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Abstract

In this paper we prove a perhaps unexpected relationship between the complexity

class of the boolean functions that have linear size circuits, and n-party private proto-

cols. Speci�cally, let f be a boolean function. We show that f has a linear size circuit

if and only if f has a 1-private n-party protocol in which the total number of random

bits used by all players is constant.

From the point of view of complexity theory, our result gives a characterization of

the class of linear size circuits in terms of another class of a very di�erent nature. From

the point of view of privacy, this result provides 1-private protocols that use a constant

number of random bits, for many important functions for which no such protocol was

previously known. On the other hand, our result suggests that proving, for any NP

function, that it has no 1-private constant-random protocol, might be di�cult.

1 Introduction

Proving lower bounds on circuit size is one of the central goals of complexity theory. While

Shannon proved that almost all functions require exponential size circuits [19], no such lower

bound for any NP function is known today. The best lower bounds on unrestricted circuits1
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are linear (e.g., [3, 18, 21]). In other words, no NP function f that cannot be computed by

a linear size circuit is currently known (the reader is referred to the survey of Boppana and

Sipser [4] for an exposition on the current state of knowledge in circuit complexity and for

an extensive list of references). A major goal is therefore to improve our understanding of

the class of linear size circuits. In particular, a characterization of this class in terms of a

di�erent class of objects is desirable.

Private protocols allow n players in a distributed system, each holding a single input

bit xi, to compute a boolean function f(x1; : : : ; xn) correctly and 1-privately; that is, in a

way that no single player gets any additional information about the inputs of other players2.

Privacy was the subject of a considerable amount of work, e.g., [1, 2, 5, 8, 9, 10, 11, 12,

13, 15, 16]. Recently, the amount of randomness required by private protocols was studied

[6, 14, 17]; a protocol is said to be d-random if the maximum, over all inputs and executions,

of the total number of random bits tossed by all players, is at most d.

In this paper we relate linear size circuits and private protocols. We prove that for every

boolean function f the following holds:

f has a linear size circuit

if and only if

f has 1-private O(1)-random protocol.

From the point of view of privacy, this result gives 1-private O(1)-random protocols for many

important functions such as and or majority (while such protocols were previously known

only for the function xor and degenerate functions that depend only on small number of

variables). On the other hand, the result suggests that proving, for any NP function, that

it has no 1-private O(1)-random protocol might be quite di�cult. From the point of view

of complexity theory, our result gives a characterization of the important class of linear size

circuits in terms of another class of a very di�erent nature. In principle, it might be the case

that privacy arguments could be used for proving lower bounds on circuit sizes.

We emphasize that none of the directions of this theorem is straightforward. For one

direction we show how to simulate a circuit by a private protocol. While this line of proof is

common to most positive results in privacy (e.g., [5, 8, 13]), our construction is very e�cient

in randomness: We use only a constant number of random bits, reusing them over and

over again. Previous constructions essentially use new random bits for almost each gate of

the circuit3. The second direction is even more interesting. It shows how to transform 1-

2This is a special case of t-privacy discussed in the literature, where coalitions of at most t players are

considered (and both the inputs and the output are not restricted to single bits).
3All these constructions were described in the more general t-private setting. However, even simplifying

these constructions to the 1-privacy case requires new random bits for almost every gate. In fact, the secret

sharing stage, with which all these constructions start, already uses a total of n logn random bits, even in

its 1-private version.
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private O(1)-random protocols into linear size circuits. We remark that this transformation

is independent of the computational complexity or the communication complexity of the

protocol.

2 Preliminaries

2.1 Circuits

We consider circuits having as input n bits x1; : : : ; xn, and their negations �x1; : : : ; �xn. A

circuit consists of and and or gates of fan-in 2, and arbitrary fan-out. The size of a circuit,

denoted mg, is the number of gates in the circuit. (Alternatively, one can consider the

measure me, the size of the circuit in edges. Note that these two measures are essentially

the same: mg � me � 2mg.)

For a function f : f0; 1g� ! f0; 1g denote by fn the restriction of f to the domain f0; 1gn.

A function f : f0; 1g� ! f0; 1g is in the class of linear size circuits if there is a constant k

such that for all n there exists a circuit of size at most k � n that computes the restricted

function fn. If f is in this class we say that f has a linear size circuit.

