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Abstract

We investigate the relations between two major properties of multiparty pro-
tocols: fault tolerance (or resilience) and randomness. Fault-tolerance is measured
in terms of the maximum number of colluding faulty parties, t, that a protocol
can withstand and still maintain the privacy of the inputs and the correctness of
the outputs (of the honest parties). Randomness is measured in terms of the total
number of random bits needed by the parties in order to execute the protocol.

Previously, the upper bound on the amount of randomness required by general
constructions for securely computing any non-trivial function f was polynomial
both in n, the total number of parties, and the circuit-size C(f). This was the
state of knowledge even for the special case t = 1 (i.e., when there is at most one
faulty party). In this paper, we show that for any linear-size circuit, and for any
number t < n=3 of faulty parties, O(poly(t) � logn) randomness is su�cient. More
generally, we show that for any function f with circuit-size C(f), we need only

O
�
poly(t) � logn+ poly(t) � C(f)

n

�
randomness in order to withstand any coalition
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of size at most t. Furthermore, in our protocol only t+ 1 parties 
ip coins and the
rest of the parties are deterministic. Our results generalize to the case of adaptive
adversaries as well.

Keywords: Secure multiparty protocols, Randomness, Limited independence, Com-

position of protocols.
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1 Introduction

The goal of this work is to explore the interplay, in the context of multiparty computa-

tions, between two fundamental concerns: security (i.e., fault-tolerance combined with

privacy) and randomness. Over the past decade, both striving for stronger security

and saving random bits received considerable amount of attention and yielded many

interesting results.

Secure protocols. Secure multiparty protocols (�rst studied in [Y82b, GMW87]) are

protocols that guarantee the privacy of the inputs and, at the same time, the correct-

ness of the outputs of honest participants, even if some of the parties are maliciously

faulty (\Byzantine"). Secure multiparty computations has been extensively studied,

in a variety of adversarial models. The following basic settings were considered. The

adversary controlling the corrupted (i.e., faulty) parties can be either computation-

ally unbounded (in which case the communication channels are assumed to be private)

[BGW88, CCD88], or it can be limited to e�cient (probabilistic polynomial time) com-

putations [Y82b, GMW87]. In addition, the adversary can be either passive (in which

case the corrupted parties are honest-but-curious; they follow their protocol and only

collude to gather extra information), or active (in which case the corrupted parties may

arbitrarily and maliciously deviate from their protocol). A protocol resilient against

passive adversaries is sometimes called private, rather than secure. In all settings, a

salient parameter is the resilience t, i.e. the maximum number of colluding faulty parties

tolerable by the protocol. An additional parameter regarding the power of the adver-

sary is adaptivity: A static adversary controls a �xed set of faulty parties, whereas an

adaptive adversary may choose which parties to corrupt as the computation proceeds,

based on the information gathered so far. To simplify the presentation, we concentrate

in this work on the static case although the results (and techniques) carry on to the

adaptive case as well.

We mention some known results: In [Y82b, GMW87] it was shown that, if trapdoor

permutations exist, every poly-time computable function f can be computed securely

tolerating a computationally bounded, active adversary that controls up to t < n=2

parties. Moreover, in the case of passive adversaries, any number t � n of colluding

parties is tolerable. In [BGW88, CCD88] protocols for securely computing any function

in the presence of computationally unbounded adversaries are presented. In the case of

passive adversaries these protocols withstand up to t < n=2 corrupted parties. In the

case of active adversaries these protocols withstand up to t < n=3 corrupted parties. In

both cases this is the maximum attainable resilience. Considerable amount of work has

been done in this area (e.g., [BB89, B89, BDPV95, BSV94, CFGN96, CK89, FKN94,

FY92, K89, KM96, KMO94, KOR96, KR94, RB89]); in the sequel we concentrate on

works concerning the relation between multiparty security and randomness.
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Randomness. Randomness plays an important role in computer science. In particu-

lar, in the context of distributed computing there are important examples of problems

where there is a provable gap between the power of randomized algorithms and their

deterministic counterparts. For instance, achieving Byzantine agreement with linear

number of faults requires linear number of rounds deterministically [FL82] and con-

stant number of rounds if randomization is allowed [FM88]; reaching a consensus in an

asynchronous distributed system with faults is impossible with deterministic protocols

[FLP85], but is possible with the use of randomized protocols (see [CD89]). Various

techniques to minimize the amount of randomness needed were extensively studied in

computer science (e.g., [AGHP90, BGG90, BM82, CG85, IZ89, KK94, KM93, KM94a,

KM94b, KM96, KY76, N90, NN90, S92, Y82a, Z91]) and tradeo�s between randomness

and other resources were found (e.g., [BDPV95, BGS94, BSV94, CG90, CK93, CRS93,

KM96, KOR96, KPU88, KR94, RS89]).

Security vs. Randomness. It is not hard to show that, except for degenerate

cases, some randomness is essential to maintain security (if all parties are deterministic

then the adversary can infer information on the parties' inputs from their messages).

We are interested in the amount of randomness required for carrying out a t-resilient

computation against computationally unbounded adversaries.1

All previous (generic) secure protocols require �(poly(n) �m) random bits, where

n is the number of parties, and m is the number of multiplication gates in the circuit

representing the function to be computed. This applies both to passive and active

adversaries. Previous research concentrating on reducing the amount of randomness

used in secure computations was limited to the case of passive (and static) adversaries.

Furthermore, results were obtained either for a speci�c function (namely XOR) or for

the special case t = 1:

1. For the XOR function, 
(t) random bits are necessary for t-private computation,

while O(t2 log(n=t)) random bits are su�cient [KM96]. Additionally, for any

function f with sensitivity n, if t � n� c for some constant c, then 
(n2) random

bits are required [BDPV95].

2. For the special case of 1-privacy, any linear-size circuit can be computed 1-

privately with constant number of random bits [KOR96]. More generally, every

1When the adversary is limited to probabilistic polynomial time and intractability assumptions are

used, as in [Y82b, GMW87], then by the results of [BM82, H90, ILL89] we may as well assume the

existence of a pseudorandom generator. In this case, if a party needs \many" random bits, it can

always choose only a \small" seed of truly random bits, and expand the seed into a \long" sequence of

pseudo-random bits and use them. Therefore, in the case of computationally bounded adversaries the
quanti�cation of the \amount of randomness needed" is not meaningful (and in particular, the amount

of randomness needed inherently depends on a security parameter).
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circuit ofm boolean gates can be computed 1-privately with O(m=n) random bits

[KOR96].

Our Results. We generalize both of the above results. That is, we show that for

both passive and active adversaries (even adaptive ones), and for any value of t for

which secure computation is possible, any circuit of m boolean gates can be securely

evaluated using only O(poly(t) � (logn + m
n
)) random bits overall. While these results

do not substantially improve on [BGW88, CCD88] for t = �(n), they constitute big

improvement for smaller values of t. In particular, for t = polylog(n), circuits with

quasi-linear (i.e., m = O(n � polylog(n))) number of gates can be securely evaluated

using only polylog(n) random bits. For t = 1, we are only O(logn) away from the

specialized (to passive adversaries only) result of [KOR96].

An Alternative Perspective. We suggest the following alternative perspective on

our results. Any distributed computing task (i.e., a task whose input is partitioned

among several parties) can, in the absence of faults, be solved in a centralized man-

ner: all parties send their input to a single party, who performs the task locally and

announces the results. In many cases this may be the preferred solution, but this solu-

tion requires that the correctness (and privacy) be trusted to a single party. A natural

extension of the centralized solution to the case when up to t faults are possible is to

have all parties share their inputs among a prede�ned small set S of c � t parties (c > 1),

and have the parties in S compute the function and announce the results. This \partial

decentralization" approach seems especially viable when t = o(n), since the set S need

not be much bigger than t. Our work shows that, with respect to the amount of ran-

domness used, this \partial decentralization" solution is considerably inferior to a fully

distributed computation: while our solution needs only O(poly(t) � (logn + m
n
)) ran-

domness, the above \partial decentralization" solution (according to presently known

methods) requires O(poly(t) �m) random bits.

Our Constructions. Our results build on many previous ideas in the area of pri-

vacy as well as on limited independence distributions. In particular, we use the general

framework of [BGW88], and combine it with ideas from [KOR96] together with tech-

niques for limited independence, in order to save in randomness. That is, the parties

evaluate the given circuit gate by gate; each gate is computed in a manner similar to

the construction of [BGW88]. (In particular, we use the [BGW88] modules for secret

sharing and evaluating individual gates as building blocks.) However, as in [KOR96],

not all parties participate in evaluating each gate. Instead, the parties are partitioned

into teams of small size, and each gate is evaluated by a single team. We generalize the

technique of [KOR96] in a way which allows us to use limited independence, and then

show how this can be done in a secure and robust manner, building on previous work
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on both secure protocol design and de-randomization techniques.

Interestingly, we show that not only we can use a small amount of randomness

but also only t + 1 parties need to be randomized, and the rest of the parties can be

deterministic. This is nearly optimal against coalitions of size t, since it was shown in

[KM96] that t-private computations of simple functions require at least t parties to use

randomness, and that in some cases, such as the XOR function, t is su�cient.

The Protocol Composition Technique. To show the security of our protocols,

we use general de�nitions of secure multiparty protocols. In particular, we use the

formalization of [C99], which allows modular composition of secure protocols. (This

formalization is based on the [B91a, B91b] approach.) That is, in order to avoid re-

proving the security of the [BGW88] construction from scratch, we separately prove the

security of the overall design of our protocol, assuming that the [BGW88] modules for

secret-sharing and for evaluating individual gates are secure. We then conclude, using

the [C99] composition theorem, that the composition of our \overall design" with the

[BGW88] modules is secure. (For self containment we also sketch a proof of security

of our protocol for passive adversaries, without relying on [C99].) We remark that a

formal proof of security for [BGW88] was never published. (It can be inferred, say, from

the security proof of [BCG93] as it appears in [C95].) The modular proof technique

used here can be applied also to proving the security of the [BGW88] protocol itself

and it has the advantage that it extends to the adaptive case as well.

Organization. In Section 2, we provide some necessary de�nitions, including those of

privacy and randomness. In Section 3, we review the solution of [BGW88] for the case of

passive adversaries. In Section 4, we provide our solution for the same case. In Section 5,

we review the solution of [BGW88] for the case of active (i.e., Byzantine) adversaries

and in Section 6 we extend our solutions from the case of passive adversaries to the case

of active adversaries. In Appendix A we describe a simple extension of the results of

[S92, KM96] for sample spaces with limited independence; we use this extension in our

constructions. In Appendix B we sketch a proof of security of our protocol for passive

adversaries, without relying on [C99].

2 Preliminaries

In Section 2.1 we review the notion of secure protocols, using the formalization of [C99].

In Section 2.2 we review the notion of modular composition of protocols, introduced in

[MR91], and re-state the composition theorem from [C99]. Modular composition plays

a central role in the security proofs of our protocols. In Section 2.3 we de�ne other

notions used within the paper. With the exception of Section 2.3, the material in this
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section is a summary of the corresponding sections in [C99], and is included here for

the sake of self-containment.2

Multiparty functions. The functions to be evaluated by the parties are formalized

as follows. An n-party function (for some n 2 N) is a probabilistic function f : (D)n �

f0; 1g� ! (D)n, for some �nite domain D, where the last input is taken to be the

random input.

2.1 Secure Protocols

We specify the requirements from a protocol for securely computing a function f whose

inputs are partitioned among several parties. Several de�nitions of multiparty secure

computation have been proposed in the past (e.g., [GL90, MR91, B91b, C99]). In this

work we use the de�nition of [C99] which we sketch below. We concentrate on the

`secure channels' setting of [BGW88, CCD88], where the adversary is computationally

unbounded but has no access to the communication between non-faulty parties. Also,

for simplicity of exposition we concentrate on the case of static (non-adaptive) adver-

saries. Nevertheless, all the protocols presented in this paper maintain their security

even in the presence of adaptive adversaries. The de�nitions for the passive and active

cases are very similar; we develop them together, noting the di�erences as we go.

