
Xor-Trees for E�cient Anonymous Multicast and Reception�

Shlomi Dolevy Rafail Ostrovskyz

March 6, 2000

Abstract

In this work we examine the problem of e�cient anonymous multicast and reception in
general communication networks. We present algorithms that achieve anonymous commu-
nication with O(1) amortized communication complexity on each link and low computa-
tional complexity and is protected against tra�c analysis. The algorithms support either
sender anonymity, receiver(s) anonymity or sender-receiver anonymity.

�An extended abstract of this paper appears in the Proc. of the 17th Annual IACR Crypto Conference,

CRYPTO 1997.
yDepartment of Mathematics and Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105,

Israel. Email: dolev@cs.bgu.ac.il. Part of this work was done while this author visited Bellcore with the
support of DIMACS. Partially supported by the Israeli ministry of science and arts grant #6756195.

zBell Communications Research, 445 South St., MCC 1C-365B, Morristown, NJ 07960-6438, USA. Email:

rafail@bellcore.com.



1 Introduction

One of the primary objectives of an adversary is to locate and to destroy command-and-control

centers { that is, sites that send commands and data to various stations/agents. Hence, one

of the crucial ingredients in almost any network with command centers is to conceal and

to confuse the adversary regarding which stations issue the commands. This paper shows

how to use standard o�-the-shelf cryptographic tools in a novel way in order to conceal the

command-and-control centers, while still assuring easy communication between the centers and

the recipients.

Speci�cally, we show e�cient solutions that hide who is the sender and the receiver (or

both) of the message/directive in a variety of threat models. The proposed solutions are

e�cient in terms of communication overhead (i.e., how much additional information must be

transmitted in order to confuse the adversary) and in terms of computation e�ciency (i.e.,

how much computation must be performed for concealment). Moreover, we establish rigorous

guarantees about the proposed solutions.

1.1 The problem considered

Modern cryptographic techniques are extremely good in hiding all the contents of data, by

means of encrypting the messages. However, hiding the contents of the message does not hide

the fact that some message was sent from or received by a particular site. Thus, if some

location (or network node) is sending and/or receiving a lot of messages, and if an adversary

can monitor this fact, then even if an adversary does not understand what these messages

are, just the fact that there are a lot of outgoing (or incoming) messages reveals that this

site (or a network node) is su�ciently active to make it a likely target. The objective of

this paper is to address this problem | that is, the problem of how to hide, in an e�cient

manner, which site (i.e. command-and-control center) transmits (or receives) a lot of data to

(or from, respectively) other sites in the network. This question was addressed previously in

the literature [Ch81, RS93] at the price of polynomial communication overhead for each bit

of transmission per edge. We show an amortized solution which after a �xed pre-processing

stage, can transmit an arbitrary polynomial-size message in an anonymous fashion using only

O(1) bits over each link (of a spanning tree) for every data bit transmission across a link.

1.2 General setting and threat model

We consider a network of processors/stations where each processor/station has a list of other

stations with which it can communicate (we do not restrict here the means of communication,

i.e. it could be computer networks, radio/satellite connections, etc.) Moreover, we do not

restrict the topology of the network | our general methodology will work for an arbitrary

network topology. One (or several) of the network nodes is a command-and-control center

that wishes to send commands (i.e. messages) to other nodes in the network. To reiterate,

1



the question we are addressing in this paper is how we can hide which site is broadcasting (or

multicasting) data to (a subset of) other processors in the network. Before we explore this

question further, we must specify what kind of attack we are defending against.

A simple attack to defend against is of a restricted adversary (called outside adversary) who

is allowed only to monitor communication channels, but is not allowed to in�ltrate/monitor

the internal contents of any processor of the network. (As a side remark, such weak attack

is very easy to defend against: all processors simply transmit either noise or encrypted mes-

sages on each communication channel { if noise is indistinguishable from encrypted tra�c this

completely hides a communication pattern.) Of course, a more realistic adversary, (and the

one that we are considering in this paper) is the (internal) adversary that can monitor all the

communication between stations and which in addition is also trying to in�ltrate the internal

nodes of the network.

That is, we consider the adversary that may mount a more sophisticated attack, where he

manages to compromise the security of one or several internal nodes of the network, whereby

he is now not only capable of monitoring the external tra�c pattern but is also capable of

examining every message and all the data which passes through (or stored at) this in�ltrated

node. Thus, we de�ne an internal k-listening adversary, an adversary that can monitor all the

communication lines between sites and also manages to monitor (the internal contents of) up

to k sites of the network. (This, and similar de�nitions were considered before in the literature,

see, for example [RS93, CKOR97] and references therein). We remark, though, that in this

paper we restrict out attention only to listening adversary, that only monitors tra�c, but does

not try to sabotage it, similar to [FGY93, KMO94], but with di�erent objectives.

1.3 Comparison with Previous Work

One of the �rst works (if not the �rst one) to consider the problem of hiding the communication

pattern in the network is the work of Chaum [Ch81] where he introduced the concept of a mix:

A single processor in the network, called a mix, serves as a relay. A processor P that wants

to send a message m to a processor Q encrypts m using Q's public key to obtain m0. Then

P encrypts the pair (m0; q) using the public key of the mix. The double encrypted message is

sent to the mix. The mix decrypts the message (to get the pair (m0; q)) and forwards m0 to

q. Further work in this direction appear in [Pf85, PPW91, SGR97]. The single mix processor

is not secure when this single processor is cooperating with the (outside) adversary; If the

processor that serves as a mix is compromised, it can inform the adversary where the messages

are forwarded to. Hence, as Chaum pointed out, a sequence of \mixes" must be employed

at the price of additional communication and computation. Moreover, the single mix scheme

operates under some statistic assumption on the pattern of communication. In case a single

message is sent to the mix then an adversary that monitors the communication channels can

observe the sender and the receiver of the particular message.

