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Abstract

In FOCS 2001 Barak et al. conjectured the existence of zero-knowledge arguments that
remain secure against resetting provers and resetting verifiers. The conjecture was proven true
by Deng et al. in FOCS 2009 under various complexity assumptions and requiring a polynomial
number of rounds. Later on in FOCS 2013 Chung et al. improved the assumptions requiring
one-way functions only but still with a polynomial number of rounds.

In this work we show a constant-round resettably-sound resettable zero-knowledge argument
system, therefore improving the round complexity from polynomial to constant. We obtain this
result through the following steps.

1. We show an explicit transform from any `-round concurrent zero-knowledge argument
system into an O(`)-round resettable zero-knowledge argument system. The transform
is based on techniques proposed by Barak et al. in FOCS 2001 and by Deng et al. in
FOCS 2009. Then, we make use of a recent breakthrough presented by Chung et al. in
CRYPTO 2015 that solved the longstanding open question of constructing a constant-
round concurrent zero-knowledge argument system from plausible polynomial-time hard-
ness assumptions. Starting with their construction Γ we obtain a constant-round resettable
zero-knowledge argument system Λ.

2. We then show that by carefully embedding Λ inside Γ (i.e., essentially by playing a mod-
ification of the construction of Chung et al. against the construction of Chung et al.)
we obtain the first constant-round resettably-sound concurrent zero-knowledge argument
system ∆.

3. Finally, we apply a transformation due to Deng et al. to ∆ obtaining a resettably-sound
resettable zero-knowledge argument system Π, the main result of this work.

While our round-preserving transform for resettable zero knowledge requires one-way func-
tions only, both Λ,∆ and Π extend the work of Chung et al. and as such they rely on the
same assumptions (i.e., families of collision-resistant hash functions, one-way permutations and
indistinguishability obfuscation for P/poly, with slightly super-polynomial security).
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1 Introduction

Private randomness is essential for many cryptographic tasks, including zero-knowledge (ZK)
proofs [GMR85]. A natural question regards the possibility of having ZK proofs in applications
where the computing machine is stateless and not equipped with a continuous source of randomness.

Resettable zero knowledge. The above question was put forth by Canetti, Goldreich, Gold-
wasser and Micali [CGGM00]. In particular, they considered a cheating verifier that mounts a reset
attack, where provers are forced to execute the protocol multiple times possibly on the same inputs
and random tapes, and without the ability to maintain states between executions. These attacks
include the case of stateless provers, as well as provers implemented by devices that can physically
be restored to their original states (e.g., through cloning, battery replacement).

More specifically, in [CGGM00], Canetti et al. introduced the notion of resettable zero knowledge
(rZK), in which the zero-knowledge property is required to hold even against cheating verifiers that
can reset the provers to the initial states therefore forcing them to play again with the same
randomnesses. This notion is closely related to concurrent zero knowledge (cZK) proposed earlier
by Dwork, Naor and Sahai [DNS98] where a cheating verifier can engage in multiple possibly
interleaving concurrent executions (called sessions) of the protocol. rZK is at least as hard to
achieve as cZK since a resetting cheating verifier through specific reset strategies can emulate
interleaving concurrent executions. In [GOVW12] Garg et al. showed that resettable statistical
zero knowledge is possible for several interesting languages.

Round complexity of cZK and rZK. Constant-round cZK under plausible hardness assump-
tions has been a long-standing challenging open question that received a positive answer in the
work of Chung et al. [CLP15] by means of indistinguishability obfuscation (iO) [CLP15]. Instead
the situation for rZK is worse. Canetti et al. in [CGGM00] constructed rZK proofs in the standard
model relying on standard cryptographic assumptions but with polynomial round complexity1.

The round complexity was then improved to poly-logarithmic in [KP01]. The state of affair
leaves the following open problem.

Open Problem 1: is there a construction for rZK with sub-logarithmic rounds?

Resettably-sound zero knowledge. Barak, Goldreich, Goldwasser and Lindell [BGGL01] con-
sidered the natural opposite setting, called resettably-sound zero knowledge (rsZK) arguments,
where soundness is required to hold even against cheating provers that can reset the verifiers forcing
them to re-use the same random tapes. The standard zero-knowledge property remains untouched.
They showed a constant-round construction assuming collision-resistant hash functions. The recent
work of [COP+14] reached optimal round complexity and assumptions (i.e., 4 rounds and one-way
functions).