In a nutshell, secure protocols are protocols that \emulate" an ideal model where

all parties privately hand their inputs to a centralized trusted party who computes the

results, hands them back to the parties, and vanishes. The de�nition is described in

three stages: First the \real-life" model of computation is formalized; next the ideal

model is formalized; �nally the notion of \emulation" and the de�nition are presented.

The real-life model. An n-party protocol � is a collection of n interactive, probabilis-

tic algorithms. Formally, each algorithm is an Interactive Turing machine, as de�ned in

[GMR89]. We use the term party Pi to refer to the ith algorithm. Each party Pi starts

with input xi 2 D, and random input ri 2 f0; 1g�. Informally, we envision each two

parties as connected via a private communication channel. A more complete description

of the communication among parties is presented below. A t-limited real-life adversary,

A, is another interactive (computationally unbounded) Turing machine describing the

behavior of the corrupted parties. Adversary A starts o� with input that contains the

identities the corrupted parties (some subset C � f1; : : : ; ng), together with their inputs

2One di�erence from the formalization of [C99] is that there the complexity measures, and the

security requirement, are stated in terms of a security parameter that tends to in�nity. Here we deal

with a simpler case where the inputs are taken from a �nite set, and the security is perfect (i.e., no
computational restrictions are made on the adversary and no \negligible probabilities of error" are

allowed). Consequently, the security parameter is not necessary. In fact, the de�nitions here can be

regarded as a statement of the de�nitions of [C99] for a speci�c value of the security parameter.
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and random inputs. In addition, A receives auxiliary input z. (The auxiliary input is a

standard tool that allows proving the composition theorem. Intuitively, the auxiliary

input captures information gathered by the adversary from other interactions occurring

before the current interaction. Auxiliary inputs were �rst introduced in [GO87], in the

context of Zero-Knowledge proofs; for discussion see [GO87, G95].)

The computation proceeds in rounds, where each round proceeds as follows. First

the uncorrupted parties generate their messages of this round, as described in the pro-

tocol. (That is, these messages appear on the outgoing communication tapes of the

uncorrupted parties.) The messages addressed to the corrupted parties become known

to the adversary (i.e., they appear on the adversary's incoming communication tape).

Next the adversary generates the messages to be sent by the corrupted parties in this

round. If the adversary is passive then these messages are determined by the protocol.

An active adversary determines the messages sent by the corrupted parties in an arbi-

trary way. Finally each uncorrupted party receives all the messages addressed to it in

this round (i.e., the messages addressed to Pi appear on Pi's incoming communication

tape.)

At the end of the computation all parties locally generate their outputs. The un-

corrupted parties output whatever is speci�ed in the protocol. The corrupted parties

output a special symbol, ?, specifying that they are corrupted. In addition, the ad-

versary outputs some arbitrary function of its view of the computation. The adversary

view consists of its auxiliary input and random input, followed by the corrupted parties'

inputs, random inputs, and all the messages sent and received by the corrupted parties

during the computation. Without loss of generality, we can imagine that the real-life

adversary's output consists of its entire view.

Let advr�;A(~x; z; ~r) denote the output of real-life adversary A with auxiliary input

z and when interacting with parties running protocol � on input ~x = x1; : : : ; xn and

random input ~r = rA; r1; : : : ; rn as described above (rA for A, xi and ri for party Pi).

Let exec�;A(~x; z; ~r)i denote the output of party Pi from this execution. Recall that if

Pi is uncorrupted then this is the output speci�ed by the protocol; if Pi is corrupted

then exec�;A(~x; z; ~r)i =?. Let

exec�;A(~x; z; ~r) = advr�;A(~x; z; ~r); exec�;A(~x; z; ~r)1; : : : ; exec�;A(~x; z; ~r)n:

Let exec�;A(~x; z) denote the probability distribution of exec�;A(~x; z; ~r) where ~r is

uniformly chosen.

The ideal process. The ideal process is parameterized by the function to be evalu-

ated. This is an n-party function f : (D)n � f0; 1g� ! (D)n, as de�ned above. Each

party Pi has input xi 2 D; no random input is needed for the parties in the ideal process

(if f is a probabilistic function then the needed randomness will be chosen by the trusted

party). Recall that the parties wish to compute f(~x; rf)1; : : : ; f(~x; rf)n, where rf is an
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appropriately long random string, and Pi learns f(~x; rf)i (where f(~x; rf)i denote the

ith component of f(~x; rf)). An ideal-process-adversary S is an interactive (computa-

tionally unbounded) Turing machine describing the behavior of the corrupted parties.

Adversary S starts o� with the identities and inputs of the corrupted parties (parties Pi
for i 2 C), random input, and auxiliary input. In addition, there is an (incorruptible)

trusted party, T . The ideal process proceeds as follows.

Input substitution: The ideal-process-adversary S sees the inputs of the corrupted

parties. If S is active then it may also alter these inputs. Let ~b be the jCj-

vector of the altered inputs of the corrupted parties, and let ~y be the n-vector

constructed from the input ~x by substituting the entries of the corrupted parties

by the corresponding entries in ~b. If S is passive then no substitution is made and

~y = ~x.

Computation: Each party Pi hands its (possibly modi�ed) input value, yi, to the

trusted party T . Next, T chooses a value rf randomly from Rf , and hands each

Pi the value f(~y; rf)i.

Output: Each uncorrupted party Pi outputs f(~y; rf)i, and the corrupted parties out-

put ?. In addition, the adversary outputs some arbitrary function of the infor-

mation gathered during the computation in the ideal process. This information

consists of the adversary's random input, the corrupted parties' inputs and the

resulting function values ff(~y; rf)i : Pi is corruptedg.

Let advrf;S(~x; z; ~r), where ~r = (rf ; r), denote the output of ideal process adversary

S on random input r and auxiliary input z, when interacting with parties having input

~x = x1; : : : ; xn, and with a trusted party for computing f with random input rf . Let

the (n+ 1)-vector

idealf;S(~x; z; ~r) = advrf;S(~x; z; ~r); idealf;S(~x; z; ~r)1; : : : ; idealf;S(~x; z; ~r)n

denote the outputs of the parties on inputs ~x, adversary S, and random inputs ~r as de-

scribed above (Pi outputs idealf;S(~x; z; ~r)i). Let idealf;S(~x; z) denote the distribution

of idealf;S(~x; z; ~r) when ~r is uniformly distributed.

De�nition of security. We require that protocol � emulates the ideal process for

evaluating f , in the following sense. For any real-life adversary A there should exist

an ideal-process adversary S, such that for any input vector ~x and any auxiliary in-

put z, the global outputs idealf;S(~x; z) and exec�;A(~x; z) are identically distributed.

Furthermore, we require that the complexity of the ideal-process adversary S be com-

parable to (i.e., polynomial in) the computational complexity of the real-life adversary

A. (See [C99] for motivation and discussion of this requirement.)
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De�nition 1: Let f be an n-party function and let � be a protocol for n parties. We

say that � t-securely evaluates f if for any t-limited real-life adversary A there exists an

ideal-process adversary S whose running time is polynomial in the running time of A,

and such that for any input vector ~x and any auxiliary input z,

idealf;S(~x; z)
d

= exec�;A(~x; z); (1)

where
d

= denotes equality between two distributions. If A and S are passive adversaries

then we say that � t-privately evaluates g.

2.2 Composition of Secure Protocols

In the sequel we use the fact that security of protocols is preserved under a natural

composition operation. For a full exposition and a proof see [C99]. Here we brie
y

review the set-up and state the theorem.

Informally, the composition theorem can be stated as follows. Suppose that proto-

cols �1; : : : ; �k securely compute functions f1; : : : ; fk respectively, and that a protocol �

securely computes a function g using subroutine calls for \ideal evaluation" of f1; : : : ; fk.

Let ��1;:::;�k be a protocol that is identical to protocol � with the exception that every

subroutine call for an ideal evaluation of fi is replaced by an invocation of the corre-

sponding protocol �i. Then, the resulted protocol ��1;:::;�k securely computes g from

scratch.

We call this type of composition of protocols modular composition. (This notion was

�rst suggested in [MR91]. There it is called reducibility of protocols.) In formalizing

this theorem we concentrate on the case where at most one subroutine invocation is

running at any computational round. Showing that security is maintained even in the

more general case, where several subroutine invocations may be running at the same

time, requires a stronger security property than the one presented here and is not dealt

with in this paper. Yet, we remark that our protocols do enjoy this stronger security

property.

The hybrid model. To be able to state the composition theorem, we �rst formulate

a model for computing a function g with the assistance of a trusted party for computing

a function f , and de�ne secure protocols in that model. This model, called the hybrid

model with ideal access to f (or in short the f -hybrid model), is obtained as follows.

We start with the real-life model described above. This model is augmented with an

incorruptible trusted party Tf for computing a function f . At special rounds (deter-

mined by the protocol run by the uncorrupted parties) all parties interact with Tf in

a way that is similar to the ideal process for evaluating f . That is, the parties hand

their f -inputs to Tf (party Pi hands �i), and are handed back their respective outputs

(Pi learns f(�1; : : : ; �n; rf)i). The values �i that correspond to corrupted parties are
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decided by the adversary, who also learns the values handed by Tf to the corrupted

parties. The case of ideal evaluation of several possibly di�erent functions f1; : : : ; fk is

treated similarly, where the protocol speci�es in each invocation of the trusted party

which function fj to evaluate.

Let exec
f1;:::;fm
�;A (~x; z) denote the random variable describing the output of the com-

putation in the (f1; : : : ; fm)-hybrid model with protocol �, adversary A, inputs ~x and

auxiliary input z for the adversary, analogously to the de�nition of exec�;A(~x; z) in Sec-

tion 2.1. (We stress that here � is a hybrid of a real-life protocol with ideal evaluation

calls to T .)

Security in the hybrid model. Protocols for securely computing a function g in

the (f1; : : : ; fk)-hybrid model are de�ned in the usual way:

De�nition 2: Let f1; : : : ; fm and g be n-party functions and let � be a protocol for

n parties in the (f1; : : : ; fm)-hybrid model. We say that � t-securely evaluates g in the

(f1; : : : ; fm)-hybrid model if for any t-limited adversary A (in the (f1; : : : ; fm)-hybrid

model) there exists an ideal-process adversary S whose running time is polynomial in

the running time of A, and such that for any input vector ~x for the parties and any

auxiliary input z for the adversary,

idealg;S(~x; z)
d

= exec
f1;:::;fm
�;A (~x; z): (2)

If A and S are passive adversaries then we say that � t-privately evaluates g in the

(f1; : : : ; fm)-hybrid model.

Replacing ideal evaluation with a subroutine. Replacing a call of protocol � for

an ideal evaluation of fi with a call to a real-life subroutine protocol �i is done in a

straightforward way: the code of � within each party is changed so that the call for

ideal evaluation of fi is replaced with an invocation of �i. The value to be handed to

the trusted party is used as input to �i; and, in addition, �i is given a new, unused part

of the party's random input. Once the execution of �i is completed the local output is

treated as the value returned by the trusted party, and the execution of � resumes. We

assume that all parties terminate protocol � at the same round. Let ��1;:::;�m denote

protocol � where each ideal evaluation call to fi is replaced by an invocation of protocol

�i.

Theorem 1: [C99]. Let f1; : : : ; fm and g be n-party functions. Let � be an n-party

protocol that t-securely (resp., t-privately) computes g in the (f1; : : : ; fm)-hybrid model,

in a way that no more than one ideal evaluation call is made at each round. Let

�1; : : : ; �m be n-party protocols that t-securely (resp., t-privately) compute f1; : : : ; fm,

respectively. Then, the protocol ��1;:::;�m t-securely (resp., t-privately) computes g.
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2.3 Other De�nitions

Measuring Randomness. We measure the amount of randomness used by a proto-

col as follows. We provide each party Pi with a random string ri of independent and

uniformly distributed symbols in the set f0; 1; : : : ; p � 1g, for some p. Let di be the

rightmost position on the tape ri that party Pi reads. In this case we say that party Pi
used di � dlog pe random bits.3

De�nition 3: A d-random protocol is a protocol such that for every input assignment

~x and every auxiliary input z, the total number of random bits used by all parties in

every execution is at most d.