An extension of the mix scheme is presented by Racko� and Simon [RS93] who embedded

an n-element sorting network of depth polynomial in log(n) that mixes incoming messages

2



and requires only polynomially many (in log(n)) synchronous steps. In each such step every

message is sent from one site of the network to another site of the network. Thus, the mes-

sage delay may be proportional to log(n) times the diameter of the network. The statistic

assumptions on the pattern of communication is somewhat relaxed in [RS93] by introduc-

ing dummy communication: Every processor sends a message simultaneously. However, the

number of (real and dummy) messages arriving to each destination is available to the tra�c

analyzer. Racko� and Simon also presented in [RS93] a scheme that copes with passive inter-

nal adversaries by the use of randomly chosen committees and multi-party computation (e.g.,

[GMW87, BGW88, CCD88, CFGN96, CKOR97].)

More generally, secure multi-party computation can be used to hide the communication

pattern in the network (see, for example, [GMW87, Ch88, WP90, BGW88, CCD88, CFGN96,

CKOR97]) via secure function valuation. However, anonymous communication is a very re-

stricted form of hiding participants' input and hence may bene�t from less sophisticated and

more e�cient algorithms.

In particular, Chaum suggested in [Ch88] to use the dc-net approach in order to achieve

anonymous communication. Our approach is similar to the dining cryptographers solution in

[Ch88], where a graph characterization of the random bits distribution is given. We present a

speci�c choice (an e�cient instance that satis�es Chaum's graph characterization) of selecting

(a small number of) keys for each processor, and a procedure to securely distribute the keys and

use O(1) amortized communication complexity on each link. Our algorithm is proven correct

by a new argument proving that each bit communicated has an equal probability to be 0 and

to be 1 for a particular adversary. In [Ch88] the case of anonymous sender is considered, in this

work we suggest schemes also for the cases in which the receiver is (receivers are, respectively)

anonymous, and in which both the sender and the receiver are anonymous to each other.

In [Ch88] it is assumed that the underlying communication networks is a ring or that a

back-o� mechanism is repeatedly used to send data. In this work we consider the problem

of anonymous communication on a spanning tree of a general graph communication network.

We note that solutions for star and tree networks are briey mentioned in [Pf85, PW87], with

no details for the way communication starts and terminates for this speci�c networks. Our

contributions is a detailed design for a (spanning) tree communication network. The details

include: a new scheme for seeds selection that ensures anonymity in the presence of an outside

adversary and k-listening internal dynamic adversary. Schemes for anonymous receiver, as well

as anonymous sender and receiver. We specify the initialization (including seed distribution),

the communication and the termination procedures that preserve anonymity for the case of

a (spanning) tree communication network. In addition, we use an extra random sequence

(that is produced by a pseudo random generator) shared by the sender (and the receiver(s)) to

encrypt (decrypt, respectively) the message, avoiding the use of additional di�erent scheme for

encryption and decryption during the transmission of the (long) messages. This new approach

�ts transmission of a very long sequence of bits, such as video information to several recipient.

Thus, it can be used for anonymous multicast such as multicast by cable TV.

Our initialization scheme is designed to cope with the problem of the information revealed

3



by the back-o� mechanism (see [BB89]) by using a prede�ned ordered of transmission.

We note that in this work we do not concern ourselves with active adversary that can

corrupt the program or forge messages on the links as assumed in [Wa89]. The extensions

suggested in [Wa89] is a design of a fail-stop broadcast instead of assuming reliable broadcast.

In a network of n processors our algorithm (after a pre-processing stage) sends O(1) bits

on each tree link in order to transmit a clear-text bit of data and each processor computes

O(k) pseudo-random bits for the transmission of a clear-text bit. Multiple anonymous trans-

mission is possible by executing in parallel several instances of our algorithm. Each instance

uses part of the bandwidth of the communication links. Our algorithm is secure for both

outside adversary and k-listening internal dynamic adversary. (We remark, though, that we

are only considering eavesdropping \listening" adversary, similar to [FGY93, KMO94], and do

not consider a Byzantine adversary which tries to actively disrupt the communication, as in

[GMW87].)

1.4 A simple example

In this subsection, we examine a very simple special case, in order to illustrate the issues being

considered and a solution to this special case. We stress, though, that we develop a general

framework that works for the general case (e.g. the case of general communication graph,

unknown receiver, etc.) as well.

Suppose we are dealing with a network having 9 nodes:

P1 �! P2 �! P3 �! P4 �! P5 �! P6 �! P7 �! P8 �! R

where R is the \receiver" node and one of the Pi is the command-and-control center which

must broadcast commands to R. The other Pj 's for j 6= i are \decoys" which are used for

transmission purposes from Pi to R and also are used to \hide" which particular Pi is the real

command and control center. That is, in this simpli�ed example, we only wish to hide from an

adversary which of the Pi is the real command and control center which sends messages to R.

Before we explain our solution, we examine several ine�cient, but natural to consider simple

strategies and then explain what are their drawbacks.

Communication-ine�cient solution: One simple (but ine�cient!) way to hide which Pi is

the command-and-control center is for every Pi to broadcast an (encrypted) stream of messages

to R. Thus, R receives 8 di�erent streams of messages, ignores all the messages except those

from the real command-and-control center, and decrypts that one. Every processor Pi forwards

messages of all the smaller-numbered processors and in addition sends its own message. Clearly,

an adversary who is monitoring all the communication channels and which can also monitor the

internal memory of one of the Pi's (which is not the actual command-and-control center) does

not know which Pj is broadcasting the actual message. Drawback: Notice that instead of one

incoming message, R must receive 8 messages, thus the throughput of how much information

4



the real command-and-control center can send to R is only 1
8
of the total capacity! As the

network becomes larger this solution becomes even more costly. Note that this solution enables

the receiver to identify the sender.

Computation-ine�cient solution: In the previous example, the drawback was that the

messages from decoy command-and-control nodes were taking up the bandwidth of the channel.