The simultaneous resettability conjecture. Barak et al. in [BGGL01] conjectured the
existence of a zero-knowledge argument that is secure simultaneously against resetting verifiers
and against resetting provers: a resettably-sound resettable zero-knowledge argument system.
The conjecture was proven true by Deng, Goyal and Sahai [DGS09] that presented a construc-
tion with a polynomial number of rounds and assuming collision-resistant hash functions and

1In addition they proposed a mild setup assumption based on bare public keys showing that it is sufficient for
constant-round resettable zero knowledge. Follow up work optimized round complexity and complexity assumptions
for rZK with bare public keys [MR01, DCPV04, DL07, YZ07, SV12].
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trapdoor permutations. The computational assumptions have been improved to one-way func-
tions [OV12, COPV13, CPS13, BP13, BP15a], while the barrier of the polynomial round complexity
has remained untouched so far.

Open Problem 2: is there a construction for resettably-sound rZK with sub-polynomial rounds?

We stress that by relaxing the security against resetting verifiers from zero knowledge to witness
indistinguishability, then constant-round simultaneous resettability is possible. Indeed just 1 or 2
rounds (i.e., ZAPs) are needed to obtain proofs, and a larger constant number of rounds is sufficient
to obtain arguments of knowledge [COSV12].

1.1 Our Results

In this paper, we answer the above questions positively. In the main result we construct a constant-
round simultaneous resettable zero-knowledge argument for NP. Our result requires the existence
of families of collision-resistant hash functions, one-way permutations and indistinguishability ob-
fuscation (iO) for P/poly (with slightly super-polynomial security). These assumptions are the
same as the ones in [CLP15] that showed a constant-round concurrent zero-knowledge argument for
NP. Our result makes uses of the protocol of [CLP15] twice in some nested way. More precisely,
the first time we use the protocol of [CLP15] Γ is to obtain a constant-round rZK argument Λ.
Then we start again with Γ and we modify it by using Λ (that is a modification of Γ) as subprotocol
in the opposite direction (i.e., the verifier will prove something to the prover). Therefore we roughly
use the protocol of [CLP15] against the protocol of [CLP15] which is somehow intriguing. This
nested use of the protocol of [CLP15] allows us to obtain a constant-round resettably-sound con-
current zero-knowledge argument ∆. We can then apply a compiler due to [DGS09] to ∆ therefore
obtaining our main argument system Π that is secure simultaneously against resetting provers and
resetting verifiers needing only a constant number of rounds.

We now give our formal theorems that specify the precise complexity assumptions.

Theorem 1.1. Assuming the existence of one-way functions, than any `-round concurrent zero-
knowledge argument system can be transformed in a O(`)-round resettable zero-knowledge argument
system.

Theorem 1.2. Assuming the existence of collision-resistant hash functions, one-way permutations
and indistinguishability obfuscation for P/poly (with slightly super-polynomial security), there ex-
ists a constant-round resettably-sound resettable zero-knowledge argument system for NP.

1.2 Main Tools and Our New Techniques

Our constructions rely on new ideas as well as a combined use of several techniques used in pre-
vious results on concurrent, resettable and resettably-sound zero knowledge. We start by briefly
describing the important tools that we use along with our new techniques for our constructions.

Barak’s non-black-block protocol. The starting point is Barak’s non-black-box zero-knowledge
argument for NP [Bar01] that works as follows. The prover P sends a commitment c ∈ {0, 1}n of
0 to the verifier V . The verifier V then sends a uniformly generated random string r ∈ {0, 1}2n.
Finally, the prover gives a witness-indistinguishable universal argument (WIUA) that x ∈ L or
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there exists σ ∈ {0, 1}n such that c is a commitment of a program M such that M(σ) = r2. The
soundness follows from the binding of the commitment scheme and the soundness of the WIUA as
any program M committed by the cheating prover does not have r in its support with overwhelming
probability. For the zero-knowledge property, the simulator uses the code of the adversary. Indeed
it commits to a program M corresponding to the code of V ∗, the cheating verifier. Let σ be the
commitment. We have that M(σ) = r and σ is short compared to r.