We stress that the de�nition allows, for example, that in di�erent executions each

individual party will toss a di�erent number of coins. This number may depend on

both the input of the parties, and previous coin tosses.

Circuits. In the sequel we represent the functions computed by the parties as arith-

metic circuits. That is, we �x a prime p > n (where n is the number of parties); the

circuit consists of two types of gates: addition modulo p and multiplication modulo p.

All gates have fan-in two, and unbounded fan-out. The size of a circuit, denoted m, is

the number of gates in the circuit (although, to measure the complexity of our proto-

cols, m could be taken as the number of multiplication gates only). We remark that a

boolean circuit (e.g., a circuit consisting of standard Or, And, and Not gates) can be

transformed into an equivalent arithmetic circuit in a way that preserves the number

of gates, up to a small multiplicative factor. For instance, consider the transformation

not a) (1� a); a and b) a � b; and a or b) 1� ((1� a)(1� b)).

For simplicity of presentation and analysis we concentrate on secure evaluation

of deterministic functions. Still, as a side-remark we sketch a way for dealing with

probabilistic functions. The idea is to \share" each random input to the circuit among

the parties in a way that prevents the adversary from in
uencing the chosen value,

and guarantees that the adversary gathers no information on this value on top of the

information leaked by the function value. More precisely, let A be a circuit that has

t + 1 inputs wires, and a single output wire whose value equals the sum of the inputs

(mod p). Given a randomized circuit C with random input wires r1; : : : ; rk, construct

3It is standard to view a random selection in the set f0; 1; : : : ; p � 1g as \choosing" dlog pe random

bits. This can be justi�ed either by Entropy considerations, or simply by the fact that to choose

a random number in f0; 1; : : : ; p � 1g an expected number of O(dlog pe) random bits su�ces (simply

choose dlog pe random bits; if you get a number in the range f0; 1; : : : ; p � 1g output this number;

otherwise, try again). Hence, any protocol that uses r random bits according to our de�nition can be

converted into a protocol that uses expected O(r) random bits in a setting where only choices in f0; 1g

are allowed. Alternatively, we can restrict ourselves to choices in f0; 1g and consider the worst case

number of random bits if we allow a (small) probability of failure.
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a circuit C0 that is identical to C except that in C0 each ri is replaces by an A circuit,

denoted Ai. Each party Pj with j � t+1 is assigned to the jth input of each Ai. (This

is in addition to the other, regular input wires assigned to Pj .) Pj chooses a random

value in GF [p] for each one of the A-inputs assigned to it, and from this point on treats

each such input wire as a regular input wire. The parties now proceed to evaluate C0.

3 An Overview of the Protocol of [BGW88] for Passive

Adversaries

Our construction for passive adversaries, described in the next section, uses components

used in the general construction of [BGW88] for t-securely computing any function in

the presence of passive adversaries, for any t < n=2. Therefore, we present in this

section a brief overview of [BGW88]. The construction (and its proof) is presented in a

modular way, using the formalism from the previous section. This form of presentation

will enable us to use the components of [BGW88] without re-proving their security from

scratch.

In the [BGW88] protocol the parties �rst agree on an arithmetic circuit for the

function f to be computed. In particular, the parties agree on a prime p > n (all the

arithmetic in the sequel is done modulo p) and on n distinct elements �1; : : : ; �n in

GF [p] (all polynomials in the protocol will be evaluated at these n evaluation points)4.

Each party is assigned to some of the input wires. The party's input consists of a value

for each of the input wires assigned to it. Each output wire of the circuit is assigned to

one or more parties; these are the parties that will learn the value of this wire.

First, each party uses Shamir's secret-sharing scheme to share among the parties

the value of each input wire assigned to it. Then, the parties evaluate the circuit in

a gate-by-gate fashion (from inputs to outputs); for each gate, the parties engage in a

protocol for computing shares of the output value of the gate from their shares of the

input values of the gate. Finally, the parties let each party reconstruct the values of the

output gates assigned to it. More precisely, the [BGW88] protocol consists of a `high-

level' protocol for evaluating the circuit; this protocol uses as `subroutines' protocols

for secure evaluation of the following n-party functions:

Secret Sharing. sharen(s; �; : : : ; �) = F (�1); : : : ; F (�n), where s 2 GF [p] is the \se-

cret" to be shared, � denotes the empty input, and F () is a random polynomial

of degree t in GF [p] with F (0) = s. Let sharen;i denote the function sharen

where the dealer (i.e., the party with non-empty input) is Pi. Note that we do

not specify how the coe�cients of F are chosen; this is regarded as the `intrinsic

randomness' of the function share.

4For the case of passive adversaries, we can choose for example �1 = 1; : : : ; �n = n; as we will note,

in the case of active adversaries the choice is slightly more delicate.
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Evaluating an addition gate. addn(a1jb1; : : : ; anjbn) = a1 + b1; : : : ; an + bn (where

`j' denotes concatenation). This function for evaluating an addition gate is trivial

and can be computed securely without any interaction between the parties.

Evaluating a multiplication gate. multn(a1jb1; : : : ; anjbn) = C(�1); : : : ; C(�n), where

C is distributed uniformly among all polynomials of degree t over GF [p] with free

coe�cient a � b. Here a (resp., b) is the free coe�cient of the lowest degree poly-

nomial A (resp., B) satisfying A(�i) = ai (resp., B(�i) = bi) for all i. (Also

here we do not specify how the coe�cients of C are chosen; this is the `intrinsic

randomness' of the function mult.)

Reconstruction. reconsn;W (a1; : : : ; an) = �1; : : : ; �n, where W � [n], and �i =

(a1; : : : ; an) if i 2 W , and �i = � otherwise. In the high-level protocol the parties

in W will interpolate a (degree t) polynomial A satisfying A(�i) = ai for all i,

and will output A(0).5

Theorem 2: [BGW88]. Let t < n=2. Then, there exist protocols for t-securely com-

puting each of the above four functions, in the presence of passive adversaries, for all

i 2 [n] and W � [n].

We do not prove this theorem here. Yet we note that the protocols for computing

sharen;i and reconsn;W are just Shamir's secret sharing and reconstruction protocols

[S79]. The secret sharing protocol requires the dealer to choose t random values in

GF [p]; namely O(t log p) random bits. The function addn can be computed by each

party locally summing its two inputs. Below we sketch Rabin's simpli�cation of the

protocol for securely computingmultn, as it appears in [GRR98]. This protocol requires

each participating party to choose O(t log p) random bits (hence total of O(nt log p)

random bits in each invocation of the multiplication protocol).

The multiplication step of [GRR98]. First, each party Pi locally computes the

value di = ai � bi. These values de�ne a polynomial D(x) whose free coe�cient is the

value a � b. However, the degree of D is 2t (and not t) which may lead to problems

in revealing the output at the end. In addition, D is not even a random polynomial

of degree 2t (for instance, D cannot be irreducible). We overcome these problems as

follows. We show below that there is a linear combination

D(0) =
2t+1X

i=1


iD(�i); (3)

5An apparently simpler formalization of function recons would be to let �i = s if i 2 W , where s

is the free coe�cient of the polynomial A() satisfying A(�i) = ai for all i. However, this formalization

imposes an additional (and unnecessary) secrecy requirement, namely that even the parties in W do not

learn the inputs of the other parties to the reconstruction protocol. Meeting this additional requirement
would require unnecessarily complex protocols.
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where the 
i's are known coe�cients. Once this is established, the parties can proceed as

follows: Each party Pi, (1 � i � 2t+ 1) chooses a random polynomial �i(x) of degree

t whose free coe�cient is di. It then sends �i(�j) to Pj . Each party Pj computes

�j =
P2t+1

i=1 
i�i;j where �i;j is the value that Pj receives from Pi. It holds that �j
is Pj 's share for the polynomial �(x) =

P2t+1
i=1 
i�i(x) which is a random, degree t,

polynomial whose free coe�cient is
P2t+1

i=1 
iD(�i) = D(0).

It remains to show 
i's that satisfy Equation (3). Denote by ~d = (d0; d1; : : : ; d2t) the

vector of coe�cients of the polynomial D and let V be the (2t+1)�(2t+1)Vendermonde

matrix whose (i; j) entry (for 1 � i; j � 2t + 1) contains the value ij�1. Also denote,
~D = (D(�1); D(�2); : : : ; D(�2t+1)). With this notation we get that ~D = V � ~d. Since

V is non-singular (see, e.g., [vLW92]), we can write ~d = V �1
� ~D and note that the

value that we are interested in sharing is D(0) = d0, the �rst element of ~d, which can

therefore be written as D(0) = d0 =
P2t+1

i=1 V �1
1;i �D(�i) (where V

�1 is a �xed matrix).

For completeness, we state the following theorem:

Theorem 3: [BGW88] Let t < n=2. Then, given an arithmetic circuit for computing

an n-party function f , there exists a protocol for t-securely computing f in the hybrid

model with passive adversaries and with ideal access to the functions sharen;i, addn,

multn and reconsn;W , for all i 2 [n] and W � [n].

Using the composition theorem (Theorem 1), we get that for any t < n=2 there exist

protocols for t-securely computing any n-party function f in the presence of passive

adversaries. The number of random bits used by these protocols is O(mnt log p) (where

m is the size of the circuit for f).

4 Our Protocol for Passive Adversaries

In this section we present our randomness-e�cient protocol with respect to passive

adversaries. For simplicity, we restrict the presentation to deterministic functions where

each party has boolean input and output. That is, we prove the following theorem:

Theorem 4: Let t < n=2. Then, any function f : f0; 1gn ! f0; 1gn that has a circuit

of size m, can be t-privately computed by a O(t2 logn + (m=n)t5 log t)-random protocol.

We �rst present our protocols assuming the existence of a trusted dealer whose role

is restricted to distributing random values to the parties. The trusted dealer does not

receive any messages and has no input. Formally, we present and analyze the protocol

in the hybrid model, with ideal access to a function that takes no input, and generates

outputs from a distribution to be determined in the sequel. At the onset of the protocol

the parties �rst evaluate this function (denoted randn), and use the local outputs as

their random inputs for the rest of the protocol. In Section 4.3.3 we present a simple

protocol that securely evaluates randn.
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4.1 Overview

Known generic constructions of protocols for secure computations share the following

structure, described in the previous section: First, each party shares its input; next,

the parties evaluate the given circuit in a gate-by-gate manner from inputs to outputs,

maintaining the property that the value of each wire in the circuit is shared among

the parties. Finally, the parties reconstruct the value of the output wires from their

shares. Our approach can be applied to any protocol that follows this outline. For

concreteness, however, we concentrate on the construction of [BGW88] (reviewed in

the previous section).

We develop a variation of the above outline. Instead of having the value of each wire

shared among all parties, and having all parties participate in evaluating each gate, we

use a di�erent method. We partition the parties into sets of size s = 2t + 1 which we

call teams. The input of each party will be shared only among the members of its team

(using the [S79, BGW88] secret-sharing procedure). Each gate will be assigned a team,

and will be evaluated only by the parties in that team. Consequently, the output wire

of each gate will be shared among the parties in the corresponding team. Each of the

�
n
s
teams will be assigned to roughly m=(n=s) =m � s=n gates.

To evaluate a gate g, each party of the corresponding team T �rst receives a share of

the value of each of the two input wires to the gate g. These shares are communicated

by the parties of the teams that evaluated the gates leading to those wires. Now team

T invokes the procedure of [BGW88] for evaluating gate g. (This can be done since

s > 2t.) At the end of this computation, the parties in T hold shares of the output wire

of the gate. When the values of the output wires of the circuit are known (in a shared

manner), the corresponding teams provide the speci�ed parties with the information

needed to reconstruct these values.