In the following solution, we show how this di�culty can be avoided. In order to explain this

solution, we shall use pseudo-random generators1 [BM84, Ha90, ILL89]. We �rst pick 8 seeds

s1; : : : ; s8 for the pseudo-random generator, and give to processor Pi seed si. Processor P1
stretches its seed s1 into long pseudo-random sequence, and sends, at each time step the next

bit of its sequence to processor P2. Processor P2 takes the bit it got from processor P1 and

\xors" it with its own next bit from its pseudo-random sequence G(s2) and sends it to P3 and

so forth. The processor Pj which is the real command-and-control center additionally \xors"

into each bit it sends out a bit of the actual message mi. Processor R is given all the 8 seeds

s1; : : :s8, so it can take the incoming message, (which is the message from command-and-

control center \xored" with 8 di�erent pseudo-random sequences.) Hence, R can compute all

the 8 pseudo-random sequences, subtract (i.e. xor) the incoming message with all the 8 pseudo-

random sequences and get the original command-and-control message m. The advantage of

this solution is that any Pj which is not a command-and-control center (and not R), clearly

can not deduce which other processor is the real center. Moreover, the entire bandwidth

of the channel between command-and-control processor and the receiver is used to send the

messages from the center to the receiver. Drawback: The receiver must compute 8 di�erent

pseudo-random sequences in order to recover the actual message. As the network size grows,

this becomes prohibitively expensive in terms of the computation that the receiver needs to

perform in order to compute the actual message m.

Our solution for this simple example: Here, we present a solution that is both computation-

e�cient and communication-e�cient and is secure against an adversary that can monitor all

the communication lines and additionally can learn internal memory contents of any one of

the intermediate processors. The seed distribution (for a particular communication session) is

as follows:

� Pick 9 random seeds for pseudo-random generator s0; s1; : : : ; s8.

� Give to the real command-and-control processor seed s0.

� Additionally, give to processor P1 seed fs1; s2g; to processor P2 two seeds fs2; s3g, to

processor P3 two seeds fs3; s4g, and so on. That is, we give to each processor Pi for i > 1

the seeds fsi; si+1g.

1Pseudo-random generator G(s) = r1; r2; : : : takes a small initial \seed" of truly random bits, and determin-

istically expands it into a long sequence of pseudo-random bits. There are many such commercially available

pseudo-random generators, and any such \o�-the-shelf" generator that is su�ciently secure and e�cient will

su�ce.

5



� give to receiver, R, one seed s0

Suppose processor P4 is the real command-and-control center. Then the distribution of seeds
is as follows:

P1(s1; s2) �! P2(s2; s3) �! P3(s3; s4) �! P4(s4; s5; s0) �! P5(s5; s6) �!

�! P6(s6; s7) �! P7(s7; s8) �! P8(s8; s1) �! R(s0)

Now, the transmission of the message is performed in the same fashion as in the previous

solution | that is, each processor receives a bit-stream from its predecessor, \xors" a single

bit from each pseudo-random sequence that it has, and sends it to the next processor. The

command-and-control center \xors" bits of the message into each bit that it sends out.

Notice, that adjacent processors \cancel" one of the pseudo-random sequences, by xoring

it twice, but introduce a new sequence. For example, processor P2 cancels s2, but \introduces"

s3. Moreover, each processor must now only compute the output of at most three seeds. Yet,

it can be easily veri�ed that if the adversary monitors all the communication lines and in

addition can learn seeds of any single processor Pi which is not a command and control center,

then it can not gain any information as to which other Pi is the real command and control

center, even after learning the two seeds that belong to processor Pi.

Of course, the simpli�ed example that we presented works only provided that the adversary

cannot monitor both the actual command-and-control center and can not monitor the memory

contents of the receiver. (We note that these and other restrictions can be resolved { we address

this further in the paper.) Moreover, it should be stressed that the restricted solution presented

above does not work if the adversary is allowed to monitor more than one decoy processor.

Note that our solution requires that the command-and-control and the receiver have a special

common seed s0, one obvious extension is to ensure that every two processors have a distinct

additional seed that is used for communication between themselves. We should point out that

in the rest of the paper we show how the above scheme can be extended to one that is robust

against adversaries that can monitor up-to k stations, where in our solution every processor

is required to compute the number of di�erent pseudo-random sequences proportional to k

only (in particular, at most 2k + 1). Moreover, we also show how to generalize the method

to arbitrary-topology networks/infrastructures. Additionally, we show how initial distribution

of seeds can be done without revealing the command-and-control center and how the actual

location of the command-and-control center can be hidden from the recipients of the messages

as well. At last, we show how communication from stations back to the command-and-control

center could be achieved without the stations knowing at which node of the network the center

is located and how totally anonymous communication can be achieved.

6



1.5 Private-key solutions vs. Public-key solutions

The above simple solution is a private-key solution, that is, we assume that before the pro-

tocol begins, a set of seeds for pseudo-random function must be distributed in a private and

anonymous manner. Thus, we combine this solution with a preprocessing stage in which we

distribute these seeds using a public-key solution, that is, a solution where we assume that all

users/nodes only have corresponding public and private keys and do not share any informa-

tion a-priori. Thus, our overall solution is a public-key solution, where before communication

begins, we do not assume that users share any private data. As usual in many of such cryp-

tographic setting, our overall e�ciency comes from the fact that we switch from public-key to

private key solution and then show how to (1) make an e�cient private-key implement and

(2) how to set up private keys in a pre-processing stage by using public keys in an anonymous

and private manner.

The rest of the paper is organized as follows. The problem statement appears in Section

2. The anonymous communication (our Xor-Tree Algorithm) which is the heart of our scheme

appears in 3. Section 4 and 5 sketch the anonymous seeds transmission and the initialization

and termination schemes, respectively. Extensions and concluding remarks appear in Section

6.

2 Problem Statement

A communication network is described by a communication graph G = (V;E). The nodes,

V = f1; � � � ; ng, represent the processors of the network. The edges of the graph represent

bidirectional communication channels between the processors. Let us �rst de�ne the assump-

tions and requirements used starting with the adversary models. The adversary is a passive

listening adversary that does not intervene in the computation, in particular it does neither

forge messages on the links, nor corrupt the program of the processors.

� An outside adversary is an adversary that can monitor all the communication links but

not the contents of the processors memory.

� An internal dynamic k-listening adversary (inside adversary, in short) is an adversary

that can choose to \bug" (i.e., listen to) the memory of up to k processors. The targeted

processors are called corrupted, compromised, or colluding processors. Corrupted pro-

cessors reveal all the information they know to the adversary, however they still behave

according to the protocol. The adversary does not have to choose the k faulty proces-

sors in advance. While the adversary corrupts less than k processors the adversary can

choose the next processor to be corrupted using the information the adversary gained so

far from the processors that are already corrupted.