Chung et al.’s constant-round cZK argument. In [CLP15], Chung et al. construct a
constant-round cZK argument by using unique P-certificate systems [CLP13] with delegatable
CRS generation and iO. Informally, a P-certificate system allows an efficient prover to convince
a verifier of the validity of any deterministic polynomial-time computation M(x) = y using a cer-
tificate of fixed (polynomial) length, independent of the size and the running time of M . The
verifier can also verify the certificate in fixed (polynomial) time, independent of the running time of
M . In a P-certificate system with delegatable CRS generation, the certificate is generated using a
common reference string (CRS) that can be computed by using resources delegated by the verifier.
More specifically, in this P-certificate system, the P-certificate verifier generates public and private
parameters, PP and κ, and sends PP to the P-certificate prover. The P-certificate prover uses
the public parameter PP and the statement q = (M,x, y) to deterministically compute a short
digest d, whose length is independent of the length of q, and sends it to the P-certificate verifier.
The P-certificate verifier then computes the CRS from d and κ. Finally, the P-certificate prover
computes the certificate from the CRS and q. The P-certificate system is unique if there exists at
most one accepted certificate for any statement and CRS.

The argument of [CLP15] proceeds similarly to Barak’s argument with the following modifica-
tions. In the last step, instead of requiring the prover P to prove that x ∈ L or there exists σ such
that c is a commitment to a program M such that M(σ) = r, the prover provides a special-sound
witness-indistinguishability proof that x ∈ L or there exists a P-certificate π which certifies that
M(σ) = r for some short string σ. Additionally, P also commits and gives a WIUA proving that
either x ∈ L or there exists a P-certificate for the statement q = (M,σ, r) before receiving the
public parameter PP from V . Note that since the honest prover of the protocol in [CLP15] has a
witness for x ∈ L, it can just ignore CRS, d and q, and simply commit to zeroes. In order to allow
the zero-knowledge simulator (note that an honest prover will just use the witness for x ∈ L) to
compute the CRS from d and κ, the verifier sends an obfuscated program with κ embedded inside,
that allows the simulator to compute CRS from d committed earlier. Finally, V also provides a
zero-knowledge argument that the obfuscated program is computed correctly.

The simulator does not know a witness for x ∈ L but is instead able to commit to the code of
the adversary. More formally, the simulator is divided in two parts: S1, which takes a P-certificates
πi in the i-th round as an input, and interacts with the verifier V ∗, and S2 which, in the i-th round
provides P-certificates certifying that S1 on input (1, π1), . . . , (i − 1, πi−1) outputs mi. Instead of
committing to a program M , using the verifier V ∗’s code, such that M(σ) = r for some short string
σ, the simulator S = (S1, S2) commits to a program S̃1. The program, on input (1n, j, s), runs
an interaction between S1 and V ∗ for j rounds using s as a seed to generate pseudorandom coins
while having an access to the oracle OVcert which provides P-certificates. This prevents the nesting
of concurrent sessions which may result in the blow-up in the running time as the expensive part of
S consists in generating the P-certificates. The simulator of the protocol in [CLP15] can therefore

2Since the size of M may not be known in advance, the commitment is to the hash of the program M using a
hash function h sampled from a family of collision-resistant hash functions chosen in the beginning of the protocol
by the verifier. The soundness is also based on the collision resistance of h.
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succeed in the special-sound witness-indistinguishability proof for the statement x ∈ L or there

exists a P-certificate π which certifies that S̃
OVcert
1 (1n, j, s) = r for some short string (1n, j, s) using

the output from the oracle as a witness.

Deng, Goyal and Sahai’s transformation. In [GS08, DGS09], Deng, Goyal and Sahai con-
struct a hybrid resettably-sound and relaxed concurrent zero-knowledge argument ΠDGS . Then
they apply a series of transformations to achieve simultaneous resettability.