The random input of the parties (needed for sharing their inputs and for the gate

evaluations) is provided by the trusted dealer (i.e., by the function randn), in a way

that guarantees that the view of each subset of at most t parties depends only on a

\small" fraction of the overall random input of the system. Thus, the random inputs

dealt to the parties may have only limited independence, which leads to saving in overall

randomness.

4.2 Detailed Description (with trusted dealer)

We now state the protocol in detail, in the randn-hybrid model. Let the team size

be s = 2t + 1 and the number of teams be k = n=s (we assume for convenience that

n is divisible by s; see Remark 1 below). Next, partition the n parties into k teams

of parties of size s each. Each team will evaluate (at most) ` = d
m
k
e gates. We also

specify an enumeration of the parties in each team. Denote by PT;j the j'th party in

team T . Let p > s be a prime, and �1; : : : ; �s be s evaluation points, as before. All

16



the computations described below are over GF [p]. First the parties perform an ideal

evaluation call to randn, and use the outcome as their random input for the rest.

Next, we describe the \high-level" protocol in the hybrid model with access to ideal

evaluation of the functions shares;i, adds, mults and reconss;W . (These functions

were described in the previous section.)

1. (Input Sharing)

For each party PT;j the parties in team T invoke the trusted party for ideal

evaluation of shares;j with dealer PT;j . The dealer's input to shares;j is its

input to the computation.

2. (Computation)

The gates of the circuit are evaluated one by one from the inputs to the outputs.

Each gate g is evaluated by the parties in the team T assigned to it, as follows.

� Collect shares of inputs to the gate (\baton hand o�"):

Let x and y be the input wires of gate g, and let Tx and Ty denote the teams

that hold the shares for these inputs (the inputs x and y may come from either

the inputs for the circuit, as shared in the Input Sharing stage, or from the

outcome of previously evaluated gates).6 Then, the ith party in Tx and the ith

party in Ty send their shares of the values of x and y, respectively, to PT;i (i.e.,

the ith party in T ). Let ai (resp., bi) denote the value received from PTx;i (resp.,

PTy;i). Now, for each of the two input wires to gate g, the parties in T hold shares

of a polynomial of degree t whose free coe�cient is the value of that wire.

� Compute shares for the output of the gate:

Once the parties in T receive their shares of the input wires, they evaluate the

gate by invoking the trusted party for evaluating the appropriate function (i.e.,

either adds or mults).

At the end of this step, the parties in team T hold shares of a polynomial of degree

t (over GF [p]) whose free coe�cient is the value of the gate.

3. (Output)

Let T be a team that computes the value of an output wire of the circuit. Then,

the parties in T invoke the trusted party for evaluating the reconstruction function

reconss;W whereW � [n] is the set of parties that are assigned to this wire. Next,

each party in W interpolates a (degree t) polynomial A satisfying A(�i) = ai for

all i, and outputs A(0).

The high-level protocol above is turned into a full-
edged protocol by replacing

the ideal evaluation calls with subroutines that securely evaluate the corresponding

functions; for concreteness we use the subroutines of [BGW88], sketched in the previous

section.
6T; Tx and Ty need not be disjoint, or even distinct.
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The function randn. We now turn to describing the distribution provided by randn.

(Figuratively, this is the distribution provided by the trusted dealer.) The output

of randn consists of M random elements in GF [p], denoted Z1; : : : ; ZM , where each

coordinate out of 1; : : : ;M is assigned to exactly one party. Each party receives the

elements whose coordinates are assigned to it. The elements will have only limited

independence; speci�cally, they will be only �-wise independent. The values M and �,

as well as the number of �eld elements received by each party, are determined below.

We count the number of random elements in GF [p] required by the protocol. In

the Input Sharing stage the dealer distributes coe�cients of n degree-t polynomials

(one polynomial to each party). Then, the dealer distributes additional s polynomials

per each multiplication gate to be computed (one polynomial for each party in the

simulating team). Each polynomial is de�ned by t coe�cients in GF [p]. Therefore, the

dealer generates a total of M = n � t +m � s � t numbers (in GF [p]). In order to save

in randomness, the dealer does not generate these M numbers independently. Instead,

we observe that the view of each subset (of size at most t) of parties depends on a

\relatively small" set of at most � = �((m=n) � t4) numbers, as follows:

� The number of shares that a single party Pi sees is counted as follows: s�1 shares

are seen in the Input Sharing stage (one share from each member of Pi's team).

For each of the (at most) ` multiplication gates that Pi evaluates, it gets messages

that depend on the inputs and outputs of all members of Pi's team. These add

up to at most O(`s) shares. Hence, any set of t parties sees at most O(t � ` � s)

shares which are thus depending on at most O(t2 � ` � s) numbers that the dealer

distributes as coe�cients of polynomials.

� In addition, every party Pi receives some numbers directly from the dealer: t num-

bers in the Input Sharing stage (to share its input among its team members);

plus, for each of the (at most) ` multiplication gates that Pi takes part in their

evaluation, it gets t numbers (coe�cients of a polynomial to be used for sharing

its value D(�)). All together, a set of t parties gets O(t2`) numbers directly from

the dealer.

To conclude, by the choice of parameters (s = �(t), and ` = �(m=k) = �(m � t=n)), the

view of a subset of at most t parties depends on at most O(t2`s) = O(t3`) = O(t4m
n
)

numbers from the distribution. Hence the dealer generates M numbers Z1; Z2; : : : ; ZM

in GF [p] which are uniformly distributed and are � = �((m=n) � t4)-wise independent.

We describe two ways for computing the desired distribution. A straightforward

method proceeds as follows. For the purpose of this method, we assume that the prime

p satis�es p > M (this strengthens the assumption made before that p > s). The dealer

chooses a random polynomial R(x) in GF [p] of degree � and then generates the M

numbers Z1 = R(1); Z2 = R(2); : : : ; ZM = R(M). It is a well known fact (and easy to
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prove) that if p > M these M numbers are �-wise independent. This procedure uses

O(� � log p) = O((m=n) � t4 � logm) bits of randomness.

The amount of randomness used can be further reduced using a more careful analysis

of the needed independence of the numbers generated by the dealer. The view of any

subset of size t of parties indeed depends on at most � = �((m=n) � t4) numbers

generated by the dealer. However, we do not need all subsets of size � to be uniformly

distributed. It su�ces that the
�
n
t

�
subsets of size �, de�ned by the

�
n
t

�
subsets of t

parties, be uniformly distributed. To take advantage of the relaxed requirement, we use

a simple extension of the results of [S92, KM96] (which, for self containment, appears

in Appendix A). The dealer will uniformly sample a space of M -tuples over GF [p],

which is constructed to suit the speci�c
�n
t

�
subsets (we emphasize that, for the purpose

of this method, the requirement that p > s su�ces). By [S92, KM96], there is a sample

space of size
�n
t

�
p� such that if we sample the space uniformly, then the projection of the

chosen vector on any of the
�
n
t

�
subsets is uniformly distributed.7 To sample this space,

O(t log(n=t) + (m=n)t4 log p) = O(t log(n=t) + (m=n)t4 log t) random bits are needed.

4.3 Proof of security

Let t < n=2, and let f be the computed function. Fix an arithmetic circuit for f

and a prime p. Let � be the (full-
edged) protocol described above with respect to

that circuit. We show that protocol � satis�es the conditions of De�nition 1 via the

following two claims. Let �R be a protocol identical to protocol � with the exception

that the parties use truly random inputs for the protocol, instead of using the output

of randn. (That is, �R is a protocol in the real-life model, whereas � is a protocol in

the randn-hybrid model.)

Claim 1: Protocol �R t-securely computes f . That is, for any t-limited (passive)

real-life adversary A there exists an ideal-model adversary S such that for any input

vector ~x and any auxiliary input z,

idealf;S(~x; z)
d

= exec�R;A(~x; z):

Claim 2: For any real-life adversary A, the distributions describing the global output

of the parties in � and �R are identically distributed. That is, for any input vector ~x

and any auxiliary input z, exec�R;A(~x; z)
d

= exec
randn

�;A (~x; z).

Claim 3: There exists an O(t2 logn+(m=n)t5 log t)-random protocol that t-privately

evaluates randn.

The above claims (to be proven below) imply Theorem 4.

7 Both [S92, KM96] deal with the �eld GF [2] but can be extended to GF [p]. We note that the

time-complexity of sampling in the sample space is poly(n; log
�
n

t

�
; �) but the complexity of the known

algorithms that �nd such a space is poly(
�
n

t

�
). This is polynomial only for t = O(1) but can be done

\o�-line" and can be hard-wired into the protocol.
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4.3.1 Proof of Claim 1

Let �̂ denote the high level protocol that corresponds to protocol �R in the hybrid model

with ideal evaluation access to the functions shares;i, adds, mults and reconss;W .

It su�ces to show that �̂ is t-secure in the hybrid model. Theorems 1 and 2 then imply

that protocol �R t-privately evaluates f in the real-life model.

Given a real-life adversary A, the ideal-model adversary S proceeds via (black-

box) simulation of A. That is, given a set C of corrupted parties, inputs fxi j Pi 2

Cg, and auxiliary input z, adversary S proceeds as follows. First, S provides A with

C; fxi j Pi 2 Cg; z. Next, S generates simulates values sent by the uncorrupted parties,

and simulated values given by the trusted parties for the evaluated functions. These

values are set to random elements in GF [p]. In the reconstruction stage S provides A

with random �eld elements that \interpolate" to the function value. A more complete

description of simulator S appears in Figure 1.

Analysis of simulator S. Fix some input vector ~x and auxiliary input z. We show

that:

idealf;S(~x; z)
d

= exec
share;add;mult;recons
�̂;A (~x; z):

Recall that each one of the random variables idealf;S(~x; z) and exec
share;add;mult;recons
�̂;A (~x; z)

consists of the outputs of the parties plus the adversary output. The analysis consists

of two steps:

1. Show that A's view of a simulated execution is distributed identically to its view

of a real execution. (The adversary view consists of its random and auxiliary

inputs, followed by the internal data of the corrupted parties and the messages

received by them.)

2. Fix some possible value v for A's view. Let Ev denote the output values of the

uncorrupted parties in a real-life execution of �̂ in which A has view v. Let Iv
denote the outputs of the uncorrupted parties in an execution of the ideal process

with S, in which the simulated A's view is v. (Note that both Ev and Iv are

uniquely determined given ~x and v.) Then Ev = Iv
8.

Showing (2) is straightforward: the value Iv is the function value (provided by the

trusted party) at input ~x. It follows from the description of �̂ that Ev equals the value

of the circuit on inputs ~x. (This follows from the fact that the value of each wire in the

circuit equals the value at point 0 of the polynomial that the parties associate with this

wire.) Since the circuit computes the function we have Ev = Iv .

We complete the proof by showing (1). That is we show, by induction on the number

of rounds, that the adversary views of the real and simulated executions are identically

8If the computed function is randomized then Ev and Iv are random variables having the same
distribution.
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Simulator S

Initial input: A set C of corrupted parties, inputs fxi j Pi 2 Cg, auxiliary input z, and random
input r. In addition, S has access to a trusted party in the ideal model for evaluating f .

1. Invoke a copy of A, on set C of corrupted parties, inputs fxi j Pi 2 Cg, auxiliary input z, and
a su�ciently long portion of r.

2. For each party PT;i, simulate an interaction of team T with the trusted party for computing
shares;i. That is, for each PT;i and for each corrupted party Pj in team T , provide A with a
random number in GF [p] as the value given by the trusted party in the evaluation of shares;i.
If PT;i is corrupted then A hands an input value, denoted yT;i, to the trusted party. Record
this value.