The following assumptions are used in the �rst phase of our algorithm which is responsible

for the seeds distribution. Each of the n processors has a public-key/private-key pair. The

7



public key of a processor, P , is known to all the processors while the private key of P is known

only to P .

The anonymity of the communicating parties can be categorized into four cases:

� Anonymous to the non participating processors: A processor P wishes to send a message

to processor Q without revealing to the rest of the processors and to the inside and

outside adversary the fact that P is communicating with Q.

� Anonymous to the sender and the non participating processors: P wishes to receive a

message from Q without revealing its identity to any processor including Q as well as to

an inside and outside adversary.

� Anonymous to the receiver(s) and the non participating processors: P wishes to send

(or multicast) a message without revealing its identity to any processor as well as to an

inside and an outside adversary.

� Anonymous to the sender, to the receiver, and the non participating processors: A pro-

cessor P wishes to communicate with some other processor, without knowing the identity

of the processor, and without revealing its identity to any processor including the one it

is communicating with, as well as to an inside and outside adversary. (This is similar to

the \chat-room" world-wide-web applications, where two processors wish to communi-

cate with one another totally anonymously, without revealing to each other or anybody

else their identity.)

The e�ciency of a solution is measured by the communication overhead which is the number

of bits sent over each link in order to send a bit of clear-text data. The e�ciency is also

measured by the computation overhead which is the maximal number of computation steps

performed by each processor in order to transfer a bit of clear-text data.

The algorithm is a combination of anonymous seeds transmission, initialization, communi-

cation and termination. In the anonymous seeds transmission phase, processors that would like

to transmit, anonymously send seeds for a pseudo-random sequence generators to the rest of

the processors. The anonymous seeds transmission phase also resolves conicts of multiple re-

quests for transmission by an anonymous back-o� mechanism. Once the seeds are distributed

the communication can be started. Careful communication initialization (and termination)

procedure that hide the identity of the sender must be performed.

We �rst describe the core of our algorithm which is the communication phase. During

the communication phase seeds are used for the production of pseudo-random sequences. The

anonymous seeds distribution is presented following the description of the anonymous commu-

nication phase.

8



3 Anonymous Communication

3.1 Computation-ine�cient O(n) solution

The communication algorithm is designed for a spanning tree T of a general communication

graph, where the relation parent child is naturally de�ned by the election of a root. We start

with a simple but ine�cient algorithm which requires O(n) computation steps of a processor.

(This algorithm is similar to the computation-ine�cient solution presented in Section 1, but for

the general-topology graph. We then show how to make it computation-e�cient as well.) In

this (computation-ine�cient) solution the sender will chose a distinct seed for each processor.

Then the sender can encrypt each bit of information using the seeds of all the processors

including its own seeds. Each such seed is used for producing a pseudo-random sequence. The

details of the algorithm appear in Figure 1. The symbol � is used to denote the binary xor

operation.

Note that the i'th bit produced by the root is a result of xoring twice every of the i'th bits

of the pseudo-random sequences except the senders' sequence: once by the sender and then

during the communication upwards. Each encrypted bit of data will be xored by the receiver(s)

using the senders' seed to reveal the clear-text. Note that the scheme is resilient to any number

of colluding processors as long as the sender and the receiver(s) are non-faulty. This simple

scheme requires a single node (the sender) to compute O(n) pseudo-random bits for each bit

of data. (We remark that in contrast, our Xor-Tree Algorithm, requires the computation of

only O(k) pseudo-random bits to cope with an outside adversary and an internal dynamic k-

listening adversary.) The next Lemma state the communication and computation complexities

of the algorithm presented in Figure 1.

Lemma 3.1 The next two assertions hold for every bit of data to be transmitted over each

edge of the spanning tree:

� The communication overhead of the algorithm is O(1) per edge.

� The computation overhead of our algorithm is O(n) pseudo-random bits to be computed

by each processor per each bit of data.

Proof: In each time unit two bits are sent in each link: one upwards and the other downwards.

Since a bit of data is sent every time unit (possibly except the �rst and last h time units, where

h < n is the depth of the tree) the number of bits sent over a link to transmit a bit of data

is O(1). The second assertion follows from the fact that the sender computes the greatest

number of pseudo random bits in every time unit, namely O(n) pseudo-random bits in every

time units.

9



Seeds Distribution |

� Assign (anonymously) a distinct seed si to each processor Pi.

� Assign to the sender all the seeds s1; s2; : : : ; sn of all the processors and an

additional seed s0.

� Assign the receiver(s) with an additional seed, the seed s0.

Upwards Communication :

P is the sender |

� Let di be the i'th bit of data.

� Let b1; b2; � � � ; bl be the i'th bits received from the children (if any) of P .

� Let b00 be the i'th bit of the pseudo random sequence obtained from the

additional seed s0 of Pj .

� let b01; b
0
2; � � � ; b

0
n be the i'th bits of the pseudo random sequence obtained

from the seeds s1; s2; � � � ; sn.

� The i'th bit Pj sends to its parent (if any) is di � b00� b1� b2� � � �bl � b01�

b02 � � � � b0n.

P is not the sender |

� Let b1; b2; � � � ; bl be the i'th bits received from the children (if any) of Pj .

� Let b0j be the i'th bit of the pseudo random sequence obtained from the seed

sj .

� The i'th bit that P communicants to its parent (if any) is b1�b2�� � �bl�b0j .

Downwards Communication |

� The root processor calculates an output as if it has a parent and sends the result

to every of its children.

� Every processor which is not the root, sends to its children every bit received

from its parent.

� The receiver(s) decrypts the downward communication by xoring the i'th bit

that arrives from the parent with the i'th bit in the pseudo random sequence

obtained from s0.

Figure 1: O(n) Computation Steps Algorithm, for a processor Pj .

10



3.2 Towards our O(k) solution: The choice of seeds

For the realization of the communication phase of our O(k) solution we use n(k + 1) distinct

seeds where k is less than bn=2� 1c. Each processor receives 2(k + 1) seeds. To describe the

seeds distribution decisions of the sender we use k + 1 levels each consists of two layers of

seeds. We order the processors by their (arbitrary assigned) indices P1, P2, � � �, Pn, we use the

relation follows in a straight forward manner.