Relaxed concurrent zero knowledge allows verifiers to interact in multiple sessions with inde-
pendent provers. However, the zero-knowledge property only guarantees for “relaxed” concurrent
verifiers whose random coins are fixed in the beginning of each session, independently of sessions
that start after that session. Note that any concurrent zero-knowledge argument/proof is also
relaxed concurrent zero-knowledge as any relaxed concurrent verifier is also a concurrent verifier.

Hybrid resettable soundness means that the verifier can be separated into two parts, V1 and V2.
V1 directly interacts with P , may relay some messages between P and V2, and can be reset by a
cheating prover. V2 only interacts with V1, cannot be reset by a cheating prover, and is responsible
to decide whether to “accept” or “reject” the argument. Moreover, for each determining message
(the first message V2 receives in the protocol), P cannot find two different messages that P can
convince V1 to pass to V2 in each round. We refer to [GS08] for a precise definition. Note that any
resettably-sound argument is also hybrid resettably sound by letting V1 behave as V except that
instead of accepting the argument, it sends a message to V2, and V2 always accepts the argument
when it receives a message from V1.

The transformation of Deng et al. uses ZAPs and one-way functions to achieve simultaneous
resettability and only increases the round complexity by a constant factor. However, the round
complexity of ΠDGS is polynomial [DGS09]. Thus, their simultaneously resettable argument system
also requires polynomial rounds.

Inapplicability of the transformation of [DGS09] to the construction of Chung et
al. [CLP15]. Intuitively, one may try to apply the transformation of [DGS09] to the constant-
round concurrent zero-knowledge argument in [CLP15] to get simultaneous resettability. However,
in order for the result of the transformation to be simultaneously resettable, it is required that
the starting protocol be relaxed concurrent zero-knowledge and hybrid resettably sound. While
the protocol in [CLP15] is concurrent zero-knowledge, which implies that it is relaxed concurrent
zero-knowledge, we argue that if the (non-resettable) ZK argument (proving that the obfuscated
program is computed correctly) is not zero-knowledge against resetting verifiers, then the protocol
can not be proved hybrid resettably sound. Two reasons follow below.

1. Suppose in the extreme case that there exists an adversarial resetting prover for the argument
of [CLP15] that runs a resetting adversary AZK in the (non-resetting) zero-knowledge subpro-
tocol in which the honest verifier proves that the obfuscated program is computed correctly.
Remember that the zero-knowledge subprotocol could also be an argument of knowledge ad-
mitting a black-box (rewinding) extractor. By managing to runAZK , the adversarial resetting
prover could succeed in extracting some relevant information (e.g., the secret parameter for
P-certificate CRS generation, that is used in the (non-resettable) ZK argument proven by the
verifier to prover to guarantee the correctness of the obfuscated program). However, accord-
ing to the definition of hybrid resettable soundness, we need to consider two separate parts of
the verifier V = (V1, V2). One out of V1 and V2 will run as prover of the ZK argument proving
that the obfuscated program is generated correctly. If the (non-resettable) ZK argument is
played by V1 (as a prover), which can be reset, the malicious prover of the protocol in [CLP15]
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Theorem 3.4

Theorem 4.2

Figure 1: Our Transformations of Zero-Knowledge Argument Systems

can run AZK to learn some relevant information (.e.g, the secret parameter), and this can
potentially be used to generate a certificate for a false statement. On the other hand, if the
(non-resettable) ZK argument is played by V2 (as a prover) then since the messages of the
verifier of this argument are not fixed by a determining message in the protocol of [CLP15],
we have that V2 can receive two different messages for the same determining message, and
thus, even in this case, the protocol is not hybrid resettably sound.

2. The P-certificate generation in the protocol of [CLP15] cannot be transformed into a resettably-
sound protocol using the techniques of [BGGL01]. This is because the P-certificate system
is not public coin. Recall that the proof of resettable soundness in [BGGL01] uses the re-
duction to the non-resettable case by starting (by contradiction) with a (successful) resetting
prover. If we repeat here the same reduction, we have that the non-resetting prover runs
all but one session by simulating the verifier itself. Of course this requires to generate legit
verifier messages under reset attacks. When trying to send the legit verifier messages, the
non-resetting prover may send the obfuscated program of the real verifier of the reduction to
the resetting prover, and the resetting prover may reset to the step after which it receives
the public parameter for the P-certificate. In that case, the non-resetting prover will not be
able to generate a new obfuscated program as specified in the protocol without knowing the
secret parameter.
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1.3 Our Approach

In order to get a constant-round resettably-sound concurrent zero-knowledge argument system, we
consider the protocol from [CLP15] which is constant round and concurrent zero knowledge, but
not resettably sound. As discussed above, there are two main problems that separate the protocol
of [CLP15] from resettable soundness: the non-resettable ZK argument for iO and the delegatable
CRS generation of the P-certificate system, which cannot be generated without knowing the secret
parameter generated in the earlier step.

