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Abstract. We present an authenticated coin-ipping protocol and its
proof of security. We demonstrate the applicability of our scheme for on-
line randomized micro-payment protocols. We also review some essen-
tial aspects of other micro-payment proposals (including SET, PayWord
and MicroMint, PayTree, NetCheque, NetCash, Agora, NetCard, CAFE,
Pederson's proposal, micro-iKP, Milicent, proposal of Jarecki-Odlyzko,
proposal of Yacobi, SVP, DigiCash, Rivest's \Lottery tickets as Micro-
Cash" and Wheeler's proposal) and compare it with our scheme.

1 Design Principles and Parameters

This paper presents another micro-payment scheme, designed for world-wide web
applications. It avoids many shortcomings of previous schemes. In particular,
our scheme can support tiny transactions (like buying individual web-pages)
at (amortized) cost of a fraction of a cent per web-page. We give an overview
of other existing proposals and compare it with our scheme. In the heart of
our construction is a new, on-line, fair and authenticated coin-ipping protocol,
which is of independent interest and could be used in other settings as well. We
start by surveying the setting and parameters considered.

The Participants: As in all the payment schemes, the main participants are
the User U who wishes to get some information (i.e., a web page) from some
Vendor V (i.e. from some web site, like on-line Encyclopedia Britannica). Vendor
V wants to get paid for the provided information, while the User U wishes to pay
only for the information that she gets. We operate in the setting where neither
Vendors nor Users trust each other, hence, Vendors wish to make sure that they
get paid for the provided information, while Users wish to make sure that they
are not \over-charged" for the services that they did not get. Additionally, there
is the third party, a Broker (or a Bank) B which assists in various ways for
fund transfer between users and vendors and tries to detect/prevent various
fraud of dishonest Users and Vendors. In the simplest setting, the Broker (or a
Bank) is assumed to be trusted. More generally, some schemes do not assume
that Brokers/Banks are trusted, and then introduce one or two more additional
participants, such as central authority and/or one or several arbiters in order to
resolve disputes and provide checks on other participants.

Design objectives: One of our goals is to minimize the computational require-
ments of our scheme. For micro-payments, this means minimizing public-key



cryptography in favor of faster private-key| and hash-function| based schemes.
For example, as [27] point out: \as a rough guide, hash functions are about 100
times faster than RSA signature veri�cation, and about 10,000 times faster then
RSA signature generation: on a typical workstation, one can sign two messages
per second, verify 200 signatures per second and compute 20,000 hash function
values per second." (We remark that cryptographic hash-functions are in many
of the above applications used solely as one-way functions which are one-way
on their iterates { technically a weaker property then collision-resistance.) We
also remark that private-key cryptography (for example, pseudo-random genera-
tors) is often even more e�cient. Summarizing, one of our design objectives is to
make use of e�cient one-way functions (like MD5 [26]) and/or private-key cryp-
tography and to minimize the use of digital signatures. Additionally, we wish to
minimize the communication (both the number of rounds and the number of bits
transmitted) per transaction, between all the parties, as well as computational
requirements of our scheme and memory requirements for all the participants.
We also wish to minimize potential fraud, which we elaborate upon further after
reviewing previous proposals. To summarize, we wish to optimize the following
parameters:

{ minimize the number of rounds of interaction per transaction between users
and vendors and between the bank/broker and users and vendors;

{ minimize the number of total bits transmitted per transaction between users,
vendors and the bank/broker;

{ minimize the computational demands needed per transaction for all the
participants (i.e. minimizing the use of digital signatures in favor of less-
expensive means | see above);

{ minimize hardware requirements for all the participants (i.e. eliminate and/or
minimize the use of large databases of revocation lists or other \per-transaction"
lists; and/or the need of smart-cards; and/or expensive hardware for pre-
processing);

{ minimize fraud (to be discussed in below after surveying other schemes.)

Additionally, we discuss the issue of anonymity, which plays a role in some micro-
payment schemes, such as DigiCash [8]. Informally, the goal of anonymity is to
minimize the user identi�cation (both to the vendor and to the bank) when
purchases are made. We remark that our schemes can be made anonymous as
well.