The �rst level | Let L1 = s11; s
1
2; s

1
3; � � � ; s

1
n be the seeds that the sender (randomly)

chooses for the �rst level. The sender uses the sequence of seeds L1
1 = s11; s

1
2; s

1
3; � � � ; s

1
n

for the �rst layer of the �rst level and L1
2 = s12; s

1
3; � � � ; s

1
n; s

1
1 for the second layer. Note

that L1
1 = L1 and that L1

2 is obtained by rotating L
1 once. Pi, 1 � i < n, receives the

seeds s1i and s1i+1. Pn receives s1n and s11.

The l'th level | Similarly, for the l'th level 1 � l � k+1 the sender (randomly) chooses

n distinct seeds for this level Ll = sl1; s
l
2; � � � ; s

l
n to be the seeds of the l'th level and

uses two sequences Ll
1 = Ll and Ll

2 = sll+1; s
l
l+2; � � � ; s

l
n; s

l
1; � � � ; s

l
l; L

l
2 is obtained by

rotating Ll l times. Pi 1 � i � n� l receives the seeds sli and s
l
i+l and Pj n� l < j � n

receives the seeds slj and sl
j�(n�l)

.

Thus, at the end of this procedure every processor is assigned by 2k+2 distinct seeds.

Figure 2: The choice of seeds.

The seeds distribution procedure appears in Figure 2. An example for the choice of seeds

for the processors appears in Figure 3.

Seeds of P1 P2 P3 P4 P5 P6 P7 P8 P9
s9 s1 s2 s3 s4 s5 s6 s7 s8

Level 1 s1 s2 s3 s4 s5 s6 s7 s8 s9
s08 s09 s01 s02 s03 s04 s05 s06 s07

Level 2 s01 s02 s03 s04 s05 s06 s07 s08 s09
s007 s008 s009 s001 s002 s003 s004 s005 s006

Level 3 s001 s002 s003 s004 s005 s006 s007 s008 s009

Figure 3: An example for the distribution of seeds, where n = 9 and k = 2.

The choice of seeds made by the sender has the following properties:

� Each seed is shared by exactly two processors.

11



� For every processor P , P shares a (distinct) seed with every of the k+1 processors that

immediately follow P , (if there are at least such k+1 processors), or with the rest of the

processors including Pn, otherwise.

3.3 The Xor-Tree Algorithm

Here, we present out main algorithm, the Xor-Tree Algorithm. The Xor-Tree Algorithm ap-

pears in Figure 4.

3.4 An abstract game

In this subsection we describe an abstract game that will serve us in analyzing and proving

the correctness of the Xor-Tree Algorithm presented in the previous subsection.

The adversary get to see the outputs of all the players. The adversary can pick k out of

the players and see their seeds. We claim, and later prove, that when the adversary does not

pick the sender then every one of the remaining (n� k) processors that are not picked by the

adversary is equally likely to be the sender for any poly-bounded adversary2.

We proceed by showing that the above assignment of seeds yields a special seed dsP for

each processor P . We choose dsP out of the seeds assigned to each non-faulty processor P .

We order the processors by their index in a cyclic fashion such that the processor that follows

the i'th processor, i 6= n, is the processor with the index i+ 1 and the processor that follows

the n'th processor is the �rst processor. Then we assign a new index for each processor such

that the sender has the index one, the processor that follows the sender has the index two and

so on and so forth. These new indices are used for the interpretation of next, follows, prior

and last in the description of the choice of special seeds that appears in Figure 6. Recall that

with overwhelming probability every two processors share at most one seed.

Note that by our special seeds selection, described in Figure 6, the special seeds are not

known to the k faulty processors.

Theorem 3.2 In the abstract game any of the (n � k) non-faulty processors is equally likely

to be the sender for any poly-bounded internal k-listening adversary.

Proof: We prove that the i'th bit produced by any non-faulty processors is equally likely

to be 0 or 1 (for any poly-bounded adversary). Let P be the �rst non-faulty processor that

follows the sender (P is among the �rst k + 1 processors that follow the sender). Let dsP1 be

the special seed of the sender that is shared only with (the non-faulty processor) P . The i'th

bit that the sender outputs is a result of a xor operation with the i'th bit of the pseudo-random

2If the adversary can predict who is the sender then we can use this adversary to break a pseudo-random
generator.

12



Seeds Distribution |

� Assign seeds to the processors as described in Figure 2.

� Assign the sender with one additional seed, s0.

� Assign the receiver(s) with an additional seed, the seed f the sender s0.

Upwards Communication :

Pj is the sender |

� Let di be the i'th bit of data.

� Let b1; b2; � � � ; bl be the i'th bits received from the children (if any) of Pj .

� Let b01; b
0
2; � � � ; b

0
2k+2 be the i'th bits of the pseudo-random sequences obtained

from the seeds of Pj .

� Let b02k+3 be the i'th bit of the pseudo-random sequence obtained from the

additional seed s0 of Pj .

� The i'th bit Pj sends to its parent (if any) is di�b1�b2�� � �bl�b01�b02 � � ��

b02k+2 � b02k+3.

Pj is not the sender |

� The i'th bit that Pj communicants to its parent (if any) is b1 � b2 � � � �bl �

b01 � b02 � � � � b02k+2.

Downwards Communication |

� The root processor calculates an output as if it has a parent and sends the result

to every of its children.

� Every non root processor send to its children every bit received from its parent.

� The receiver(s) decrypts the downward communication by xoring the i'th bit

that arrives from the parent with the i'th bit in the pseudo random sequence

obtained from s0.

Figure 4: The Xor-Tree Algorithm, for a processor Pj .

13



Seeds Assignment | Assign seeds to the processors as described in Figure 2. Assign

the sender with one additional seed.

Computation | Each processor, P , uses its seeds to compute pseudo-random sequences.

At the i'th time unit the sender S computes the i'th bit of every of its pseudo-random

sequences, xors these bits and the i'th bit of data and outputs the result. At the same

time unit every other processor P computes the i'th bit of every of its pseudo-random

sequences xors these bits and outputs the result.