Solving the first problem. We resolve the first problem by constructing a constant-round
resettable ZK argument from the concurrent ZK argument of [CLP15]. This transformation is
implicit in some previous works on the topic [BGGL01, DGS09]. We explicitly present it here for
completion.

Unlike the concurrent verifier, the resetting verifier can exploit the reuse of the random tape
during the resetting attack by sending different messages in order to extract additional information
from the prover. We prevent such behavior by requiring 1) the verifier to commit to its random
tape using a statistically binding commitment scheme and 2) to provide a zero-knowledge argument
that it actually uses the random tape it has committed to. Note that since the verifier can reset
the prover, a zero-knowledge argument without resettable soundness cannot be used by the verifier
to prove that the verifier uses the committed random bits. Thus, the argument system needs to
be resettably sound. In order to preserve the round complexity, this subprotocol must be constant
round. This can be done using the 4-round resettably-sound zero-knowledge argument by Chung
et al [COP+14]. A similar technique has been used in [GS09] for resettably-secure computation.

We note that the constant-round rsZK argument and the commitment scheme can be con-
structed from one-way functions, which is assumed for the constant-round concurrent zero-knowledge
argument in [CLP15]. Thus, applying this transformation on the protocol does not require any ex-
tra assumption. It turns out that the technique we use can be generalized to a compiler that works
with any concurrent ZK protocol. The round complexity of the resulting protocol only increases
by a constant factor.

Our compiler turning any concurrent ZK argument into a resettable ZK argument works as
follows. First, we replace the random coin used by the prover to generate his messages with outputs
of a PRF. This step allows a prover with fixed random tape to send different messages when the
resetting verifier changes its messages after resetting similarly to the technique used in [BGGL01]
against resetting provers. Additionally, the verifier commits to its random coins used in each round
at the beginning of the protocol. After sending each message, the verifier gives a constant-round
resettably-sound ZK argument that it uses the random coins committed in the first round. This
modification ensures that the verifier follows the protocol in every session.

Solving the second problem. In order to solve the second problem, we observe that while the
protocol of [CLP15] is not public-coin, it is “almost public-coin”. By almost public-coin, we mean
that, beside the ZK argument which is replaced by rZK argument above, there is only one message
from the verifier that cannot be generated independently as public-coin, but depends on a hidden
randomness. Thus, we modify the technique in [BGGL01] to resolve the problem in two steps as
follows.

First, we consider a modified version of the protocol of [CLP15], in which we can prove its
(non-resettable) soundness. In this protocol, the round in which the message from V cannot be
generated with uniformly random coins is repeated m times, where m = poly(n) is the upper
bound on the running time of a cheating prover P ∗. More specifically, after receiving the public
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parameter for P-certificate, the prover for the modified protocol PS repeatedly commits to and
proves the validity of the digest d of his statement while the verifier VS repeatedly replies with the
obfuscated program verifying the committed value and output the CRS for the P-certificate. PS
then chooses which commitment and obfuscated program pair PS will use to complete the protocol.
Because of the security of the iO, PS does not learn the secret parameter for the P-certificate even
after m repetitions. Thus, the resulting protocol is still sound.

Then we reduce the resettable soundness of the final protocol to the non-resettable soundness
of the above protocol with polynomial reduction in success probability as follows. Given a resetting
prover P ∗, we construct a non-resetting prover P ∗S by internally simulating P ∗ interaction with
a verifier V , and randomly choosing which of the m repetitions will lead to accepting transcript.
For other repetitions, P ∗S will generate the parameters for P-certificate itself to get around the
non-public-coin situation. In the case that P ∗S guesses the accepting transcript correctly , which
occurs with probability 1/m, it will convince the verifier VS with the accepting transcript from the
simulation.

