most 2d root-to-leaf paths. Every possible run of the protocol is described by one

root-to-leaf path. Such a path determines all the messages sent in the protocol, which player tosses

coins and when, and the outcome of these coins. In particular each such path determines for any

Pi the communication V iewt
i(~x;

~R). Hence, V iewt
i(~x;

~R) can assume at most 2d di�erent values.

In the second step of the proof, we �rst �x a vector of random tapes for the players ~� =

(�1; : : : ; �n). We now consider the deterministic protocol A0 derived from the private protocol A by

�xing these random tapes. We partition the input assignments ~x into 22k groups according to the

input value of xi (0 or 1) in each of the k phases, and to the output value (0 or 1) in each of the k

phases. We argue that the number of di�erent values that the communication string V iewt
i(~x; ~�)

can assume in A0, on the di�erent input assignments within each such group, is at most 2d. For

this, �x ~x in one of these 22k groups and consider any other ~y pertaining to the same group. If the

value of V iewt
i(~y; ~�) is some communication Ci, then by the privacy requirement (with respect to

player Pi), communication Ci must also occur (in A) when the input is ~x, and the random tapes are

some R0
1; : : : ; R

0
n, where R

0
i = �i. Thus, the value of V iew

t
i(~y; ~�) must also appear as V iewt

i(~x;
~R)
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for some random tapes ~R. However, by the �rst step of the proof, for a �xed ~x, the communication

string V iewt
i(~x;

~R) can assume at most 2d values (over the random tapes ~R). Since this is true for

each group, the lemma follows.

Lemma 8: Let A be a deterministic (non-private), k-phase n-player protocol to compute xor.

Then, there is at least one player that has at least 2(3�
2

n
)k views over the 2kn input assignments.

First, we show that the above lemmas imply the theorem.

Proof of Theorem 6. By Lemma 7, if we �x the random tapes of the players then each player can

see (over the di�erent inputs) at most 22k+d di�erent views. But, by Lemma 8, for the protocol to

be correct there must be at least one player that sees at least 2(3�
2

n
)k views. Thus 2(3�

2

n
)k � 22k+d,

and the theorem follows.

It remains to prove Lemma 8. We now turn to the main technical claim of this section. For

the purpose of the proof, we consider k-phase (deterministic, non-private) protocols that compute

xor, but such that for the �rst instance only m of the n players get inputs (alternatively, we can

assume that the input of n�m of the players for the �rst instance is 0). For k � 1 and 1 �m � n

let A(k;m) be the set of k-phase protocols that correctly compute xor with the above restriction.

We prove the following lemma.

Lemma 9: Let A 2 A(k;m). Let V A
i be the number of di�erent views player Pi can see over the

2(k�1)n+m inputs. Then �n
s=1V

A
i � 2(3n�2)(k�1)+n+2(m�1).

Proof: We prove the claim by induction on both k and m, where the base case is k = 1; m = 1.

Let A 2 A(1; 1). That is, one player has an input bit and A has to ensure that all players \compute"

the value of this bit. Obviously for all Pi we have V
A
i � 2 (as there are two output values), which

gives �n
s=1V

A
i � 2n, as required. For the induction step, let A 2 A(k;m), for k > 1 or m > 1. We

consider two cases, m > 1 and m = 1.

m > 1 (and k � 1): Before the �rst xor value is computed by any player there must be one non-

constant message sent in the protocol. That is, there must be some player Pi that sends a message

to player Pj , and this message is not constant over all input assignments. Consider the �rst such

non-constant message and, without loss of generality, let it be sent from player Pi to player Pj .

Denote this message by M . Since M is the �rst non-constant message it depends on the �rst input

of Pi only. Without loss of generality, assume that Pi sends the value of its input bit. Let `
0
s (resp.

`1s) be the number of possible views of player Ps given that the value of M is 0 (resp. 1). We get

that

� V A
i = `0i + `1i .

� V A
j = `0j + `1j .

� 8k 6= i; j, V A
k � max(`0k; `

1
k).

9



Therefore,

�n
s=1V

A
s � (`0i + `1i )(`

0
j + `1j )�s6=i;j max(`0s ; `

1
s)

� 4min(`0i `
0
j ; `

1
i `

1
j)�s6=i;j max(`0s ; `

1
s)

= 4`0i `
0
j�s6=i;j max(`0s; `

1
s)

� 4�n
s=1`

0
s ;

where the second inequality is by Claim 1 and the equality is by assuming, without loss of generality,

that `0i `
0
j � `1i `

1
j .

Now, consider a protocol A0 de�ned as follows. It is the protocol A with the modi�cation that

Pi has no input, and behaves as if its input is 0. Since we assume that A is a correct protocol, then

A0 is a correct protocol as well in the class A(k;m� 1). 3 Also, we know that A0 sends 0 as the

value of M . Therefore for any s, 1 � s � n, we have V A0

s = `0s. We get

�n
s=1V

A
s � 4�n

s=1`
0
s

= 4�n
s=1V

A0

s

� 4 � 2(3n�2)(k�1)+n+2(m�2) ;

where the last inequality follows from the induction hypothesis. We get that

�n
s=1V

A
s � 2(3n�2)(k�1)+n+2(m�1) ;

which concludes the proof of the �rst case.

m = 1 (and k > 1): This is the case where in the �rst iteration there is a single player who has

an input bit. The value of the function on this input has to be computed by all players before they

get the next input to be computed. Therefore, the �rst step of the protocol must be that all players

receive messages from which each player can conclude if this �rst input is 0 or 1. It follows for each

Pi, that V
A
i = `0i + `1i , where `

0
i (resp. `

1
i ) is the number of di�erent views of player Pi given that

the �rst input bit is 0 (resp. 1). Also note that all players agree on the output. We get,

�n
s=1V

A
i = �n

s=1(`
0
i + `1i ) :

Using Claim 1, we have

�n
s=1(`

0
i + `1i ) � 2nmin(�n

s=1`
0
i ;�

n
s=1`

1
i ) ;

and assuming, without loss of generality, that �n
s=1`

0
i � �n

s=1`
1
i we get

�n
s=1V

A
i � 2n�n

s=1`
0
i :

By the same arguments as those for the �rst case, we now consider a protocol A0 2 A(k � 1; n)

de�ned using protocol A, and have that V A0

i = `0i , for any Pi. Using the induction hypothesis we

have

�n
s=1V

A
i � 2n�n

s=1`
0
i

= 2n�n
s=1V

A0

i

� 2ns(3n�1)(k�2)+n+2(n�1)

= 2(3n�2)(k�1)+n ;

3In case `0i `
0

j > `
1

i `
1

j we consider a protocol A1, that behaves as if the input to Pi is 1, but also negates the outputs

of the �rst set of inputs.

10



which concludes the proof for the second case.

We can now complete the proof of Lemma 8:

Proof of Lemma 8. Let A 2 A(k; n). Then, by Lemma 9,

�n
s=1V

A
i � 2(3n�2)(k�1)+n+2(n�1) = 2(3n�2)k:

Therefore there is at least one player Pi such that V A
i � 2(3�

2

n
)k.
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