Figure 5: The Abstract Game.

The sender P1 | Each of the k+1 processors that immediately follows the sender shares

exactly one seed with the sender. Since there are at most k colluding processors, one of

these k+1 processors must be non-faulty. Pick, P , the �rst such non-faulty processor.

Assign dsP1 , the special seed of the sender, to be the seed that the sender shares with

P .

A processors P that is not among the k + 1 last processors | If P is not among

the k+ 1 last processors then P is assigned by 2k+ 2 seeds k+ 1 seeds of these seeds

are from the �rst layers of the k+1 seed levels. These k+1 seeds are new| they do not

appear in any processor prior to P . Since there are at most k colluding processors,

one of the next k + 1 processors is non-faulty. Let Q be the �rst such non-faulty

processor and assign dsP by the seed that P shares with Q. Repeat the procedure

until you reach a non-faulty processor that is among the last k + 1 processors.

A processors Q that is among the k + 1 last processors | Note that Q does not

introduce k + 1 new seeds since some of its seeds are assigned to the �rst proces-

sors (at least the one in the k + 1'th level). Fortunately, Q shares a single new seed

with every of the last processors. This fact allows us to continue the special seed

selection procedure, by choosing the seed shared with the next non-faulty processor.

Figure 6: Choice of special seeds.

14



sequence (among other pseudo-random sequences) obtained from dsP1 . Since only P (that is

a non-faulty processor) shares dsP1 with the sender, it holds that the i'th bit output by the

sender is equally likely to be 0 or 1 (for any poly-bounded internal k-listening adversary). A

similar argument hold for the output of P , since there exists a special seed shared with the

next non-faulty processor Q. In general it holds for the output of every non-faulty processor.

The same argument holds if any of the n � k non-faulty processors is the sender. Thus, for

any polynomially-bounded k-internal and external adversary, the distribution of the output is

indistinguishable of the identity of the sender.

The fact that the adversary can be a dynamic adversary is implied by the Corollary 3.3.

The proof of the corollary is similar to the proof of Theorem 3.2.

Corollary 3.3 For any k0 � k after the adversary chooses k0 faulty processors any of the

(n � k0) non-faulty processors is equally likely to be the sender for any poly-bounded internal

k'-listening adversary.

3.5 Reduction to the abstract game

In this subsection we prove that if there is an algorithm that reveals information on the identity

of the sender in the tree then there exists an algorithm that reveals information on the identity

of the sender in the abstract game. The above reduction together with Theorem 3.2 yields the

proof of correctness for the Xor-Tree algorithm.

Assume that the adversary reveals information on the sender in a tree T of n processors.

Then an abstract game of n nodes is mapped to the tree as follows:

1. Each processor of the abstract game is assigned to a node of the tree T .

2. The output of every processor to its parent is computed as follows: Let the hight of

a processor P in T be the number of edges in the longest path P from P to a leaf

such that P does not traverse the root. We start with the processors that are in hight

0 i.e. the leaves. The output of the processors that were assigned to the leaves of

the tree is not changed i.e. it is identical to their output in the abstract game. Once

we computed the output of processors in hight h we use these computed outputs to

compute the outputs of processors in hight h+1. Let Q be a processor in hight h+1,

let b1; b2; � � � ; bl be the i'th computed bits that are output by the children of Q, and

let bQ be the original i'th output bit of Q in the abstract game. The computed output

of Q is b1 � b2 � � � � bl � bQ.

Figure 7: The Reduction.

15



Theorem 3.4 In the Xor-Tree Algorithm any of the (n � k) non-faulty processors is equally

likely to be the sender for any poly-bounded internal k-listening adversary.

Proof: If there exists an adversary A that reveals information on the identity of the sender

in a tree T then there exists an abstract game with the same number of processors and the

same seeds distribution, such that the application of the reduction in Figure 7 yields the

communication pattern on T and reveals information on the sender identity in the abstract

game. This contradicts Theorem 3.2 and thus contradicts the existence of A.

The next Lemma states the communication and computation overheads of the anonymous

communication algorithm.

Lemma 3.5 The next two assertions hold for every bit of data to be transmitted over each

edge of the spanning tree:

� The communication overhead of the algorithm is O(1) per edge.

� The computation overhead of our algorithm is O(k) pseudo-random bits to be computed

by each processor per each bit of data.

Proof: In each time unit two bits are sent in each link: one upwards and the other downwards.

Since a bit of data is sent every time unit (possibly except the �rst and last h time units, where

h < n is the depth of the tree) the number of bits send over each link to transmit a bit of

data is O(1). The second assertion follows from the fact that in each time unit each processor

generates at most 2k + 3 pseudo-random bits.

4 Anonymous Seeds Transmission

We �rst outline the main ideas in the seeds transmission scheme and then give full details.

Every processor has a public-key encryption, known to all other processors. A virtual ring

de�ned by the Euler tour on the tree is used for the seeds transmission. Note that the indices

of the processor used in this description are related to their location on the virtual ring. First

all processors send messages to P1 over the (virtual) ring. Those processors that wish to

broadcast send a collection of seeds, and those processors that do not wish to broadcast, send

dummymessages of equal length. To do so in an anonymous fashion (so that P1 does not know

which message is from which processor), k+ 1 of Chaum's mixes [Ch81] are used, where k+ 1

(real) processors just before P1 in the Euler tour are used as mixes. Hence, P1 can identify

the number of non-dummy arriving messages but not their origin. In case more than one non-

dummy message reaches P1, a standard back-o� algorithm is initiated by P1. Once exactly

one message (containing a collection of seeds) arrives to P1 the seed distribution procedure

described above (for sending a collection of seeds to P1) is used to send the seeds to P2 and

16



so on. (At this point processors know that only one processor wishes to broadcast.) This

procedure is repeated n times in order to allow the anonymous sender to transmit a collection

of seeds to every processor. Notice that this process is quadratic in the size of the ring, the

number of colluding processors k, and the length of the security parameter, (i.e., let g be a

security parameter and k as before, then we send O((gkn)2) bits per edge.) Thus, as long the

message size p to be broadcasted is greater than O((gkn)2) we achieve O(1) overall amortized

cost per edge, and otherwise we get O((gkn)2=p) amortized cost.