Remark: Many variants of this de�nition are equivalent. For example, we could allow

di�erent types of gates with constant fan-in c. We could allow negations to appear in any

place in the circuit, etc. The circuit size under all these variants is the same if we ignore

constant factors.

2.2 Private Protocols

We give a description of the protocols we consider, and de�ne the privacy property of pro-

tocols. We use here the private channels model (as in [5, 8]) in which information theoretic

privacy is considered, as opposed to computational privacy (as in [20, 13]).

Let fn : f0; 1gn ! f0; 1g be a boolean function. A set of n players Pi (1 � i � n),

each player Pi possessing a single input bit xi (known only to Pi), collaborate in a protocol

to compute the value of fn(~x). Each player Pi is provided with a (read only) random tape

Ri, each of its bits is uniformly distributed and the bits are all independent. The protocol

operates in rounds. In each round each player may toss some coins (that is, it reads some

random bits from its random tape), and then sends messages to the other players (messages

are sent over private channels so that other than the intended receiver no other player can

listen to them). The player then receives the messages sent to it by the other players. In

addition, each player at a certain round chooses to output the value of the function.
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Each player Pi receives during the execution of the protocol a sequence of messages. Let

ci be a random variable of the communication string received by player Pi, and let Ci be a

particular communication string received by Pi. Informally, privacy with respect to player

Pi means that player Pi cannot learn anything (in particular, the inputs of the other players)

from Ci, except what is implied by its input bit, and the value of the function computed.

Formally,

De�nition 1: (Privacy) An n-party protocol A for computing a function fn is private

with respect to player Pi if for any two input vectors ~x and ~y, such that fn(~x) = fn(~y) and

xi = yi, for any sequence of messages Ci, and for any random tape Ri provided to Pi,

Pr[ci = CijRi; ~x] = Pr[ci = CijRi; ~y];

where the probability is over the random tapes of all other players. A protocol A is 1-private

(or private, for short) if it is private with respect to every player Pi. A function fn is 1-private

(or private, for short) if there exists a 1-private protocol A that computes the function fn.

The number of coin tosses done (or the amount of randomness used) by player Pi is

de�ned as the position of the rightmost bit read from its random tape Ri. To measure the

amount of randomness used by a protocol we give the following de�nition:

De�nition 2: (Randomness) A d-random protocol is a protocol such that for any input

assignment, the total number of coins tossed by all players in any execution is at most d.

We say that a function f : f0; 1g� ! f0; 1g has a 1-private O(1)-random protocol if

there exists a constant d such that for all n there exists a d-random 1-private protocol that

computes fn : f0; 1g
n ! f0; 1g.

We emphasize that the de�nitions allow, for example, that in di�erent executions di�erent

players will toss the coins. This may depend on both the input of the players, and the

outcome of previous coin tosses.

3 Main Theorem

Our main result in this paper is the following theorem:

Theorem 1: Let f be a boolean function. The function f has a linear size circuit if and

only if f has a 1-private O(1)-random protocol.

The theorem follows immediately from the following two, more general, lemmas that we

prove. The �rst lemma shows how to construct, from a circuit of size � � n, a 1-private

O(�)-random protocol. (The proof of this lemma appears in Section 4.)
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Lemma 2: If fn can be computed using a circuit of size mg, then fn can be computed

using a 1-private O(
mg

n
)-random protocol.

For the second direction, from a 1-private d-random protocol, we construct a circuit of

size � � n where � is exponential in d. (The proof of this lemma appears in Section 5.)

Lemma 3: If fn can be computed using a 1-private d-random protocol, then fn can be

computed using a circuit of size 2O(d) � n.

4 From Circuits to Protocols (Proof of Lemma 2)

As is done in (almost) all known private protocols, given a circuit (with mg gates) that

computes a function fn, the players simulate the circuit in a gate-by-gate manner (from bot-

tom to top). As opposed to most other constructions of private protocols, in our simulation

di�erent players have di�erent roles4. First, we partition the players into two sets:

�1 = fP1; : : : ; Pb
n

2
cg

and

�2 = fPb
n

2
c+1; : : : ; Png:

We call the players in �2 the input players. The players in �1 are further partitioned as

follows:

� The player P1, which is called the randomness player.