OUR RESULT: In the heart of our construction is an authenticated coin-
ipping protocol. The protocol requires evaluation (and transmission) of only
two hash functions per coin-ip after the initial setup. The authentication in our
protocols guarantees (among other things) that the vendor can request a third
party (such as bank/arbiter) to verify what the outcome of the coin-ip should
be, and if the protocol is aborted in the middle, to prove (to arbiter/bank) what
the outcome is and insist on the resumption from the right point in the protocol
execution.

We show how our protocols can be utilized to e�ciently implement a coin
ipping protocol of [31] where with some small probability (say, 1
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) the user

pays a larger (say, 1$ dollar) amount. Notice that the expected cost per transac-
tion in the above example is half a cent, while the expected overhead of handling



the payment is now two hundred times smaller, thus allowing us to use (in
the event of the \payment"-outcome coin-ip) an alternative, slow but secure
payment mechanism. Our scheme is related to that of [24, 25], but with some
important di�erences, especially in the setup stage. We discuss these di�erences
and why they seem to be essential for the proof of security. In summary, the
main technical contribution of this paper is the design of fair and authenticated

coin-ipping protocol together with its proof of security.

2 Previous schemes and Techniques

Credit-card setting and On-Line Schemes: In the current credit-card
setting, every transaction is on-line, where whenever some customer wishes to
pay a vendor, the Bank is always contacted. In particular, the Bank gets a request
to transfer money from user's account to vendor's account. In order to do so,
the bank �rst veri�es that the customer's account is in good standing (which
requires a database lookup) and then gives to the vendor a validation number for
the transaction. If Vendor's account is with a di�erent Bank, this contact is also
made at some point in time, di�erent for di�erent schemes. The cost per such
transaction is about 10 cents, and hence is not �nancially viable for tiny-cost
transactions. Moreover, since the Bank must maintain 99.99% availability, even
during peak tra�c time (Anderson at. all. [1] mention that typically 1pm on the
Saturday before Christmas is such a peak-time) this requires additional cost in
order to maintain capability for additional throughput and backup systems.

The main source of fraud in the current credit-card practice is from stolen
[credit-card number, expiration-date] information, which can (and is) used to
impersonate users.

SET: Recently, Visa and Master-card developed a SET on-line analog of the
credit-card setting, where digital signatures are used to authenticate all three
parties (i.e. users, vendors and banks), so that an adversary who wire-taps all
the communications, still can not impersonate users, since he can not forge
signatures (for further details and features, see [30]). However, since signature
generation and veri�cation is required for all the parties, and since the Bank
must be present on-line for every transaction, SET is clearly not suitable for
tiny web-related transactions.

NetBill: NetBill [6] is another on-line protocol (it has additional features like
atomicity { i.e. customer pays only for messages that he gets; and anonymity
via pseudonyms). It requires eight messages for each transaction and on-line
communication with the intermediary NetBill server for each transaction.

Electronic currency: DigiCash; NetCash. In electronic currency schemes, a user
deposits some amount of money into the bank, that in return gives some digital
data representing \Electronic currency" (also called an electronic \coin"). In
its simplest form, electronic currency is an authenticated (by the bank) serial
number. Of course, the danger with any such scheme is double-spending (i.e.
where a user or someone else \spends" the same \coin" more the once). There
are several ways to combat this: one is to insist on the on-line check (with the



Bank) to verify if the coin have been already spent; the second is for the Bank
to pay for each coin only once [27]; the third is to incorporate the identity of
the user (who bought an electronic coin) into the coin itself, so that if it is
spent twice, the known user will be prosecuted. A twist proposed by Chaum is
to also have anonymity, where again Bank keeps track which \coins" have been
spent, but where DigiCash [8] in case of double-spending reveals the identity of
the User (for later prosecution { see also [9]). The issue, of course, is when to
check for double-spending. One possibility (which is what Chaum's [8] current
implementation does) is to do the check on-line, the other possibility is to check
o�-line, running the risk that the user will spend huge sums of money and then
disappear, when discovering fraudulent activity is too late. Another \electronic
currency" scheme is that of Medvinsky and Newman \NetCash" scheme [19].
The twist there is that they keep track only of the outstanding \tokens" (i.e.
those that have been issued but have not been deposited), compared to Chaum's
scheme where comparison with all tokens ever issued must be made. Never-the-
less, all these schemes must either be on-line, or stand the risk of \huge-spending-
with-quick-gateway" attack.