The details follow. The seeds transmission procedure uses a virtual ring R de�ned by an

Euler tour of the tree T . Note that each edge of T appears exactly twice in R and therefore

the number of edges and nodes in R is 2n � 2. The seeds transmission procedure starts with

the transmission of seeds to the �rst processor P1. Let L1 = P1; P2; � � � ; P2n�2 be the list of

processors in R in clockwise order starting with P1; the indices 2 to 2n� 2 are implied by the

Euler tour and not by the indices of the processors in T . Note that a single processor of T

may appear more than once in L1. We use the term instance for each such appearance. De�ne

the reduced list RL1 to be a list of processors that is obtained from L1 by removing all but

the �rst instance of each processor. Thus, in RL1 every processor of T appears exactly once.

The communication of seeds uses the anti-clockwise direction. De�ne the last l real processors

to be the �rst l processors in RL1. When transmitting seeds to Pi, Li, RLi and the last l

processors, are de�ned analogously.

In the �rst stage every processor that wants to communicate with another processor sends

an encrypted message with the seeds to be used by P1. Note that P1 can be a faulty processor,

thus a careful transmission must be carried on. Let L1 = P2n�2; P2n�3; � � � ; P1 be the list of

processors in R in anti-clockwise order i.e. L1 in reversed order. Again L1 includes more than

one instance of each processor P of T . De�ne the active instance of a processor P of T in L1

to be the last appearance of P in L1. De�ne an active message to be a message that arrives

to an active instance of a processor. The details of the anonymous seeds transmission to P1
appears in Figure 8.

As we prove in the sequel no information concerning the identity of the requesting processors

is revealed during the anonymous seeds transmission to P1 except the information that can

be concluded by the value of nt | the number of processors that would like to transmit.

Once nt = 1 the processors starts sending messages to P2 in a fashion similar to the one

used to send seeds to P1. Then processors sends seeds to P3 and so on and so forth, till the

processors send messages to Pn. Note that when nt = 1 there is exactly one sender for the

next communication session and at the end of the seeds distribution procedure every processor

holds the seeds distributed by the sender.

Lemma 4.1 A coalition of k colluding processors cannot reveal the identity of the seeds dis-

tributors.

Proof: We prove the lemma for the transmission of the seeds from the sender to P1. Note that

one of the last k+1 real processors must be non-faulty. If P1 is non-faulty then no information

17



Pn starts | The �rst processor to send a messagemn to P1 is Pn. If Pn wants to transmit

data then mn contains seeds to be used by P1, otherwise mn is an empty message

i.e. a message that can be identi�ed by P1 as a null message. Pn uses the public

keys pu1; pu2; � � � ; puk+1 of the last k + 1 real processors P1; P2; � � � ; Pk+1 to encrypt

mn in a nested fashion; First encrypting mn with pu1 then encrypting the resulting

message with pu2 and so on. Pn sends the k + 1-nested encrypted message mk+1
n to

the processor that is next to the active instance of Pn in L1.

Non active message | When a processor Pi receives a non active message it forwards

the message to the next processor according to L1.

Active message | We now proceed by describing the actions taken by a processor upon

the arrival of an active message.

� We �rst describe the action taken by a processor Pi that is not among the last k+1

real processors. When an active message with fmk+1
n ; mk+1

n�1; � � � ; m
k+1
i+1 g arrives

(to the active instance of) Pi, Pi adds m
k+1
i its own k + 1-encrypted message

(again, containing seeds to be used by P1 or null message) to the message received

and sends the message to the next processor according to L1.

� We now turn to consider a processor Pi that is among the last k + 1 real

processors. When an active message with fmi
n; m

i
n�1; � � � ; m

i
i+1g arrives to

Pi then Pi decrypts every mi in fmi
n; m

i
n�1; � � � ; m

i
i+1g using its private key

to obtain fmi�1
n ; mi�1

n�1; � � � ; m
i�1
i+1g. Pi encrypts mi its message to P1 by the

public keys of the last i � 1 real processors. Pi randomly orders the set

fmi�1
n ; mi�1

n�1; � � � ; m
i�1
i+1; m

i�1
i g and sends the reordered set to the processor that

is next according to L1 (Note that following the �rst such reordering the j'th

index of mi�1
j is not necessarily the index of the sender of mi�1

j ).

Arrival to P1 | When P1 receives an active message with fm1
n; m

1
n�1; � � � ; m

1
2g, P1 de-

crypts every message and �nds out the number nt of the processors that would like

to transmit. If nt 6= 1 then P1 sends a message with the value of nt that traverses the

virtual ring. Upon receiving such a message each processor that wants to transmit,

randomly chooses a waiting time in the range of say, 1 to 2nt. The procedure of

sending seeds to P1 is repeated until nt = 1.

Figure 8: Anonymous Seeds Transmission to P1.

18



concerning the identity of the seeds distributors is revealed to the adversary. Otherwise,

when P1 is faulty then let Pi be the non faulty processor that is the last to reorder the set

fmi�1
n ; mi�1

n�1; � � �m
i�1
i g upon the arrival of fmi

n; m
i
n�1; � � �m

i
i+1g. Since every arriving mi is

encrypted with Pi's public key no set of k-faulty processors can decrypt mi (unless mi was

originated by a faulty processor). Pi randomly order the set fmi�1
n ; mi�1

n�1; � � �m
i�1
i g, thus it

holds that a coalition of k processors cannot reveal the identity of the sender of any mi�1 in

fmi�1
n ; mi�1

n�1; � � �m
i�1
i g.

5 Initialization and Termination

When the seed distribution procedure is over, then the transmission of data may start. Pn

broadcasts a signal on the tree that noti�es the leaves that they can start transmitting data.

The leaves start sending data in a way that ensures that every non-leaf processor receives

the i'th bit from its children simultaneously. Thus, the delay in starting transmission of a

particular leaf l is proportional to the di�erence between the longest path from a leaf to the

root and the distance of l from the root. Each non leaf processor waits for receiving the i'th

bit from each of its children, uses these bits and its seeds to compute its own i'th bit and

sends the output to its parent. Note that bu�ers can be used in case the processors are not

completely synchronized.