� k = b j�1j�1

3
c � n

6
teams, each consists of three players. Every i'th team, Ti, is further

partitioned into a set of two in-players, denoted Ai and Bi, and the third player, the

out-player, denoted Ci.

We �rst give a high-level description of the simulation: Each input player Pi 2 �2, will be

responsible during the simulation for its own input bit xi (and its negation) and also for the

bit xi�b
n

2
c (and its negation) which is an input of a player in �1 (if n is odd then player

Pn is responsible only for its own input). To do that, player Pi will receive a message from

Pi�b
n

2
c which will consist of the value xi�b

n

2
c xored with a random bit. Thus the privacy

requirement with respect to Pi will still hold. Each of the k teams will be responsible for

the simulation of (at most) ` = dmg

k
e gates. When a team Ti simulates a gate g, the two

in-players Ai and Bi will be responsible for the (two) inputs of the gate while the out-player

Ci will be responsible for the output of the gate. Again, to guarantee the privacy requirement

4One exception for this is in [20] where there are two players who play non-symmetric roles.
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with respect to these players, both the inputs and the output of the gate will be xored with

random bits in a way that will be described below. Note that each of the inputs for the gate

g is either an output of a gate g0 which was already simulated by some team Tj, or one of

the 2n inputs of the circuit. In the former case, the corresponding in-player of Ti (i.e., Ai or

Bi) will get a message from the out-player Cj of the team Tj that simulated g0. In the latter

case, the corresponding in-player of Ti will receive a message from the relevant input player

(in �2). The simulation itself consists of the exchange of a number of messages between the

players of the team Ti (and the randomness player P1), which results in the out-player Ci

having a bit which is the value of the gate g xored with a random bit.

All the random bits required in the protocol are chosen by the randomness-player, P1.

These bits are logically partitioned as follows:

� r0 { used to mask the inputs of players in �1 when sent to the corresponding players

in �2.

� r1; : : : ; r` { used to mask the inputs of the gates before sending them to the in-players

(guarantees the privacy with respect to the in-players).

� s1; : : : ; s` { used to mask the outputs of the gates at the out-players (guarantees the

privacy with respect to the out-players).

� � � ` random bits used for the simulation of the gates (� = 10). Every team uses

� independent random bits for each of the ` simulations that it performs. However,

di�erent teams use the same random bits.

Altogether (as � = O(1)) we get that the number of random bits used is O(`) = O(mg

n
). The

protocol works as follows:

PROTOCOL:

1. (Coin Tossing)

P1 tosses all the coins described above. It sends r0 to all players in �1. It sends

r1; : : : ; r` to all input players (i.e., �2) and to all out-players (i.e., the Ci's). It sends

the �` random bits needed for the simulation to the in-players (i.e., the Ai's and Bi's).

2. (Inputs Transfer)

Each player Pi 2 �1 sends a bit yi = xi � r0 to Pi+b
n

2
c.

3. (Simulation)

The gates of the circuits are partitioned into ` sets each of size at most k. Each of

the k teams of players is responsible for (at most) one gate in each of the ` sets. The
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assignment of teams to gates, and the role of each player in each team is �xed and

known to all players. The simulation of the circuit goes in a bottom-up manner, each

gate g being simulated by a team Ti only after all gates below it (in the circuit) have

been simulated. The result of gate g being simulated is that the out-player of team Ti

holds a value which is the value of the gate xored with one of the random bits fsjg.

In what follows we describe how team Ti simulates a gate g that falls in the d'th set

of gates. For a given input ~x, denote by a and b the inputs of gate g in the original

circuit, and by c its output. The players do the following:

(a) Ai gets a value which corresponds to the input a:

If a is an output of some previous gate, then there is an out-player Cj that holds

this value a xored with some bit sd0 . Player Cj sends to Ai the value (a�sd0)�rd.

If a is some variable xj, for j � bn
2
c+ 1, then Pj sends to Ai the value xj � rd.

If a is �xj for j � bn
2
c+ 1 then Pj sends to Ai the value �xj � rd.

If a is xj for j � bn
2
c then Pj+b

n

2
c sends to Ai the value yj � rd = (xj � r0)� rd.