NetCheque: University of Southern California NetCheque (TM) project [21] is
another on-line scheme, where users issue checks for vendors using (as a cer-
ti�cates of the validity of a check) a private-key cryptography (shared between
a user and a bank.) This scheme is more e�cient then public-key signatures,
but requires registration of users at the banks and then subsequent clearance
(i.e. checking by the bank of the validity of the private-key authentication) of
checks by the bank to verify both correctness of the check and the availability
of funds in user's account. Neuman and Medvinsky [21] argue that such on-line
veri�cation can be in some cases done o�-line, but then the fraud (of bad checks)
becomes as issue.

Hardware-Based Schemes In hardware-based schemes, one assumes the ex-
istence of temper-resistant smart-cards, which contain private-keys, but such
that this private-keys can not be extracted from the card without destroying
its contents. This, in principle, allows to use faster private-key cryptographic
means. One such example is the proposal of Stern and Vaudeny [29]. They of-
fer a scheme where every smart card contains a master private key for MAC
(i.e., private-key Message Authentication Codes). Every Vendor is given such
a tamper-resistant smart card. Users buy from the bank "tokens" which are
authenticated with banks private-key authentication mechanism. When a user
wishes to make a payment, it gives the token that was provided by the bank to
the Vendor's tamper-resistant devise which then veri�es that it is a valid pay-
ment, and then gets paid from the bank. The idea is that the private key is
known only by the bank, yet all vendors can verify that users provide correct
private-key authentication tags, since they all have smart-cards with the banks
private key. Again, clearance of this payments can be done either on-line (to
prevent double-spending) or o�-line (with black-listing double-spending users)
as before. The drawback of this scheme is that if the unique bank's key on each
of the vendors smart cards is recovered by an adversary, the security is lost. That
is, the single private-key of the bank is distributed to every device, hence break-
ing even a single tamper-resistant device completely compromises the scheme.
They suggest an extension which uses logarithmic (in the number of users) keys,



and authenticating with all of them, but this, while it prevents the above threat
makes the proposal less e�cient.

Various \electronic-wallet" hardware-based solutions are proposed by Mon-
dex [18] and others, such as Yacobi e-war [32]. There are basically two di�erent
approaches. The �rst approach is to keep the actual counter on the card { which
increases/decreases during transactions, where the counter denotes the actual
cash value (up to a certain limit). Since the counter is on the tamper-proof de-
vice it can not be increased. Of course, if one can arti�cially increase the counter,
this leads to money forgery. Another approach, is to keep digitally signed (by
the bank) coins, where the only goal of the tamper-resistant device is to prevent
double-spending [32] (where various methods (either on-line or o�-line and/or
probabilistic) are made to detect if some coin is spent twice and by what smart-
card { the scheme requires revocation lists and if not done on-line has some
over-spending threat.)

Rivest and Shamir's Micro-Mint [27] propose to run (using huge o�-line com-
putations) schemes which �nd collisions of (properly tuned, only somewhat hard
to �nd) collisions of collision-free hash-functions, to be used instead of signa-
tures. This guarantees that forging is hard (basically using birthday-paradox
type argument) but still duplication easy. They argue that duplication is not an
issue since every coin will be paid only once (which requires storage of all the
coins as well).

Subscription schemes: Many large vendors, sell subscriptions for certain web-
sites. Examples include $ 40 year-based subscription to on-line Wall-Street jour-
nal and $ 150 year-based subscription to Encyclopedia Britannica. The subscrip-
tion payment is performed only once a year (by various means). Clearly, one of
the drawbacks is that infrequent customers are not willing to pay a relatively
high subscription cost. Moreover, the subscription-method is not suitable for
\infrequently used" vendors of specialized information (like consumer reports
information on how to purchase a new car). Besides, there is only so many sub-
scriptions any user will sign-on, even if the cost of subscription is falling. In
summary, while subscription-based approaches are and will be in use, an addi-
tional micro-payment approaches are needed as well.

Another variant on the subscription scheme is a registration scheme where
�rst, customers register with the Vendor and prove its identity and then Vendors
regularly charge them for transactions made. One such scheme is the \Chrg-http'
protocol [7]. The drawback is the cost of registration, and, of subsequent unpaid
charges.