3. For each gate g in the circuit, simulate the \baton hand-o�" step of the shares of the input
wires to the gate. That is, let T be the team that computes gate g, and let T1; T2 be the teams
that hold the values of the input wires to the gate. Then, for each i, if PT;i is corrupted and
PT1;i (resp., PT2;i) is not corrupted, then hand A a random number in GF [p]. (If both PT;i
and PT1;i, resp., PT2;i, are corrupted then A already knows the corresponding share and no
action is needed.)

4. Once the \baton hand-o�" step of a gate g is simulated, simulate an interaction of team T

with the trusted party for computing the function that corresponds to gate g (i.e., either adds
or mults). If the gate g is an addition gate then hand A the sum of the two input values
given by each corrupted party in team T to the trusted party. If the gate is a multiplication
gate then hand A a random number in GF [p] as the value given by the trusted party to each
corrupted party in team T .

5. When the simulation of a gate leading to an output wire of the circuit is complete, simulate
an interaction with the trusted party for computing reconss;W , where W is the set of parties
that are to learn the value of this wire. This is done as follows. If no corrupted party is in
W then no action is needed. Otherwise, invoke the trusted party for the output value of the
main function, f . Let v be the value received from the trusted party. Let T be the team that
holds the value of this wire, and let ai denote the share that A hands its trusted party for
reconss;W , in the name of each corrupted party PT;i in T . Then, choose a random polynomial
A of degree t such that A(0) = v and A(�i) = ai for each corrupted party PT;i. (Note that
this can always be done since A corrupts at most t parties.) Next, for each corrupted PT;i
hand A the vector (A(�1); : : : ; A(�s)).

6. When A generates its output, output whatever A does and halt.

Figure 1: Description of the simulator for protocol �̂.
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distributed. To see this, �x a pre�x p of the adversary view up to some round, and

consider the probability of some continuation c of this pre�x to the next round. We

claim that the probability that continuation c occurs, given pre�x p, is identical in

the real and simulated interactions. To see that, consider the three possible types of

components of the adversary view at a given round:

1. Messages arriving from the trusted party, regarding an evaluation of either share

or mult. In an interaction in the hybrid model, A receives up to t shares of a

random polynomial of degree t with �xed and unknown free coe�cient. In the

simulated interaction, the corresponding (at most t) values received by A are

independently chosen random numbers in GF [p]. However, these two distributions

are identical.

2. Messages arriving from the trusted party, regarding an evaluation of recons. In

both interactions these are values of a polynomial that is uniformly distributed

among all degree t polynomials whose free coe�cient is equal to the value v of

the corresponding output wire of the circuit on inputs ~x, and who matches the

values held by the corrupted parties.

3. Messages arriving from uncorrupted parties in a \baton hand o�' stage. These

messages are completely determined by the pre�x p.

This completes the proof of Claim 1.

4.3.2 Proof of Claim 2

Fix some values of the inputs ~x for the parties, and auxiliary input z for the adversary.

We show that

exec�R;A(~x; z)
d

= exec
randn

�;A (~x; z): (4)

Recall that each side of (4) consists of the outputs of the uncorrupted parties,

concatenated with the output of the adversary. It can be readily seen that the outputs

of the uncorrupted parties in the execution of � and in the execution of �R are identical.

(In both cases, these are the corresponding output values of the evaluated deterministic

function f on input ~x.) It remains to demonstrate that the adversary's view is equally

distributed in the two cases.

To see this, we �rst observe the structure of the information of a particular party

Pi. This information (in addition to the party's input xi) consists of:

1. Random numbers, obtained from the ideal evaluation of randn, to be used by Pi
as coe�cients of polynomials (using which Pi will share its information). These

include t coe�cients of the polynomial Qi that Pi receives in the Input Sharing

stage (to be used to share its input); and, during the Computation stage, for
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each of the (at most `) multiplication-gate evaluations in which Pi participates it

receives additional t coe�cients to be used in the evaluation. Altogether, at most

t(`+ 1) = O(t � `) elements in GF [p] are received, to be used as coe�cients.

2. Shares of values, sent to Pi = PTu;r by other parties (each such share is the value of

Q(�r) for some polynomial Q of degree t whose free coe�cient is some information

S). Speci�cally, these are:

� For each party Pj in Pi's team, Tu, a share of Pj 's input; this message can

be written as Q(�r) =
Pt

m=1 Zkm�
m
r +S, for some numbers Zkm provided by the

dealer and S = xj .

� For each of the (at most) ` multiplication gates in the evaluation of which Pi
participates, Pi receives during the computation from each party Pj of its team

a share of a value S that Pj computes locally. This message can be written as

Q(�r) =
Pt

m=1 Zkm�
m
r + S, for some Zkm provided by the dealer.

� For each such gate, Pi also receives shares of the two inputs on which the

computation is to be performed (unless it already has these shares). Each such

message can be written as Q(�r) =
Ps

j=1(
Pt

m=1 Zkj;m�
m
r + Sj), where each sum-

mand is a share generated by one of the parties in the team that evaluated the

previous gate, during the evaluation. The Zkj;m are numbers provided by the

dealer to these parties. (The case where the input to the gate is one of the xj 's is

slightly simpler.)

Altogether, Pi receives a total of s + `(s+ 2) elements in GF [p].

Next, we examine the messages that an arbitrary subset (coalition) of parties of size

at most t can see. Each of the messages of type 1 received by these parties is just a

di�erent number Zk in the space generated by the dealer. Altogether, the messages of

type 1 seen by the parties in the subset are just O(t2`) of the Zk's.

For messages of type 2, observe that each message can be associated with a poly-

nomial as discussed above. Each polynomial is de�ned by a free coe�cient S, and t

numbers Zk used as coe�cients and provided by the dealer to party, say, Pj (this is

not necessarily the party that sends the message; the party that sends the message

may only relay on it). For a party Pj , we denote by �j;d the d'th polynomial that this

party creates and uses. Considering the sets of numbers Zk used in each polynomial

in the protocol, we observe that the sets are pairwise disjoint. Furthermore, for each

message which is associated with a polynomial �j;d, for Pj which is not in the set of

parties under consideration, these numbers are also distinct (by de�nition) from any of

the Zk 's directly received by any corrupted party.

The total number of shares a subset of at most t parties can see is t�(s+`�(2s+s)) =

O(t � ` � s). Each of these shares can be, in the worst case, of a di�erent polynomial;

therefore, these shares may depend on at most O(t2 �` �s) of the Zk's. Together with the
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O(t2`) numbers Zk that the set of parties sees directly from the dealer (as messages of

type 1), we have that the communication seen by the set of parties depends on at most

O(t2 � ` � s) of the Zk's. Using s = �(t) and ` = �(m=k) = �(m � t=n), we have that the

communication seen by the set of parties depends on at most O((m=n)t4) values Zk.

To generate these numbers, the dealer sampled a sample space of vectors over GF [p]

such that the projection of the chosen vector on speci�c subsets, including the subset

of numbers that the view of the present subset of parties depends on, is uniformly

distributed. Consequently, the distribution of the adversary's view in the case where

the dealer deals totally independent numbers is the same as in the case where it chooses

them according to our scheme.

Remark 1: In the above we assume that n is divisible by s. If not, then n = ks+r for

some 0 < r < s. In this case we let the last r parties share their inputs among the parties

of the �rst team and then these r parties do not further participate in the protocol.

When one of their inputs is required then the �rst team will provide the corresponding

shares. This implies that the view of parties in the �rst team contains slightly more

messages and hence requires slightly increasing the value of � (by a constant factor).

4.3.3 Proof of Claim 3 (The Protocol Without Trusted Dealer)

The protocol of Section 4.2 assumes a trusted dealer whose role is restricted to choosing

random integers in GF [p] and distributing them to the parties. Equivalently, we think

of that protocol as running in a hybrid model with ideal access to the function randn

described above. (Recall that function randn takes empty input and generates an M -

tuple Z = Z1; : : : ; ZM according to a distribution Z , which is either the distribution

from Appendix A or a �-independent distribution. Each party receives the appropriate

subset of Z.)

We describe the following simple protocol for securely evaluating randn. Applying

the composition theorem once more, we obtain a protocol that securely evaluates any

function without a trusted dealer. The protocol for securely evaluating randn proceeds

as follows. We designate t + 1 parties (say, P1; : : : ; Pt+1) who, in addition to their

other roles in the protocol, will \double up" as the trusted dealer. That is, each of

the designated parties (called dealers) generates M = n � t +m � s � t values in GF [p]

and distributes the values to the n parties as described for the trusted dealer. Next,

each of the n parties locally outputs the sum (over GF [p]) of the values received from

P1; : : : ; Pt+1. Let � denote this protocol.

Analysis of protocol �. First note that the amount of randomness used in � is larger

by a factor of t + 1 than the amount of randomness used to generate a single M -tuple

from the above distribution. Consequently, the protocol is O(t2 log n + (m=n)t5 log t)-

random.
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We show that the protocol t-privately evaluates randn. Informally, as long as at

most t dealers are corrupted, the random choices of the (at least one) uncorrupted

dealers make sure that the output of each party, being the sum of the values received

from the dealers, is uniformly distributed. Furthermore, the outputs of the parties are

�-independent.

A rigorous proof requires a bit more care. Recall that for each real-life adversary A

that interacts with the protocol we need to construct an ideal-process adversary Srand
that causes the global output of the ideal process to be distributed identically to the

global output of running �. For this purpose, Srand will �rst invoke the trusted party

for randn and will obtain the outputs of the corrupted parties in the ideal process.

Next Srand will generate a view of A that has the \right distribution", conditioned on

the event that the outputs of the corrupted parties are identical to the values received

from the trusted party. A more complete description of Srand appears in Figure 2.

Simulator Srand

Initial input: A set C of corrupted parties, auxiliary input z, and random input r. In addition,
Srand has access to a trusted party in the ideal process for evaluating randn.

1. Invoke the trusted party for randn, and obtain the output values of the corrupted parties
fyi j Pi 2 Cg. Recall that each output value yi consists of a sequence of elements Zs1 ; : : : ; Zsl
in GF [p].

2. Invoke A on the set C of corrupted parties, auxiliary input z, and random input r. Next,
determine the messages to be sent from the uncorrupted dealers to the corrupted parties, as
follows.

Recall that each dealer Pi generates M elements in GF [p]. Denote these elements by
Zi;1; : : : ; Zi;M . Each coordinate s 2 [M ] is assigned to one of the parties, and the corre-
sponding �eld element is sent to that party. Let s be assigned to some corrupted party Pj.
If Pi is corrupted, then Zi;s is determined by the protocol and the adversary's random input
r. (Recall that the adversary is passive, thus even corrupted parties follow the protocol.) So
it remains to determine Zi;s for uncorrupted dealers Pi. These values are chosen at random
from GF [p], under the restriction that Zs =

P
dealers Pi

Zi;s.

Once the Zi;s's are determined, group them into messages sent from uncorrupted dealers to
corrupted parties, and hand these messages to A.

3. When A halts, output whatever A outputs and halt.

Figure 2: Description of the simulator for protocol �.

25



Analysis of simulator Srand. Fix some value for the auxiliary input z. We show

that

idealrandn;Srand
(z)

d

= exec�;A(z): (5)

Assume, without loss of generality, that the (real-life) adversary A outputs its entire

view of the interaction. This view consists of the set C, the auxiliary input z, some

random input r, and the values received from the uncorrupted dealers. Let �� denote the

number of uncorrupted dealers. To see that (5) holds, we observe that the distributions

in both sides of (5) are obtained in the same way from a single distribution, Z(t+1). This

distribution is obtained by choosing l M -tuples independently from Z and summing

them coordinate-wise, modulo p. (As a side remark we note that distributions Z and

Z
(t+1) are in fact identical.)