If a is �xj for j � bn
2
c then Pj+b

n

2
c sends to Ai the value yj�1�rd = (�xj�r0)�rd.

Note that in all cases the message that Ai gets can be represented as a� ja � rd,

where a is the input value to the gate in the original circuit, and the bit ja is

either the constant 0 or some random value independent of r1; : : : ; r`.

(b) In the same way Bi gets a value that corresponds to b (represented as b� jb� rd).

(c) Players Ai; Bi; Ci and P1 evaluate the gate g. This evaluation consists of each of

Ai; Bi and P1 sending a single message to Ci who will be able to compute the

value c� sd. A detailed description of this process is given later in the sequel.

4. (Output)

The out-player Cj of the team that computes the �nal output gate of the circuit, sends

the value it computes, which is fn(~x) � sd0 , to P1. Player P1 then xors this message

with the random bit sd0 (which is known to it) to get the desired output fn(~x), and

broadcasts the output to all other players.

Although we have postponed the description of Stage (3c) of the simulation, we have

described already, for all but the out-players, all the messages that they receive. Therefore,

we can already show the following properties of the protocol:

1. Player P1, although taking a very active role in the protocol, gets only a single message

which is fn(~x)�sd0 (in the Output stage). Thus, given the value of the function fn(~x)

and the random bits (chosen by P1) this message is �xed. The privacy requirement

with respect to P1 thus holds.
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2. The communication sent to each player Pj in �2 consists of a sequence of random bits

r1; : : : ; r` (sent to Pj in the Coin Tossing stage), the bit yj�b
n

2
c = xj�b

n

2
c � r0 (sent

to Pj in the Inputs Transfer stage), and the value of the function (as broadcast

in the Output stage).5 That is, given any input assignment ~x, the last message is

�xed by fn(~x), and for the previous ` + 1 messages, each of the possible sequences of

messages w1; : : : ; w`+1 (for wi 2 f0; 1g) has probability 2�(`+1) (since r0; r1; : : : ; r` are

all independent and uniformly distributed). Thus the privacy requirement with respect

to the players in �2 holds.

3. To claim the privacy with respect to the in-players, note that the sequence of messages

received by each in-player Pj consists of �` random bits, followed by a sequence of

`0 � ` single bit messages (one bit for each of the gates that the player simulates),

followed by a message which is the value of the function. The sequence of `0 messages

that correspond to the simulated gates is of the form a01 � r1; : : : ; a
0

`0 � r`0, where a0i
is an input value to some gate (in the original circuit), xored with a bit ji which is

independent of the bits r1; : : : ; r`, and of the �` random bits communicated to the

in-player earlier. Therefore, given any input assignment ~x, the output message is �xed

by fn(~x), and the probability of each possible communication sequence for the previous

�`+ `0 messages is 2�(�`+`
0). This implies the privacy requirement with respect to each

of the in-players.

We can conclude the above with the following claim.

Claim 1: The protocol described above computes the function fn correctly, is O(mg

n
)-

random, and is 1-private with respect to the random player P1, the players in �2, and the

in-players.

The only players for which the privacy is not claimed yet are the out-players. For this,

we �rst need to describe how the actual computation is done, and which messages the out-

players receive (in Stage (3c) of the Simulation stage). We remark that there are several

ways of doing this computation, based on various private protocols in the literature. The

one we use here is based on ideas from [11].

� Stage (3c)

Recall that player Ai has some value a0 = a � ja � rd, player Bi has some value

b0 = b� jb� rd and the goal is for out-player Ci to have the value c
0 = c� sd, where c is

the output of the gate on the inputs a and b. Obviously, P1 does not know a and b (this

may violate the privacy), however it knows all the random bits. Thus, using the actual