In light of the above, the development for tiny \per-use" payments schemes
received considerable attention in the last two years. Below, we review various
proposals.

Coupon-based schemes DIGITAL's Milicent [11] is basically a private-key
solution, where there is a \broker" which sells \vendor-speci�c" coins. Vendor-
speci�c coin can only be authenticated by this vendor using vendor's private key
(recall that the private-key authentication is much cheaper than public-key). Of
course this solution requires \brokers" who must be trusted, and who should
have agreements with vendors.



Another coupon-based family of (similar to each other) solutions is Rivest
and Shamir's PayWord, [27], Anderson's NetCard [1], Pederson's at. al. scheme
[23], Jutla and Yung PayTree [22] and Hauser at. almicro-iKP [15]. The top-level
idea of all this schemes is basically one of Lamport's [17] (also used for S/key
[14]), and it is as follows: take a one-way permutation f (or a hash-function or
a one-way function which is one-way on its iterates), pick a random input x,
and iterate it some su�ciently large number of times (say a 1000) (i.e. compute
y = f(f(f : : : (f(x))))), then authenticate y (i.e. sign y and perhaps user's ID
with banks public key signature). Now we have a chain of values of the form
f�1(y); f�1(f�1(y)) : : : x with the property that given any pre�x of this chain,
it is hard to compute the next pre-image (since it involves inverting a one-way
permutation) but easy to verify that this chain leads back to an authenticated
y. The idea is for the bank to issue such (x; y; bank's signature(y)) triple to the
user (for the appropriate fee), where every inverse is a single micro-payment. The
user, when he wishes to make a payment to the Vendor, gives y (with appropriate
banks public-key authentication of y { this is a one-time setup operation) to the
Vendor, but then for each subsequent payment just gives the next inverse in the
above chain. Jutla and Yung [22] generalize this chains to trees in a natural way.
The drawback of all this schemes is double-spending, where to combat this the
two approaches being taken are either to check on-line (which is expensive) or
to black-list users (which is somewhat expensive too, and may not be su�cient
if user's identity can be easily changed/forged).

Probabilistic Schemes The probabilistic schemes can be divided into two
categories: probabilistic checking and probabilistic payment. We �rst outline the
probabilistic checking schemes and then describe the two previous probabilistic
payment schemes.

The �rst two probabilistic checking protocols are probabilistic audit Agora
protocol of Gabber and Silberschatz [10], and Jareski and Odlyzko probabilis-
tic polling [16]. The idea there is basically as follows: the user gives (signed)
promisory notes to the vendor, which the vendor later "cashes" to the bank, but
when exactly this happens is done probabilistically, in order to limit the amount
of over-spending. This approach combines (expensive) on-line approach of always
verifying that the user has the money in his account (witch is communication-
expensive) and the o�-line credit-based solution (which leads to over-spending/
black-listing solution.) Here the over-spending (by tuning the rate with which
vendor talks to the bank to be a probabilistic function depending of the trans-
action size) can be limited. The drawback is similar to coupon-based schemes,
namely the requirement that in case of detected over-spending the vendors/banks
must "black-list" users (and, hence keep such databases) and to inform all ven-
dors of bad users [16], as well as keeping, by each Vendor the list of revoked
users [10].

The combination of software-based and hardware-based solutionwith prob-
abilistic audit was suggested by Yacobi's e-war [32] project at Microsoft. In
[32] Yacobi proposes smart-card id-based wallets that keep signed by the bank
coins. Notice that the new coins can not be forged since only bank can sign, and
the duplication is controlled using hardware where probabilistic checking is used
to prevent double-spending. This solution requires both software and hardware,



and can still take some amount of over-spending, though the amount can (as in
the previous scheme) be made limited. The drawback is the need to black-list
users/smart-cards and keep this databases around as above.

The �nal category of the probabilistic schemes is the so-called probabilistic

payment category. Our scheme belongs in this category as well. The two other
scheme in this category is Rivest's \lottery tickets as Micro-Cash" [24, 25] and
Wheeler's \Transactions Using Bets" [31].