It is readily seen from the protocol and from the construction of Srand that the

distributions idealrandn;Srand
(z) and exec�;A(z) are obtained from distribution

Z(t+1) in the same way, as follows. Choose an M -tuple Z1; : : : ; ZM from Z(t+1). Let

vi denote the collection of the values out of Z1; : : : ; ZM whose coordinates are assigned

to Pi. (That is, vi = Zs1 ; : : : ; Zsl for some prede�ned value of l.) The output of each

uncorrupted party Pi is set to vi. The view of the adversary (either A or Srand)

is obtained as follows. First, include the set C of corrupted parties, the auxiliary

input z and the random input r. It remains to determine the values received from

the uncorrupted dealers. These values are chosen randomly from GF [p], under the

constraint that the output of each corrupted party Pi matches vi. That is, let s be

assigned to some corrupted party Pj . For each dealer Pi, let Zi;s denote the value that

Pj receives from Pi. If Pi is corrupted, then Zi;s is determined by the protocol and the

adversary's random input r. The elements Zi;s for uncorrupted dealers Pi are chosen

at random from GF [p], under the restriction that Zs =
P

dealers Pi
Zi;s.

5 An Overview of the Protocol of [BGW88] for Active

Adversaries

The general outline of the construction of [BGW88] for the case of active (Byzantine)

adversaries is very similar to the case of passive adversaries. Yet, the de�nitions of the

four `building blocks', share, add, mult, recons, have to be modi�ed to re
ect the

additional power of the adversary. As before, let p > n be a prime. Let ! be an n0-th

root of unity in GF [p] for some n0 � n, and �1; : : : ; �n be n evaluation points where

�i = !i. 9 That is, we now de�ne the following n-party functions:

9This choice of evaluation points (which is di�erent than the choice made for the simpler, passive

case) allows an e�cient computation of the error locations from the syndrome in Reed-Solomon codes;

this fact is used in the multiplication step below.
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Veri�able Secret Sharing. vssn(sjF (�); �; : : : ; �) = �1; : : : ; �n, where s 2 GF [p] [

f�g, and F (�) is either � or a polynomial of degree t over GF [p]. If s 6= � then

�i = E(�i), where E() is a random polynomial of degree t with E(0) = s. (This

case represents a sharing by an uncorrupted dealer.) If s = � and F () = �

then �i = �. (This case represents an unsuccessful sharing by a corrupted dealer.)

Otherwise (s = � and F () 6= �), then �i = F (�i). (This case represents a successful

sharing by a corrupted dealer; here the adversary can determine the outputs of

all parties.)10

Looking ahead, we note that uncorrupted parties will invoke vss with s 6= �.

Evaluating an addition gate. The function for evaluating an addition gate remains

unchanged:

addn(a1jb1; : : : ; anjbn) = a1 + b1; : : : ; an + bn.

Evaluating a multiplication gate. act-multn(a1jb1jc1; : : : ; anjbnjcn) = C(�1); : : : ; C(�n),

where each ai; bi 2 GF [p], ci 2 GF [p] [ f�g and C is a polynomial distributed

uniformly over all polynomials of degree t in GF [p] that meet the following re-

quirements:

(I). Let A (resp., B) be the lowest degree polynomial such that A(�i) = ai (resp.,

B(�i) = bi) for at least n� t of the parties. Then, C(0) = A(0) �B(0).

(II). If ci 6= � then C(�i) = ci. As in the case of passive adversaries, we do not

specify how the (random) coe�cients of C are determined; this is regarded as the

`intrinsic randomness' of the function act-mult.

Uncorrupted parties Pi will evaluate act-multn with ci = �. We introduce

the ci's in order to capture the fact that an active adversary may be able to

�x (or in
uence) its own shares of the polynomial C. Yet, this capability of

the adversary does not interfere with the secure evaluation of the function. (In

particular, the multiplication step of [BGW88] allows the adversary to have such

harmless in
uence.)

Reconstruction. The reconstruction function remains unchanged: i.e., reconsn;W (a1; : : : ; an) =

�1; : : : ; �n, where W � [n], and �i = (a1; : : : ; an) if i 2 W , and �i = � otherwise.

In the high-level protocol the parties in W will interpolate a (degree t) polynomial

A satisfying A(�i) = ai for at least n� t values i, and will output A(0).

An additional change from the passive case is that here error correction is required

for obtaining the value of an output line of the circuit. That is, each party Pi with

i 2 W for some invocation of reconsn;W (a1; : : : ; an) receives the values a1; : : : ; an;

10This formalization captures VSS schemes where the uncorrupted parties know at the end of the

sharing phase whether the sharing of a secret was successful. Schemes where this information becomes

known only later (such as some of the schemes in [GRR98]) should be formalized di�erently.
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these values constitute a perturbed code-word of a Generalized Reed-Solomon code.

The value of this line is the free coe�cient of the (unique) degree-t polynomial de�ned

by a1; : : : ; an. This polynomial can be computed using the Berlekamp-Welch algorithm.

(See, for instance, [MS77, S97].)

Theorem 5: [BGW88]. Let t < n=3. Then, there exist protocols for t-securely com-

puting the above four functions in the presence of active adversaries, for all i 2 [n] and

W � [n].

We do not prove this theorem here. Yet we sketch below the constructions of [BGW88]

for computing vss and act-mult.

The VSS protocol of [BGW88]. Here a Veri�able Secret Sharing (VSS) scheme is

used instead of Shamir's secret sharing. (VSS was introduced by [CGMA85]; di�erent

VSS schemes are described in [CGMA85, GMW87, BGW88, FM88, CCD88, BCG93,

GRR98].) In general, a VSS scheme makes sure that an honest dealer can success-

fully share a secret in a recoverable way, while guaranteeing that even if the dealer is

corrupted, at the end of the sharing protocol the uncorrupted parties hold shares of a

well de�ned and reconstructible value. A popular methodology (followed by [BGW88]

and used in this paper) for constructing a VSS scheme is to design protocols for secure

evaluation of the functions vss and recons. We sketch a VSS scheme described in

[BGW88], that withstands t < n=3 faults.

The dealer, sharing a secret s, chooses a random bivariate polynomial H of degree

t in each variable, whose free coe�cient is s. That is, H(x; y) =
Pt

i;j=0 hi;jx
iyj , where

h0;0 = s and the other coe�cients are random. Next, the dealer sends the polynomials

fi(�) = H(�i; �) and gi(�) = H(�; �i) to each Pi. Then, each Pi sends fi(�j) to each

Pj , and veri�es that the value received from Pj equals gi(�j). (Note that fi(�j) =

H(�i; �j) = gj(�i).) If any of its veri�cations fails, the party requests the dealer to

make the corresponding value (i.e., H(�i; �j)) public. Next, each party Pi inspects

all publicized values. If any of these values doesn't match Pi's private share (i.e., fi()

and gi()), then Pi requests the dealer to make fi() and gi() public. Again, the parties

inspect the public shares. If a party Pi �nds any inconsistency with its private share

then it decides to abort this sharing and sets its share to a default 0. Otherwise, it sets

its share of the secret to be f0(�i) = gi(0).

The reconstruction protocol (i.e., the protocol for computing recons) is simple: all

parties broadcast their shares. It is guaranteed that if the sharing protocol completed

successfully then the unique polynomial f0(�) = H(0; �)will be reconstructed, using error

correcting techniques of Generalized Reed-Solomon codes. The reconstructed secret is

f0(0) = H(0; 0).
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The act-mult protocol of [BGW88]. Several methods for evaluating a multipli-

cation step are sketched in [BGW88]. An additional, simpler method is described in

[GRR98]. Here we only sketch a simple method that works when the fraction of cor-

rupted parties is less than a fourth. (This method combines techniques from [BGW88]

with the passive multiplication step of [GRR98].) The method here requires a total of

O(nt2 log p) random bits per multiplication gate. For the case of 4t � n > 3t a total of

O(nt3 log p) random bits are required per multiplication gate.

Recall that, in the case of passive adversaries, evaluating a multiplication gate con-

sists of each party re-sharing a locally computed value, followed by local evaluation of

a linear combination of the newly received shares. The same method is followed here,

with two modi�cations:

� Each party re-shares the locally computed value using the VSS scheme described

above. It should be noted that the local evaluation of the linear combination of

the newly received shares can still be done, since it is guaranteed that the share

of each party is a value f0(�i) of a random polynomial whose free coe�cient is

the secret.

� For each party Pi, the parties verify that the value di that Pi re-shares is indeed

the product of Pi's shares of the input wires to the gate. This is done as follows.

Note that all the values that were properly shared `sit on a polynomial' of degree

2t. (This polynomial is the product of the polynomials associated with the input

wires to the gate.) Thus the set of values that were re-shared by the parties can be

regarded as a perturbed code-word of a Reed-Solomon code, where the erroneous

entries correspond to the parties that shared incorrect values. As long as n > 4t,

the code-word can be used to uniquely identify and correct up to t erroneous

entries. Note that no party knows the entire code-word. Still, the parties hold

shares of these values. The parties use their shares to reconstruct the syndrome

vector of this code-word. This syndrome, while revealing no information on the

values that were honestly shared, identi�es the parties that shared incorrect values

(the e�ciency of this computation builds upon the speci�c choice of evaluation

points �i). These shares are not used in the computation of the linear combination

(3).

For completeness, we also state the following theorem:

Theorem 6: [BGW88] Let t < n=3. Given an arithmetic circuit for computing an n-

party function f , there exists a protocol for t-securely computing f in the hybrid model

with active adversaries and with ideal access to functions vssn;i, addn, act-multn and

reconsn;W , for all i 2 [n] and W � [n].

Using the composition theorem (Theorem 1), we get that there exist protocols for

t-securely computing (in the real-life model) any n-party function f in the presence of
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active adversaries for any t < n=3. The number of random bits used by these protocols

is O(mnt3 log p) (where m is the size of the circuit for f).

6 Our Protocol for Active Adversaries

In Section 4, we showed how to compute any function t-privately with a O(t2 logn +

(m=n)t5 log t)-random protocol. In this section we extend the result to the case of active

(\Byzantine") adversaries. For this, we will need a factor of t more randomness than

before. We show:

Theorem 7: Let t < n=3. Then, any function f : f0; 1gn ! f0; 1gn that has a circuit

of size m, can be t-securely computed by a O(t3 logn + (m=n)t7 log t)-random protocol.

Proof: The protocol for active adversaries is identical to the one for passive adver-

saries, with the exceptions that the size of teams is increased to s = 3t + 1, and that

the various components of the [BGW88] protocol are replaced by their Byzantine coun-

terparts, for securely computing the functions vss;add;act-mult;recons described

in the previous section. As in Section 4, it su�ces to choose p > s and the evaluation

points �1; : : : ; �s are chosen as described above.

The protocol for jointly generating the randomness for the computation remains

unchanged, except for the appropriate increase in the amount of randomness generated.

That is, each one of t + 1 designated dealers will sample the distribution and send

the appropriate subset of the obtained M -tuple to each party; each party will sum,

coordinate-wise, the tuples received from the dealers. The security guarantees provided

by this protocol are a bit weaker than in the passive case. We capture these guarantees

via a somewhat weaker formalization of the function representing the trusted dealer.

We call this function act-randn.

The function act-randn. We describe the function, denoted act-randn, that rep-

resents the requirements from the randomness-generating protocol in the Byzantine

case. There are two di�erences from the passive case (i.e., from function randn).

First, act-randn has to supply the parties with su�ciently many elements of GF [p] to

support the new protocols. In addition, it has to accommodate the fact that an active

adversary can modify the outputs of the corrupted parties, as well as to in
uence the

outputs of the uncorrupted parties (to a limited extent).11

We start by counting the number of �eld elements that act-randn should output,

and bound the required level of independence. Each invocation of VSS requires O(t2)

11For instance, the adversary may have the corrupted parties send totally random values, thus making

the output of act-randn totally independent. Intuitively, however, such deviations are \harmless".

This intuition is made rigorous in the formalization of act-randn.
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values in GF [p]. Evaluating a multiplication gate requires O(t) invocations of VSS

for each party in the corresponding team. Furthermore, the adversary's view of the

computation now depends on at most � = O((m=n) � t6) elements in GF [p]. Thus,

act-randn will use the distribution Z which is either the distribution described in

Appendix A, withM = O(n�t2+m�s�t3) and the appropriate independence guarantees,

or simply a �-independent distribution with the above value of M .