5If n is odd then player Pn does not get a y message in the Inputs Transfer stage.
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values of the random bits, P1 can prepare a 2 � 2 matrix Z such that each of its rows

corresponds to a possible value of a0, each column corresponds to a possible value of

b0, and each (a0; b0) entry of the matrix contains the corresponding value c0. Now Ai; Bi

and P1 use � = 10 random bits for their messages (these � bits are already known to

all three of them). These � bits are viewed as two 2� 2 boolean matrices ZA and ZB

and two additional bits kA and kB. Player P1 uses the random bit kA to permute the

rows of Z (i.e., if kA = 0 it does nothing and if kA = 1 it switches the rows) and uses

kB to permute the columns of Z. Denote by Z 0 the resulted matrix. P1 now computes

a 2 � 2 matrix Z� = Z 0 � ZA � ZB. Player P1 then sends Z� to Ci. Player Ai knows

a0 and it also knows kA (received from P1 in the Coin Tossing stage) so it knows the

row a� = a0� kA of Z� which contains the value c0. It sends this index to Ci (since kA
is random this index gives no information on a0) and also ZA

a�, the corresponding row

of ZA (these are just two random bits). Similarly, Bi knows b
0 and it also knows kB

so it knows the column b� = b0 � kB of Z� which contains the value c0. It sends this

index to Ci and also ZB
b� , the corresponding column of ZB. Player Ci uses the row ZA

a�

it got from Ai and the column ZB
b� it got from Bi to \reveal" the (a�; b�) entry of Z�

and to get c0 as needed (note that for all other entries of Z player Ci misses some of

the random bits either from ZA or ZB and hence has no information on these entries;

it follows that Ci gets no information other than c0 = c� sd).

To formally prove the privacy property with respect to the out-player Ci, we proceed as

follows. The output of each such simulation is c0 = c� sd. Since sd is uniformly distributed

then so is c0 and hence the output gives no information on the input ~x. Now, �x the value

c0 and �x in addition values for a0; b0 and Z 0. For each such choice we claim that every

communication seen by Ci, which is consistent with the value of c0, has the same probability.

More precisely, note that the communication seen by Ci consists of 10 bits Z
�; a�; b�; ZA

a� and

ZB
b� . Out of the 210 possible values 29 are consistent with c0. We claim that each of them

appears with probability exactly 2�9. To see this, note that each of ZA
a� and ZB

b� is just a pair

of random bits. The value a� is the xor of a0 with a random bit, kA, hence it is uniformly

distributed and so is b�. Finally note that in Z� one bit is determined by the other values

and the value of c0 but since ZA and ZB are random matrices then each of the other 3 entries

of Z� is uniformly distributed. This implies the privacy with respect to a single simulation.

Finally, note that in all ` simulations in which Ci participates � independent random bits

are used, and also that s1; : : : ; s` are all independent. This implies the privacy with respect

to the out-players and concludes our construction.

We thus showed the following claim, which together with Claim 1 implies Lemma 2:

Claim 2: The protocol described is 1-private with respect to the out-players.
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5 From Protocols to Circuits (Proof of Lemma 3)

In what follows we make a series of transformations from a 1-private protocol which computes

a function fn using d random bits until we get a circuit that computes the function fn. First,

we want all messages in the protocol to be single bits. Any protocol can be made to satisfy

this condition by \breaking" each of the original messages into its binary representation6.

Henceforth, when we refer to messages, we refer to these binary messages.

The next step relies on the following lemma from [17]. This lemma says that the number of

di�erent communication strings that a player may see in a protocol which is 1-private and uses

a \small" amount of randomness is \small". This will be a key fact for our transformation.

More precisely, we restrict our attention to a speci�c deterministic protocol derived from

the original protocol by �xing speci�c random tapes R̂1; : : : ; R̂n for the n players (in such a

deterministic protocol the communication is a function of the input assignment ~x only) and

we give an upper bound on the number of communication strings that can be seen by every

player Pi in such a deterministic protocol.

Lemma 4: Consider a private d-random protocol A to compute a boolean function fn.

Let Ci(~x;R1; : : : ; Rn) denote the communication seen by player Pi on input ~x, when the n

random tapes for the players are R1; : : : ; Rn. Fix the random tapes of the n players to some

R̂1; : : : ; R̂n. Then, for any Pi, the communication C i(~y; R̂1; : : : ; R̂n) can assume at most 2d+2

di�erent values (over all choices of input assignments ~y 2 f0; 1gn).