The [24] and [25] di�er, and we review both. The idea of [24] scheme is for the
bank to issue for each user a book of \lottery tickets" as follows: As in coupon-
based schemes, the bank, picks a random x, computes y = f(f(f : : : (f(x))))
for f a one-way permutation or a cryptographically-strong hash function, then
authenticates y (i.e. signs y and perhaps user's ID with banks public key signa-
ture). Now we have a chain of values of the form f�1(y); f�1(f�1(y)) : : : x which
is a \lottery book" of tickets (for each user and each vendor that the user wishes
to talk to), where for each micro-payment transaction, the user pays with the
next pre-image from this book (just like the coupon-based scheme.) The twist
here is that the bank, later on announces one of the tickets from each book as a
\winning ticket". If the user did not give this winning ticket to a Vendor (since it
stopped early and did not use the entire book), it does not have to pay anything,
if it did, it is responsible for the winning ticket (i.e. the bank will pay the amount
to the Vendor upon Vendor's presentation of the winning ticket and will subtract
it from user's account). It is important to note that the \lottery" is held after

the book in question (say for this day) is no longer in use, otherwise the user
could always avoid giving out the winning ticket. The advantage of the scheme
is that if, say, half of the lottery tickets from a book have been used, then with
probability one-half the user will not have to pay, thus making the amortized
cost of transactions less costly. The drawback is the Bank's overhead of holding
lotteries and having to check the results as well as the issue of timing (since the
payments to the Vendor can be made only after the lottery is announced, at
which time the user may not have su�cient funds in its account.) In cite [25]
(independently of our work) Rivest extends [24] suggestion using [31] approach
and two chains, similar to our approach, but with some important di�erences.
We �rst describe Wheeler's suggestion [31]:

The second probabilistic micro-payment scheme is the protocol of Wheeler
\Transactions Using Bets" [31], where he suggests, similar to our scheme to
decide probabilistically whether the payment should be made. In particular, he
suggests for the user and vendor to execute a standard coin-ipping protocol
[2] (vendor commits a random number to the user, then user sends a guess of
this number to the vendor, then vendor de-commits) in order for the user and
vendor to decide if the user should pay. One of the aspects not addressed by the
paper, is that the user should not be able to deny that the coin-ip protocol
execution took place, and hence that he has to pay the agreed-upon amount in
case of an unfavorable coin-ip. A natural way of dealing with this problem is to
introduce digital signatures into the protocol, so that the vendor can prove (to
a bank/arbiter) that this interaction took place. However the use of signatures
makes the protocol ine�cient. Another drawback of the [31] protocol is the
danger that the protocol is aborted in the middle of the execution. Indeed this is
a serious problem, since if the seller/user are allowed to abort the coin-ipping
protocols and re-try again, the probabilities can be altered. This problem is



indeed mentioned in the [31] paper, but no solution how to resolve this problem
is given. In the current paper, we show how both problems can be resolved in
an e�cient manner.

The most related (to our scheme) is the work of Rivest [25], which suggests
for the user and vendor to exchange roots of two chains, and show inverses in
order to de�ne coin-ips. However, there are several crucial di�erences in the
two approaches, especially in the setup stage. We discuss speci�c di�erences in
two schemes (and why they seem to be essential for the proof of security) after
we preset our scheme.

3 Our Scheme

Our scheme is a probabilistic payment scheme. It involves probabilistic polynomial-
time user, vendor and the bank. It is probabilistic in the same sense as [31] and
[25]: User and Vendor are going to ip (appropriately biased) coin ips, so that
with small probability (for example, with probability 1
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the user will have to

pay a larger amount (for example, 1$ dollar charge) and the rest of the time it
has a free access. Notice that the expected price per page in above example is
thus half a cent.

Now, we need to de�ne the properties needed from our coin-ipping pro-
tocol. Of course, one of the properties is e�ciency (i.e. we should try to avoid
costly digital signatures as much as possible.) Additionally, we need fairness and
authentication properties.