We proceed to formalize act-randn. This is a distribution of M -tuples of elements

Z1 : : :ZM in GF [p], where each Zi is assigned to a party. distribution Z(t+1) is obtained

by choosing l M -tuples independently from Z and summing them coordinate-wise,

modulo p. Function act-randn takes inputs v1; : : : ; vn where vi, the input of Pi, is

either �, or is interpreted as a sequence of elements from GF [p]. (Uncorrupted parties

will invoke act-randn with input �.) The function value is y1; : : : ; yn (party Pi gets

yi), where each yi is a sequence of numbers in GF [p]. It is helpful to regard the

concatenation of y1; : : : ; yn as an M -tuple Z1; : : : ; ZM of elements in GF [p], where yi
consists of the elements whose coordinates are assigned to Pi. The M -tuple Z1; : : : ; ZM

is computed via the following procedure:

1. For each dealer Pi, if vi 6= � then vi is interpreted as a pair vi = (v0i; v
00
i ), where v

0
i

is interpreted as values for the elements of GF [p] whose coordinates are assigned

to Pi, and v00i is interpreted as an M -tuple of elements in GF [p].

If Pi is not a dealer and vi 6= � then vi is interpreted as v0i described above.

2. Let Ẑ = Ẑ1; : : : ; ẐM be an M -tuple that is chosen from the distribution Z(t+1),

under the constraint that for each coordinate s that is assigned to a party Pi
where vi 6= �, the value Ẑs equals the value speci�ed in v0i. (We remark that this

conditional distribution is e�ciently samplable.)

3. The output M -tuple Z1; : : : ; ZM is the coordinate-wise sum, modulo p, of Ẑ with

all the M -tuples v00i that are not �.

Intuitively, the value v0i allows a corrupted party Pi to in
uence its own local output.

The value v00i allows a corrupted dealer Pi to in
uence the output distribution of the

uncorrupted parties. Nevertheless, the de�nition of act-randn guarantees that the

outputs of the uncorrupted parties will be uniformly distributed in GF [p] and will

have at least the amount of independence guaranteed by distribution Z . Furthermore,

the adversary's view in the ideal process for evaluating act-randn consists only of

the projection of Z on the coordinates assigned to the corrupted parties, plus some

independently distributed information.

Analysis of the protocol. The analysis is very similar to the passive case. Let

t < n=3, and let f be the computed function. Fix an arithmetic circuit for f and a large

enough prime p. Let � be the protocol described above with respect to that circuit.
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(Protocol � is designed in the act-randn-hybrid model.) We show that protocol �

satis�es the conditions of De�nition 1 via three claims, similar to Claims 1, 2, and 3.

Let �R be identical to protocol � with the exception that the parties use totally random

elements in GF [p] for the protocol, instead of the output of act-randn. (That is, �R
is a protocol in the real-life model, and does not use calls to act-randn.)

Claim 4: Protocol �R t-securely computes f . That is, for any t-limited (active) real-

life adversary A, there exists an ideal-model adversary S such that for all inputs ~x and

all auxiliary inputs z

idealf;S(~x; z)
d

= exec�R;A(~x; z):

Claim 5: For any (active) real-life adversary A, the global output of the parties

in � and the global output of the parties in �R are identically distributed. That is,

exec�R;A(~x; z)
d

= exec�;A(~x; z).

Claim 6: There exists an O(t3 logn+ (m=n)t7 log t)-random protocol that t-securely

evaluates act-randn.

Note that, unlike Claim 2, in Claim 5 both random variables are a result of interac-

tion with an active adversary. Still, the proof of Claim 5 is almost identical to the proof

of Claim 2, and is therefore omitted. Claims 4 and 6 are proven below. This completes

the proof of Theorem 7.

6.1 Proof of Claim 4

The proof is very similar to the proof of Claim 1. Let �̂ denote the high level protocol

that corresponds to protocol �R in the hybrid model with ideal evaluation access to

functions vsss;i, adds, act-mults and reconss;W . It su�ces to show that �̂ is t-

secure in the hybrid model. Theorems 1 and 5 then imply that protocol � is t-secure

in the real-life model.

Given a real-life adversary A, the ideal-model adversary S proceeds via a simulation

of A. Simulator S starts running A on its auxiliary input z0 and random input rA.

Next, A may corrupt parties, and will expect to see the internal data and the messages

received by the corrupted parties. Simulator S proceeds as described in Figure 3.

The analysis of S (i.e., the proof that for all inputs ~x and all auxiliary inputs

z we have idealf;S(~x; z)
d

= exec
vss;add;act-mult;recons
�̂;A (~x; z)) is identical to the

corresponding part of the proof of Claim 1, except for the following point that relates

to Step (2) of the analysis there. Contrary to the passive case, in the active case the

inputs that a corrupted Pi hands the trusted party (in the ideal model) may be di�erent

than xi. Yet, it still holds that the inputs that the corrupted parties give the trusted

party are uniquely determined given a view v of the simulated A. Furthermore, let ~y
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Simulator S

Initial input: A set C of corrupted parties, inputs fxi j Pi 2 Cg, auxiliary input z, and random
input r. In addition, S has access to a trusted party in the ideal process for evaluating f .

1. Invoke a copy of A, on set C of corrupted parties, inputs fxi j Pi 2 Cg, auxiliary input z, and
a su�ciently long portion of r.

2. For each party PT;i, simulate an interaction of team T with the trusted party for computing
vsss;i. That is, if PT;i is corrupted then record the value sjF () handed by A to its trusted
party, and hand A the output value for each corrupted party PT;j. (This value is determined
by sjF (), as described in the de�nition of function vsss;i.) If PT;i is not corrupted then, for
each corrupted party in team T , hand A a random number in GF [p] as the value given by
the trusted party. In addition, if the dealer, PT;i, is corrupted then provide the trusted party
for f with PT;i's input for f , computed as follows: If s 6= � then PT;i's input is set to s.
Else, if F () is a polynomial of degree t then the input value of PT;i is set to F (0). Otherwise
(s = F () = �), the input of PT;i is set to a default value, say 0.

3. (This part is identical to the simulator for the passive case, see Figure 1.) For each gate g in
the circuit, simulate the \baton hand-o�" step of the shares of the input wires to the gate.
That is, let T be the team that computes gate g, and let T1; T2 be the teams that hold the
values of the input wires to the gate. Then, for each i, if PT;i is corrupted and PT1;i (resp.,
PT2;i) is not corrupted, then hand A a random number in GF [p]. If both PT;i and PT1;i (resp.,
PT2;i) are corrupted then A already knows the corresponding share and no action is needed.

4. Once the \baton hand-o�" step of a gate g is completed, simulate an interaction of team T

with the trusted party for computing the function that corresponds to gate g (i.e., either adds
or act-mults). This is done as follows.

If the gate g is an addition gate then hand A the sum of the two input values given by each
corrupted party in team T to the trusted party. If the gate is a multiplication gate then hand
A a value vi determined as follows. If the value ci that PT;i handed to its trusted party is
di�erent than � then vi = ci. Otherwise (ci = �), vi is set to a random number in GF [p].

5. When the simulation of a gate leading to an output wire of the circuit is complete, simulate
an interaction with the trusted party for computing reconss;W , where W � [n] is the set of
parties that are to learn the value of this wire. If no corrupted party is in W then no action
is needed. Otherwise, invoke the trusted party for the main function, f . Let v be the output
value that corresponds to this output wire, let T be the team that holds the value of this
wire, and let ai be the share that each corrupted party PT;i in T hands the trusted party
for reconss;W . Then, choose a polynomial B as follows. Say that a corrupted party PT;i is
conforming if the value ai that PT;i hands to the trusted party for reconss;W equals PT;i's
output of the gate leading to the output wire. (Note that S can verify whether a party is
conforming.) Then, B is chosen uniformly out of all degree t polynomials such that B(0) = v

and B(�i) = ai for each conforming corrupted party PT;i. Next, hand each corrupted PT;i
the vector (B(�1); : : : ; B(�s)). (Note that this can always be done since A corrupts at most
t parties.)

6. Once A halts, output whatever A outputs and halt.

Figure 3: The simulator for protocol �̂, Byzantine case.
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denote the modi�ed input vector; then, it can be veri�ed that both Iv and Ev equal the

value of the circuit on inputs ~y.12

6.2 Proof of Claim 6

The protocol for securely evaluating act-randn is very similar to the protocol for the

passive case (for computing randn). We designate t+1 parties (say, P1; : : : ; Pt+1) who,

in addition to their other roles in the protocol, will \double up" as dealers. Each one

of the dealers generates M = O(n � t2 +m � s � t2) values in GF [p] according to the

distribution Z . Let vi;j be the vector consisting of all the elements in GF [p] that are

chosen by Pi and are assigned to Pj . Then, Pi sends vi;j to each party Pj . Each party

Pj locally outputs the coordinate-wise sum, modulo p, of the t+1 vectors received from

the dealers. Let �a denote this protocol for the active case.

Analysis of protocol �a. First note that the amount of randomness used in �a is

larger by a factor of t + 1 than the amount of randomness used to generate a single

M -tuple from the above distribution. Sampling from the distribution of Appendix A

takes O(t2 log n+(m=n)t6 log t) random bits. Consequently, the protocol is O(t3 log n+

(m=n)t7 log t)-random. (Instead we can use aO((m=n)t7)-wise independent distribution

and pay O((m=n)t7 logm) random bits.)

We show that the protocol t-securely evaluates act-randn. As in the passive case,

the intuition is that, as long as at least one dealer remains uncorrupted, the random

choices of the uncorrupted dealers make sure that the outputs of the parties, being the

sum of the values received from the dealers, have the desired independence structure.

(Still, it should be noted that in the active case the adversary can somewhat in
uence

the distribution of the outputs of the uncorrupted parties.)

Also here, a rigorous proof is a bit more involved. Recall that for each active

real-life adversary A that interacts with the protocol we need to construct an ideal-

process adversary Sact-rand that causes the global output of the ideal process to be

distributed identically to the global output of running �. In the passive case, this was

done by making sure that the messages generated by Srand (representing the messages

sent by the uncorrupted parties) \match" the values provided by the trusted party for

randn. This was possible since the messages generated by A depended only on the

random input of A.

12The introduction of active adversaries raises an additional apparent di�culty. When an uncorrupted
party PT

i
;j in team Ti receives a share of a value a from a corrupted party PTu;j in team Tu, it may well

be the case that PT
i
;j will receive a bad share (or perhaps no share at all). If too many uncorrupted

parties in Ti will start o� the computation with wrong shares then the evaluation will be incorrect.
This di�culty is answered as follows. Since there are at most t corrupted parties altogether, and each

corrupted party can give a bad share to at most one party in Ti, it follows that at most t parties in Ti

are either corrupted or start o� with an erroneous share.
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In the active case the messages generated by A (representing the messages sent by

the corrupted parties) may depend on the messages generated by Sact-rand. Con-

sequently, in this case we do not know how to generate a view of A that is consistent

with values that are chosen by the trusted party. Instead, we use the fact that func-

tion act-randn allows Sact-rand to somewhat in
uence the outputs of the parties.

Simulator Sact-rand is presented in Figure 4.

Simulator Sact-rand

Initial input: A set C of corrupted parties, auxiliary input z, and random input r. In addition,
Sact-rand has access to a trusted party in the ideal process for evaluating act-randn.

1. Invoke A on the set C of corrupted parties, auxiliary input z, and random input r. For each
uncorrupted dealer Pi and each corrupted party Pj, provide A with a message vi;j that consists
of uniformly distributed elements in GF [p]. (The number of �eld elements in vi;j equals the
number of �eld elements in Pi's output in the speci�cation of function act-randn.)

2. For each corrupted dealer Pi and uncorrupted party Pj , adversary A generates a message vi;j
to be sent from Pi to Pj. (Each vi;j is interpreted as a vector of elements from GF [p].) Record
those messages.