Proof: In the �rst step of the proof, we �x an arbitrary input ~x and consider the possible

values of Ci(~x;R1; : : : ; Rn) over all di�erent choices of random tapes R1; : : : ; Rn. The d-

randomness of the protocol implies that the total number of coins tossed is at most d;

however, in di�erent executions these coins can be tossed by di�erent players. Nevertheless,

we claim that the number of di�erent values that Ci(~x;R1; : : : ; Rn) can assume is at most

2d. For each execution we can order the coin tosses of all players (i.e., the readings from

the local random tapes) according to the rounds of the protocol and within each round

according to the index of the players that toss them. The identity of the player to toss the

�rst coin is �xed by ~x. The identity of the player to toss any next coin is determined by ~x,

and the outcome of the previous coins. Therefore, the di�erent executions on input ~x can be

described using the following binary tree: In each node of the tree we have a name of a player

Pj that tosses a coin. The two outgoing edges from this node, labeled 0 and 1 according

to the outcome of the coin, lead to two nodes labeled Pk and P` respectively (j; k and `

6Formally, let M be the set of all di�erent messages that can be sent in the protocol in all di�erent runs.

Fix an arbitrary �xed-length binary encoding for the messages in M (note that M is �nite). We consider a

protocol where each player sends instead of a single message m 2 M , a sequence of boolean messages that

represent the binary encoding of m.
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need not be distinct) which are the identities of the players to toss the next coin depending

on the outcome of the random choice made by Pj . If no additional coin toss occurs, the

node is labeled \nil"; there are no outgoing edges from a nil node. By the d-randomness

property of the protocol, the depth of the above tree is at most d, hence it has at most 2d

root-to-leaf paths. Every possible run of the protocol is described by one root-to-leaf path.

Such a path determines all the messages sent in the protocol, which player tosses coins and

when, and the outcome of these coins. In particular each such path determines for any Pi the

communication C i(~x;R1; : : : ; Rn). Hence, Ci(~x;R1; : : : ; Rn) can assume at most 2d di�erent

values.

In the second step of the proof, we �rst �x a vector of random tapes for the players

R̂1; : : : ; R̂n. We now consider the deterministic protocol A0 derived from the private protocol

A by �xing these random tapes. We partition the input assignments ~x into 4 groups according

to the value of xi (0 or 1), and the value of fn(~x) (0 or 1). We argue that the number of

di�erent values that the communication string C i(~x; R̂1; : : : ; R̂n) can assume in A0, on the

di�erent input assignments within each such group, is at most 2d. For this, �x ~x in one

of these 4 groups and consider any other ~y pertaining to the same group. If the value of

Ci(~y; R̂1; : : : ; R̂n) is some communication Ci, then by the privacy requirement (with respect

to player Pi), communication Ci must also occur (in A) when the input is ~x, and the random

tapes are some R0

1; : : : ; R
0

n, where R
0

i = R̂i. Thus, the value of C i(~y; R̂1; : : : ; R̂n) must also

appear as C i(~x;R1; : : : ; Rn) for some random tapes R1; : : : ; Rn. However, by the �rst step

of the proof, for a �xed ~x, the communication string Ci(~x;R1; : : : ; Rn) can assume at most

2d values (over the random tapes R1; : : : ; Rn).

We now use the above lemma. Given a d-random private protocol A, we can transform

it into a deterministic protocol A0 in which each player can see (over all 2n inputs) at most

t = 2d+2 di�erent communication strings. This is done by �xing the random tapes of all

players (e.g., to the strings of 0's) and letting the players simulate the protocol A using these

random tapes (i.e., whenever in A a player tosses a random coin, in A0 the player behaves

as if this bit is 0). By Lemma 4, protocol A0 is a deterministic protocol in which each player

can see at most t di�erent communication strings. In addition, A0 is a correct protocol to

compute fn sinceA
0 generates a possible run of the (correct) protocol A. Note that A0 is not

a private protocol, and that all the other transformations presented below do not depend on

privacy.