Our coin-ip protocol mainly involves two probabilistic polynomiallybounded
players (i.e. algorithms) { a Vendor and a User (both polynomially bounded by a
security parameter). We operate in the public-key setting, where both User and
Vendor have public/private signature key pairs [12] (authenticated by the trusted
third party, such as a Bank). The protocol proceeds in rounds. The rounds are
divided into a pre-processing stage and polynomially-bounded subsequent on-
line \coin-ip" rounds. After the initial pre-processing stage, if the Vendor and
the User do not abort during this pre-processing stage, the sequence of future
output \coin-ips" is uniquely de�ned. More speci�cally, every additional round
reveals one (or several) coin-ips which was de�ned in the pre-processing stage
(where a round consists of two messages one from User to Vendor and another
from Vendor to User). Of course, within each round, one of the players (who
already received a message of this round but did not yet send his message of
this round) can e�ciently compute the outcome of this round coin-ip before
the other player. We are not trying to prevent this asymmetry, but rather we re-
quire that all the coin-ips associated with future rounds are pseudo-random for
both players (for de�nitions of pseudo-randomness, see [3, 33].) More speci�cally,
we say that the coin-ipping protocol is fair if the following three conditions are
satis�ed:

{ If both players follow the protocol then there are no aborts.
{ For all probabilistic polynomial-time Adversary-User algorithms, if the Ven-
dor follows the protocol and does not abort in the pre-processing stage, then
all the coin-ips are uniquely de�ned and for any non-aborting pre�x of the
protocol execution, the coin-ips of future rounds are pseudo-random for the
Adversary-User.



{ For all probabilistic polynomial-time Adversary-Vendor algorithms, if the
User follows the protocol and does not abort in the pre-processing stage,
then all the coin-ips are uniquely de�ned and for any non-aborting pre�x
of the protocol execution, the coin-ips of future rounds are pseudo-random
for the Adversary-Vendor.

Additionally, we say that the coin-ipping protocol is Vendor-authenticated if it
allows the Vendor to convince a third party what the outcome of the coin-ip
is, given the transcript of the protocol execution (and an authenticated public
key).

We satisfy these properties in the following protocol. First, the bank issues
to the user certi�ed public/private key pair for digital signatures. Then every
time the user wishes to start making micro-payments to some Vendor, User and
Vendor participate in the following two-stage coin-ipping process, assuming the
existence of a one-way permutation f :

{ setup

First, user and vendor run the following setup protocol:

s1. Vendor: The Vendor picks a random x and computes a chain

of values (just as in coupon-based scheme) to produce a y =
f(f(f : : : (x))). The Vendor sends y to the User.
After y is sent, the Vendor gives to the User a zero-knowledge
proof of knowledge of x (using standard cut-and-choose methods
{ for de�nitions and further references see [5]).

s2. User: The User checks a zero-knowledge proof of knowledge of
the Vendor (and if rejecting, aborts.) If the proof is accepting,
then the User picks a random x0 and computes a chain of values
y0 = f(f(f : : : (x0))). The User signs and sends (y; y0) (together
with it's signature) to the Vendor.
After (y; y0) is sent, the User gives to the Vendor a zero-knowledge
proof of knowledge of x0.

s3. Vendor: The Vendor veri�es user's proof of knowledge, user's sig-
nature and user's public key (if incorrect aborts.)

{ coin-flip

Now we are ready for the e�cient coin-ip stage. Recall that both y and
y0 de�ne roots of the two chains. To make the next coin-ip the user and
the vendor execute the following protocol round:

c1. User: The User reveals to the Vendor its next pre-image in the y0

chain.
c2. Vendor: the Vendor reveals to the user its next pre-image of the y

chain. For both chains, one can associate hard-core bits with each
pre-image (in fact up to logarithmically-many hard-core bits [13])
The xor of hard-core bits from y and y0 chains de�ne the coin-ip
output for this round.



Before we proceed to describe the properties of the protocol, let us answer several
frequently asked questions regarding our protocol:

REMARKS:

{ One of the frequently asked questions regarding the design of the above
protocol is: why is it necessary for both the user and the vendor to give
zero-knowledge proofs of knowledge? (In fact, Rivest's scheme [25] omits the
proofs of knowledge and does not use the hard-core bits [13].) The actual
reason comes from a formal proof, but let us briey mention the technical
problem: in order to show that the scheme is fair for the User/Vendor, we
must show that if the User/Vendor can predict future coin-ips (and, say,
abort the protocol if the coin-ips are extremely unfavorable), then we can
use such a predicting User/Vendor to invert a one-way function, thus reach-
ing a contradiction. Now, the problem of using such an algorithm is that
the prediction of the future coin-ips does not directly give us information
regarding hard-core bits of the individual chains, but rather of the xor of two
hard-core bits of both chains. Since one of this two hard-core bits does in
fact belong to the predicting User/Vendor (and he does not need to disclose
this hard-core bit) the prediction of the future coin-ips does not seem to
help in predicting the corresponding hard-core bits in the other chain.