3. Prepare the input values of the corrupted parties in the ideal process, as follows. (These values
will be handed to the trusted party for act-randn.) Recall that the input of each corrupted
party Pi is vi; if Pi is a dealer then vi = v0

i; v
00

i ; otherwise vi = v0

i. Then:

(a) Each v0

i is the coordinate-wise sum modulo p of the values vj;i that Pi received from the
uncorrupted dealers. (These values were handed to A in Step 1 above.)

(b) Let v000

i be the coordinate-wise sum modulo p of the values vi;j that dealer Pi sent to
the uncorrupted parties. (These values were generated by A in Step 2 above.) Let v00

i

be the completion of v000

i to an M -tuple, computed by placing the value 0 in all the
missing coordinates. (These locations correspond to the coordinates that are assigned
to corrupted parties.)

Hand these inputs to the trusted party for act-randn. (Recall that the inputs of the uncor-
rupted parties are �.) The outputs provided by the trusted party to the corrupted parties can
be ignored; they are equal to the inputs v0

i.

4. Once A halts, output whatever A outputs and halt.

Figure 4: Description of the simulator for protocol �a.
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Analysis of simulator Sact-rand. Fix some input vector ~x and auxiliary inputs

z. We show that

idealact-randn;Sact-rand
(z)

d

= exec�a;A
(z): (6)

The analysis is very similar to the passive case (Claim 3). Assume, without loss of

generality, that A outputs its entire view of the interaction. This view consists of the

set C, the auxiliary input z, some random input r, and the values received from the

uncorrupted dealers. Let �� denote the number of uncorrupted dealers. To see that (6)

holds, we observe that the distributions in both sides of (6) are equal to a distribution

that is generated as follows.

1. Invoke adversary A with uniformly chosen random input r, auxiliary input z, and

set C of corrupted parties.

2. Independently choose �� M -tuples from distribution Z . Hand A the all the ele-

ments in GF [p] whose coordinates are assigned to corrupted parties.

3. Adversary A generates the messages to be sent by the corrupted dealers to the

uncorrupted parties. Let wi = wi;1; : : : ; wi;M denote the M -tuple of elements

in GF [p] that represents the messages sent by each corrupted dealer Pi to all

uncorrupted parties. (The elements wi;s such that s is assigned to a corrupted

party are set to a default 0.)

4. Let Z = Z1; : : : ; ZM denote the coordinate-wise sum modulo p of the �� M -tuples

from Step 2 and the t + 1� �� M -tuples wi from Step 3.

The output of an uncorrupted party Pi consists of the elements in Z whose coor-

dinates are assigned to Pi. The output of the corrupted parties is ?. The output

of the adversary consists of k; r; z; C and the values handed to A in Step 2.

This completes the proof of Claim 6.
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A An Extension of [S92, KM96]

In this appendix we describe a straightforward extension of results from [S92, KM96].

(All arithmetic operations in this section are over GF [p].) The goal is as follows: given

sets S1; : : : ; St � f1; : : : ; ng we wish to construct a multi-set13 D of n-tuples over GF [p]

such that if we look at the projection of D on the coordinates in any of the sets Sj
then we get a uniform distribution over all the pjSjj possible tuples. We start with the

following de�nition: given an n � ` matrix M we de�ne the following multi-set of size

p`:

space(M) = fM � vjv 2 (GF [p])`g � (GF [p])n:

For such a matrix M , denote its rows by M1; : : : ;Mn.

Claim 7: Let fwigi2Sj be arbitrary elements of GF [p]. If
X

i2Sj

wiMi 6= ~0

then, when a vector y is chosen from the probability distribution de�ned by space(M),

the sum
P

i2Sj
wi � yi is uniformly distributed over GF [p].

Proof: Recall that a randomly chosen vector y in space(M) is just the product M �v,

for a randomly chosen v 2 (GF [p])`; in particular yi =Mi � v. Then,
X

i2Sj

wi � yi =
X

i2Sj

(wi �Mi � v) =
X

i2Sj

(wi �Mi) � v:

Since
P

i2Sj
wiMi 6= ~0 then the above is a product of a non-zero vector with a uniformly

distributed vector in (GF [p])` which is just a uniformly distributed element of GF [p].

The next claim easily follows from Claim 7:

Claim 8: If for every choice of fwigi2Sj , which are not all 0's, we have
P

i2Sj
wiMi 6= ~0

then the projection of space(M) on Sj is uniformly distributed.

Proof: By Claim 7, we get that for every such choice of fwigi2Sj , the sum
P

i2Sj
wi �

yi, for y 2 space(M), is uniformly distributed in GF [p]. It is well known that the

only probability distribution that is uniform with respect to all \linear tests" it is the

uniform distribution.14

13By \multi-set"we mean that an element may appear more than once in D. We interpret a multiset

as a probability distribution in the natural way: each element is drawn with probability proportional
to the number of times it appears in the multi-set.

14More formally, since the functions of the form r

P
w
i
�y
i , where r is a root of unity of order p,

are just the Fourier basis for GF [p] then the behavior of a distribution with respect to these functions

determines the distribution. Therefore, the uniform distribution is the only distribution which is uniform
with respect to every such function.
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Algorithm: Let d be a bound on the size of the sets S1; : : : ; St. We describe an

algorithm that runs in time poly(n; t; pd) and generates a matrixM such that space(M)

satis�es the property required in Claim 8 with respect to each of the t sets.15 We

need to make sure that, for every set Sj , the corresponding rows of M will be linearly

independent. We will constructM in a row-by-rowmanner. While choosing the rowMi,

we will make sure that it satis�es the appropriate linear independence constraints. That

is, for every set Sj such that i 2 Sj , we will have to pick a row Mi which is independent

of the rows in Tj = Sj \ f1; 2; : : : ; i� 1g. Fix the value of ` to be log t
log p + d + 1. This

implies that the size of the space is p` � t � pd. Therefore, for each Tj we can compute

the pjTjj � pd vectors in the linear space spanned by Tj . We do this for each of the (at

most t) sets that contain i and so we compute (at most) t � pd vectors which cannot

serve as Mi. Since we have p` possible vectors then, by the choice of `, there exists a

vector that can serve as Mi.

Remark (on the e�ciency of the algorithm): Since the algorithm runs in time

poly(n; t; pd), if the size of any Sj is !(logn) then the running time is super-polynomial.

(Clearly, any set that is uniform over Sj must be of size at least p
jSjj.) However, even in

this case the size of the matrix M is much smaller and so sampling in the space remains

e�cient. Finally, as mentioned in Section 4 (see Footnote 7) this construction is used

only for the �nal saving in randomness and one can stick to the (computationally more

e�cient) solution based on �-wise independent distributions.

B A Direct Proof of Claim 1

In this appendix we describe a direct proof for Claim 1; a proof that does not rely

on Theorem 1 but rather shows, speci�cally for our case, how to compose the sub-

simulators for the various components, as guaranteed by [BGW88], into a simulator for

the entire protocol. We hope that the reader will get some insight regarding how the

composition technique works, avoiding many of the technical details required for the

full composition theorem. For this purpose, we concentrate on the passive case.

Given a real-life adversary A, we will construct a simulator S. For this, we de�ne

4 adversaries Ashare, Aadd, Amult and Arecons that essentially determine the

behavior of A when each of the 4 subroutines share, add, mult and recons (respec-

tively) are executed. We note however, that the adversary A need not use the same

strategy against all invocations of some subroutine; his decisions may be in
uenced

by the execution of the protocol so far. To overcome this di�culty, we will provide

each of the four adversaries with the transcript of the protocol up to the point where

15One can describe a randomized algorithm to do so, but since this algorithm will be run by each
of the dealers in our protocol and the entire issue is saving randomness we will restrict ourselves to

deterministic algorithms.
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the execution of the subroutine starts. This is technically done by including A's view

of the execution of the protocol up to this point in the auxiliary input of the current

sub-adversary. So, for example, adversary Amult behaves exactly as A behaves in a

certain execution of mult when the history is as provided to Amult via the auxiliary

inputs z. As in [C99], we assume that the subroutines are executed sequentially (and

not in parallel to each other). This makes the above adversaries well de�ned.

We can now use Theorem 2 to conclude the existence of 4 simulators Sshare,

Sadd, Smult and Srecons, satisfying the de�nition of security with respect to the

four protocols and the four adversaries. Next we show how to construct a simulator S

for our protocol using these 4 simulators. Roughly speaking, we will explicitly describe

how to simulate all messages sent outside of the 4 subroutines and we use the simulators

to simulate all the communication inside the execution of the subroutines. Let us �rst

describe the procedure for running each of these 4 simulators. When we run a simulator,

say for mult, we do the following: S runs the corresponding simulator Smult as it

is. (By the de�nition of Amult, this in particular implies that Smult controls the

same set of corrupted parties, and that at the end Smult outputs the entire simulated

view.) Once Smult generates its output (which is a simulated view of an interaction of

Amult), simulator S continues the simulated run of A on this output. Our choice of

the auxiliary inputs to Smult and to the corrupted parties guarantees that the output

of Smult is consistent with the pre�x of A's run so far.

We now describe how the simulator S works, given the above procedure for running

a simulator for a subroutine. As common in such protocols, this heavily relies on the

properties of degree t polynomials.16 In details, messages are simulated as follows:

� For each party PT;i, simulator S simulates an interaction of the parties in team

T in the subroutine shares;i where PT;i shares its input xT;i. That is, if PT;i
is corrupted then S executes the simulator Sshare with input xT;i (which is

already known to him), while if PT;i is not corrupted then S executes the simulator

Sshare with a random number in GF [p] as the input.

� For each gate g in the circuit, S simulates the \baton hand-o�" step. That is, let

T be the team that computes gate g, and let T1 and T2 be the teams that hold

the values of the input wires to the gate. Then, for each i, if PT;i is corrupted

and PT1;i (resp., PT2;i) is not corrupted, then S hands A a random number in

GF [p]. If both PT;i and PT1;i (resp., PT2;i) are corrupted then A already knows

the corresponding share.

� Once the \baton hand-o�" step of a gate g is simulated, S simulates an interaction

of team T in the corresponding subroutine (either adds or mults) for computing

16More speci�cally, it depends on the fact that if we choose such a polynomial at random, or we �rst

choose some t0 � t random points and then choose a random polynomial out of those polynomials that
pass through the chosen t0 points, then in both cases we get the same distribution.
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the function that corresponds to gate g. In each case, S uses the sub-simulator

(either Sadd or Smult) with input to the corrupted players as already known to

it, and with (uniformly and independently chosen) random numbers in GF [p] as

the inputs of non-corrupted parties.

� At some point during the computation (before any of the invocations of reconss;W
is to be simulated, S hands its trusted party the input values of the corrupted

parties, and receives the output values assigned to them.

� When the simulation of a gate leading to an output wire of the circuit is complete,

S simulates the reconstruction by the subroutine reconss;W , where W is the set

of parties that are to learn the value of this wire. If no corrupted party is in

W then S need do nothing. Otherwise, S invokes the corresponding simulator

Srecons. For this, let v be the value that should correspond to this output wire

(the value v was received from the trusted party), let T be the team that holds

the value of this wire, and let ai be the share that each corrupted party PT;i in

T holds. Then, S chooses a random polynomial A of degree t such that A(0) = v

and A(�i) = ai for each corrupted party PT;i. The simulator S uses Srecons
with input values (A(�1); : : : ; A(�s)).

Analysis of simulator S (sketch): To show that the output of the simulator is

distributed identically to the distribution of the ideal-model adversary, we repeat the

analysis made in the proof of Claim 1. The only di�erence is that in Claim 1 we assume

ideal invocations of the 4 subroutines whereas here the actual subroutines are called.

However, based on the properties of the 4 sub-simulators Sshare, Sadd, Smult and

Srecons (that is, the fact that the output generated by each such simulator, given the

appropriate inputs and auxiliary inputs, is identical to the distribution of output by

the corresponding adversary) the analysis still goes through.

45