The sender can terminate the session by sending a termination message that is not en-

crypted by its additional seed. This message will be decrypted by the root that will broadcast

it to the rest of the processors to notify the beginning of a new anonymous seeds transmission.

6 Extensions and Concluding Remarks

Our treatment so far considered the anonymous sender case, which is also anonymous to

the non participating processors. A simple modi�cation of the algorithm can support the

anonymous receiver case: The receiver plays a role of a sender of the previous solution in order

to communicate in an anonymous fashion an additional seed to the sender. Then the sender

uses the same scheme for the anonymous sender case with the seed the sender got from the

receiver.

To achieve anonymous communication in which both the sender and the receiver are anony-

mous, do the following: The two participants, P and Q, that would like to communicate (each)

send anonymously distinct seeds to P1; : : : ; Pk+1. It is possible that more than two participants

will send anonymously distinct seeds to P1. In such a case, P1 will broadcast the processors

that more than two processors tried to anonymously chat and a back-o� mechanism will be

used until exactly two participants, P and Q, send seeds to P1. Then, P1 will encrypt and

broadcast the two seeds it got, each seed encrypted (using distinct intervals of the pseudo-

random expansions of the two seeds) by the other seed. Hence, each of the two processors will

19



use its seed to reveal the seed of the other processor. At this stage P and Q will continue

and anonymously send seeds to P2; : : : ; Pk+1. The same procedure continues for P2, P3, P4 � � �

Pk+1. Now P has a set of k + 1 seeds that are used for encryption of messages sent to Q and

Q has k+ 1 seeds used for encryption messages sent to P . They both act as senders using the

bit resulting from xoring the bits produced by the set of the k + 1 seeds as the bit of special

seed known to the receiver in our anonymous sender scheme. The back-o� mechanism ensures

that one of P and Q starts the communication and then the other can replay (when the �rst

allows him to, i.e., stops transmitting data). We remark that it is possible to have more than

two participants by a similar scheme.

The security of the above algorithm is derived from the fact that there must be a non-faulty

processor among the processor P1; P2; : : : ; Pk+1 and therefore the adversary does not know at

least one key used to encrypt and decrypt messages by the sender and the receiver.

Acknowledgment: We thank Oded Goldreich, Ron Rivest and the anonymous referees for

helpful remarks.

References

[BB89] J. Bos and B. d. Boer, \Detection of disrupters in the DC protocol" Eurocrypt 89,

LNCS 434, Springer-Verlag, Berlin 1990, pp. 320-327.

[BG84] M. Blum and S. Goldwasser, \An e�cient probabilistic public-key encryption scheme

which hides all partial information", CRYPTO 84.

[BM84] M. Blum, and S. Micali \How to Generate Cryptographically Strong Sequences of

Pseudo-Random Bits", FOCS 82 and SIAM J. on Computing, Vol 13, 1984, pp. 850{

864.

[BGW88] M. Ben-or, S. Goldwasser, and A. Wigderson, \Completeness Theorems for Non-

Cryptographic Fault-Tolerant Distributed Computation", STOC 88.

[CFGN96] R. Canetti, U. Feige, O. Goldreich, and M. Naor, \Adaptively Secure Multi-Party

Computation", STOC 96.

[CKOR97] R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Ros�en, \Randomness vs. Fault-

Tolerance", PODC 97 .

[Ch81] D. Chaum, \Untraceable Electronic Mail, Return Addresses, and Digital

Pseudonyms", Communication of the ACM, vol. 24, no. 2 (1981), pp. 84-88.

[CCD88] D. Chaum, C. Cr�epeau, and I. Damg�ard, \Multiparty Unconditionally Secure Pro-

tocols", STOC 88.

[Ch88] D. Chaum, \The Dining Cryptographers Problem: Unconditional Sender and Recipi-

ent Untraceability", Journal of Cryptology, vol. 1 (1988), pp. 65-75.

20



[Ch92] D. Chaum, \Achieving Electronic Privacy", Scienti�c American, vol. 267, no. 2 (1992),

pp. 96-101.

[FGY93] M. Franklin, Z. Galil and M. Yung \Eavesdropping Games: A Graph-Theoretic Ap-

proach to Privacy in Distributed Systems," FOCS 93.

[GMW87] O. Goldreich, S. Micali and A. Wigderson, \How To Play Any Mental Game",

STOC 87.

[Ha90] J. Hastad, \Pseudo-Random Generators under Uniform Assumptions", STOC 90 .

[ILL89] R. Impagliazzo, L. Levin, and M. Luby \Pseudo-Random Generation from One-Way

Functions," STOC 89.

[KMO94] E. Kushilevitz, S. Micali, and R. Ostrovsky, \Reducibility and Completeness in

Multi-Party Private Computations", FOCS 94 .

[Pf85] A. P�tzmann, \How to Implement ISDNs Without User Observability | Some Re-

marks", TR 14/85, Fakultat fur Informatik, Universitat Karlsruhe, 1985.

[PW87] A. P�tzmann, M. Waidner, \Network without User Observability," Computer & Se-

curity 6 (1987) 158-166.

[PPW91] A. P�tzmann, B. P�tzmann andM.Waidner, \ISDN-MIXes | Untraceable Commu-

nication with Very Small Bandwidth Overhead," Proc. Kommunikation in verteilten

Systemen (1991), pp. 451-463.

[SGR97] P. F. Syverson, D. M. Goldsclag, M, G. Reed, \Anonymous Connections and Onion

Routing" Proc. of the Symposium on Security and Privacy 1997.

[Wa89] M. Waidner, \Unconditional Sender and Recipient Untraceability in spite of active

attacks" Eurocrypt 89, LNCS 434, Springer-Verlag, Berlin 1990, pp. 302-319.

[WP90] M. Waidner and B. P�tzmann, \The Dining Cryptographers in the Disco: Uncondi-

tional Sender and Recipient Untraceability with Computationally Secure Serviceability

Eurocrypt 89.

[RS93] C. Racko� and D. Simon, \Cryptographic Defense Against Tra�c Analysis", STOC

93

21