{ Another problem of eliminating proofs of knowledge is that the user can set
y0 = y, which will certainly not make the future coin-ips pseudo-random.
One can try to play with de�nitions, and say that only revealed coin-ips
should be pseudo-random, but since the proofs of knowledge seem to be
needed for the security proof anyway, we do not see any advantage of working
with this less natural de�nition.

{ One possible criticism of our scheme is that while the on-line stage is ex-
tremely e�cient, a pre-processing stage is somewhat expensive. Indeed, zero-
knowledge proofs of knowledge are the main source of ine�ciency in our
scheme. Yet, we do not know how to make the proof of security go through
without such a pre-processing stage due to the reasons indicated above.

{ We should also compare our coin-ipping protocol and the coupon-based
schemes, such as PayWord [27]. The main advantage of our scheme is that
the actual payments can be done very infrequently. Hence, in the (infre-
quent) case that the user has to pay, we can a�ord expensive on-line pro-
cessing, including the on-line secure payment and receipts, thus eliminating
the need for black-lists of credit-based approaches that were needed to pre-
vent double-spending. Note that if the user refuses to pay the necessary
amount the Vendor has a proof that the user has to pay which it can take
to the bank/arbiter (since it has signed by the user (y; y0) pair as well as the
necessary inverses for both chains with the right properties.) Thus, we stress
that in our scheme the (infrequent) payment can be done on-line, avoid-
ing drawbacks of credit-based approaches and double-spending. We should
point out that our proposal also di�ers from [25] in this regard, namely the
scheme of [25] is proposed to be used as a credit-based scheme. In contrast,
we suggest that in case of the Vendor-favorable coin-ip the payment will be
made on-line, thus avoiding the drawbacks of credit-based approach. Since
the payment is very infrequent we can in this case a�ord to do expensive
on-line processing.



{ There is another asymmetry in our protocol, namely that the user signs the
value (y; y0) while the vendor does not sign anything. The reason is that
the Vendor in any event has a lot of control which information to provide
to the user (and in fact can always provide bad, incomplete or incorrect
information) and the way this is combatted in the business world is that the
vendor gets bad publicity, loses customers, etc. (In particular, if the customer
does not get the desired \free" information, it will simply stop interacting
with the current Vendor.) We stress, though, that in our scheme, even a
cheating vendor can not inuence the outcome of the coin-ip and make the
customer pay more \frequently".

{ Notice that in the coin-ipping stage, the Vendor learns the value of the coin
�rst. This is important, since otherwise, the user can stop the interaction if
he discovers that he has to pay. Additionally, note that it is strait-forward
to make biased coin-ips by combining several unbiased bits. Further, note
that each iteration of the permutation can produce many (in fact, up to
logarithmically many) hard-core bits [13] leading to further savings.

{ Analogous to coupon-based PayTree scheme of Jutla and Yung [22], our
scheme can be made more e�cient by using tree-based construction for coin-
ips.

We now list some of the properties of our protocol.

Claim 1 If both players did not abort in the setup stage, then the coin-ips are

uniquely de�ned.

Proof: Since f is a one-way permutation, and y; y0 are �xed, their pre-images
and hard-core bits are uniquely de�ned.

Claim 2 Assume that one-way permutations exist and that the Vendor follows

the protocol. Then, for any polynomially-bounded Adversary-User if the pre-
processing stage is not aborted by the Vendor then for any pre�x of the pro-

tocol execution the coin-ips of subsequent rounds are pseudo-random for the

Adversary-User.