The next transformation converts A0 into another (deterministic) protocol A00 in which

we limit the total number of messages transmitted. Although in A0 the number of di�erent

possible communication strings of each player is restricted to t, it might be that the number

of bits that the player receives is much larger. In A00 the number of bits received by each

player will be bounded by t � 1 bits.7 The intuition is that if there are more than t � 1

7Ideally, one could hope for each player Pi to receive only log2 t bits; this however may not be possible since
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bits that a player receives, then many of these bits are induced by other bits and hence can

be omitted (we have to make sure, however, that this omission still enables each player to

compute in time the messages it has to send). We associate a tree with the bits received

by a player Pi. Level (k; j) of this tree corresponds to the k'th bit that player Pj sends to

Pi (and the levels appear from top to bottom in a lexicographic order). We look at each

node in level (k; j) and the path leading to it and we put an outgoing edge with value 0

(respectively 1) if there is an input assignment which will cause player Pi to see the previous

bits with values as indicated by the path leading to this node, and for which the k'th bit

that player Pj sends to Pi is 0 (respectively 1). Observe that the root-to-leaves paths of this

tree correspond to the (at most) t communication strings that Pi may see. Thus, there are

at most t leaves in this tree, and hence the tree contains at most t� 1 nodes with out degree

2. If there is such a node in level (k; j), then in A00 player Pj will keep sending to Pi the

k'th bit as in A0; otherwise we omit this bit from A00. Since the total number of such nodes

is at most t � 1, then in A00 player Pi will receive at most t � 1 bits. All the bits that Pi
receives in nodes with out-degree 1 are �xed by previous messages and hence Pi can deduce

their value without actually receiving the bits. Player Pi can therefore compute any message

it has to send by simulating A0. Thus, for all Pi's, the protocol A00 is well de�ned. Note

that the protocol A00 is oblivious; that is, the senders, the receivers, and the rounds in which

messages are sent are independent of the input.

Our last stage is to transform A00 into a circuit. We will consider the messages sent in

protocol A00, and add to those a single \virtual output message" which will be the value of

the function computed. To do that we pick an arbitrary player Pi and de�ne the additional

message as the value of the function as computed by this player locally. As each player

receives at most t� 1 bits, altogether (including the output message) at most n � (t� 1) + 1

bits are exchanged (this does notmean that each player sends at most t�1 bits). To build the

circuit we employ a simple idea: The circuit is built out of sub-circuits, each computing one

of the messages. Each message sent by a player Pi in A
00 will be simulated by a sub-circuit

that gets as inputs xi (the input of Pi), and all the (at most t � 1) bits that Pi received so

far from other players. The bit to be sent by Pi is some function g of these (at most t) bits.

Clearly, using a simple construction we can implement a circuit that computes g with size

O(t � 2t), e.g., using the DNF form of g. However, this can be improved using the following

observation. As explained above, each player can see at most t di�erent views. Therefore,

it su�ces that each sub-circuit will compute meaningful results only for these t possible

views. Such a circuit can be easily constructed to have size of O(t2) (e.g., by using a DNF

representation with a single term for each of the t possible views on which 1 is the output).

Altogether, there are O(t � n) sub-circuits of size O(t2) each, and the total size of the circuit

messages are sent to Pi by various senders which may have only partial information about the communication

exchanged by other players.

12



is O(t3n) = 2O(d) �n. The output of the circuit is the output of the sub-circuit that computes

the additional \virtual message". Finally, note that the implementation of the sub-circuits

as described above may use negation gates (in addition to or and and gates). To get a

circuit that conforms to the de�nition we gave, we apply a standard transformation to the

whole circuit, so that only input variables are negated; this transformation may result in a

penalty of a factor of 2 in the size of the circuit. This concludes our construction for the

proof of Lemma 3.

6 Extensions and Open Problems

Looking at our constructions, one can see that they not only give a relationship between

the size of circuits and the amount of randomness used by the protocol but in addition,

they maintain the relationship between the depth of the circuit and the number of rounds

of the private protocol. Namely, given a circuit of depth ` our protocol can operate in O(`)

rounds8. For the other direction, given a d-random protocol that operates in r rounds, the

circuit that we obtain is of depth O(d) � r.

The most obvious open problem raised by this work is to prove, for some NP function

f , that it has no 1-private protocol that uses d = O(1) random bits. This would imply

that this function has no linear size circuit. A more modest goal would be to prove such

a lower bound for a speci�c constant d. Although we know that any boolean function can

be computed privately using a randomized protocol [5, 8], as of today the only known lower

bound on the amount of randomness necessary to 1-privately compute a function fn, is that

deterministically almost no function can be computed 1-privately (i.e., at least 1 random bit

is necessary).

Finally, we remark that the results of the present work (in particular, the randomness-

e�cient protocols) were subsequently extended to deal with the more general t-privacy case

[7].
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