Proof: Assume not. Then there exists probabilistic polynomial-time Adversary-
User algorithm which after the (non-aborting) pre-processing stage and some
pre�x of the protocol execution can distinguish future coin-ips from a random
sequence. The distinguishability implies that there is some the next-bit test that
is not passed [3, 33]. Thus, there exists some future coin-ip which a probabilistic
polynomial-time Adversary-User algorithm can predict with non-negligible prob-
ability. Now, we will show how this prediction can be used to invert a one-way
permutation f on a random input z. Given a z for which we wish to �nd f�1(z),
we put z in a random place in the Vendor's chain, and compute (by iterating f)
the corresponding y, then run a zero-knowledge simulator to simulate the proof
of knowledge of x (if the adversary can distinguish a simulation and the actual
proof we reach a contradiction of zero-knowledge). Then, after the Adversary-
User provides its y0 and gives a zero-knowledge proof of knowledge of x0 we use
a knowledge extractor to get from the Adversary-User x0. Now, since we assume
that the adversary can predict a coin of some future round with non-negligible



probability, and since we know x0, we can now compute all hard-core bits asso-
ciated with y0 chain and predict with polynomial probability the hard-core bit
of f�1(z). Using [13] this leads to inversion of f | a contradiction.

Now, the proof of the claim in the opposite direction mimics the previous proof:

Claim 3 Assume that one-way permutations exist and that the User follows

the protocol. Then, for any polynomially-bounded Adversary-Vendor if the pre-

processing stage is not aborted by the User then for any pre�x of the protocol exe-

cution the coin-ips of subsequent rounds are pseudo-random for the Adversary-

Vendor.

Proof: Similar to the previous claim, where we now use knowledge extractor for
the Adversary-Vendor's proof of knowledge and zero-knowledge simulator for the
User's proof of knowledge.

Thus, we have

Theorem 4 In section 3, we presented fair, authenticated coin-ipping proto-

col.

Finally it it worth-while to point out some of the the advantages of our scheme:

{ Unlike the lottery solution [24], the bank does not have to participate in the
coin-ip, and the number of bank-related transactions (which can be done
using any other, more expensive payment scheme) is greatly reduced.

{ Unlike the coin-ipping solution for [25], for which we do not know how to
prove its security, our scheme is secure according to a strong pseudo-random
de�nition for all the future rounds.

{ After the setup stage, if the coin-ip is favorable to the Vendor, than it has
the proof that the user must pay certain amount, which it can show to the
bank/arbiter in case of dispute/nonpayment.

{ If some site is used infrequently by some user, our coin-ip solution can be
viewed as o�ering a \free-trial" service, where if tuned appropriately it can
attract additional customers.

{ Our solution can (and should) be combined with other more expensive
schemes when the coin-ip is for payment, thus providing overall high secu-
rity of the system.

4 Conclusions

The initial setup price involves checking one signature during connection to a
new site and two proofs of knowledge, which can be done using standard cut and
choose methods. After the setup stage, our solution is similar (up to a factor of
two) in e�ciency to the coupon-based schemes, but our scheme avoids \over-
spending" issue and the need to black-list users. Moreover,



{ after the pre-processing stage is done, the subsequent number of rounds is
minimized { our scheme does not add any additional rounds when there is no
payment necessary (since we can \piggy-back" our coin-ip messages with
standard "get-page/here-it-is" interaction), and bank it not involved at all,
thus saving the overall round complexity between users, vendors and banks.

{ we minimize the (amortized) number of total bits transmitted per transac-
tion between users, vendors and the bank/broker, since most of the time
the \for-free" coin-ip avoids expensive payment protocol, and the on-line
coin-ip price is similar to coupon-based solutions.

{ we minimize (amortized) computational demands needed per transaction for
all the participants (i.e. both users and vendors as well as banks);

{ we eliminate tamper-proof hardware requirements for all the participants
(i.e. we do not need smart-cards) or other \per-transaction" lists or expensive
hardware for pre-processing);

{ we minimize fraud since this is not credit-based solution and the payment (if
the coin-ip is favorable) must be made immediately, avoiding the problems
of over-charging the accounts, having to wait for bank-sponsored lotteries,
and risking non-payments.

Additionally, our scheme can be made anonymous, with the use of pseudonyms,
similar to Chaum's scheme. We postpone this discussion to the full version of
the paper.

A possible criticism of our scheme (as well as Wheeler's [31] and Rivest's
[24, 25]) is that probabilistic payments is some weak form of gambling which is
forbidden by U.S. laws. We do not address this issue here, but rather, say that
in our view this may not constitute gambling since the expected pro�t of the
Vendor is very close (by the law of large numbers) to a deterministic (but more
expensive) schemes. Of course, the legal rami�cations of the proposed scheme
are beyond the scope of this paper.
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