1.4 Open Questions

Unlike the above compiler from concurrent ZK to resettable ZK, our construction for resettably
sound resettable zero knowledge uses in a non-black-box way the protocol of [CLP15].

Our work leaves open the natural questions of producing a generic round-preserving transform
from cZK to rZK, and of obtaining constant-round resettably sound resettable zero knowledge
under more standard complexity assumptions.

2 Definitions

A polynomial-time relation R is a relation for which it is possible to verify in time polynomial in
|x| whether R(x,w) = 1. Let us consider an NP-language L and denote by RL the corresponding
polynomial-time relation such that x ∈ L if and only if there exists w such that RL(x,w) = 1. We
will call such a w a valid witness for x ∈ L. Let λ denote the security parameter. A negligible
function ν(λ) is a non-negative function such that for any constant c < 0 and for all sufficiently
large λ, ν(λ) < λc. We will denote by Prr[X] the probability of an event X over coins r, and Pr[X]
when r is not specified. The abbreviation “PPT” stands for probabilistic polynomial time. For a
randomized algorithm A, let A(x; r) denote running A on an input x with random coins r. If r
is chosen uniformly at random with an output y, we denote y ← A(x). For a pair of interactive
Turing machines (P, V ), let 〈P, V 〉(x) denotes V ’s output after interacting with P upon common

input x. We say V accepts if 〈P, V 〉(x) = 1 and rejects if 〈P, V 〉(x) = 0. We denote by view
P (w)
V (x,z)

the view (i.e., its private coins and the received messages) of V during an interaction with P (w)
on common input x and auxiliary input z. We will use the standard notion of computational
indistinguishability [GM84].

We now give definitions for interactive proof/argument systems with all variants that are useful
in this work.

Definition 2.1 (interactive proofs [GMR85]). An interactive proof system for the language L, is
a pair of interactive Turing machines (P, V ) running on common input x such that:

• Efficiency: P and V are PPT.

• Completeness: For every λ ∈ N and for every pair (x,w) such that RL(x,w) = 1,

Pr[〈P (w), V 〉(1λ, x) = 1] = 1.
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• Soundness3: There exists a negligible function ν(·) such that for every pair of interactive
Turing machines (P ∗1 , P

∗
2 )

Pr[(x, z)← P ∗1 (1λ) : x /∈ L ∧ 〈P ∗2 , V 〉(1λ, x) = 1] < ν(λ).

In the above definition we can relax the soundness requirement by considering P ∗ as PPT. In
this case, we say that (P, V ) is an interactive argument system [BCC88].

Definition 2.2 (zero-knowledge arguments [GMR85]). Let (P, V ) be an interactive argument sys-
tem for a language L. We say that (P, V ) is zero knowledge (ZK) if, for any probabilistic polynomial-
time adversary V ∗, there exists a probabilistic polynomial-time algorithm SV ∗ such for all auxiliary

inputs z and all pairs (x,w) ∈ RL the ensembles {viewP (w)
V ∗(x,z)} and {SV ∗(x, z)} are computationally

indistinguishable.

Suppose (P, V ) is used as a sub-protocol of another interactive protocol (A1, A2) where A1

runs P and A2 runs V . We call a Turing machine A1
α a residual prover if A1

α runs A1 on inputs
α = (α1, . . . , α`) from A2 up to and including the `th round when A1 invokes P . A residual
verifier A2

α is defined similarly by switching A1 and A2. Note that the residual prover is invoked
when simulating V (for soundness) while the residual verifier is invoked when simulating P (for
zero-knowledge).

Definition 2.3 (resetting adversary [CGGM00]). Let (P, V ) be an interactive proof or argument
system for a language L, t = poly(λ), x̄ = x1, . . . , xt be a sequence of common inputs and w̄ =
w1, . . . , wt the corresponding witnesses (i.e., (xi, wi) ∈ RL) for i = 1, . . . , t. Let r1, . . . , rt be
independent random tapes. We say that a PPT V ∗ is a resetting verifier if it concurrently interacts
with an unbounded number of independent copies of P by choosing for each interaction the value i so
that the common input will be xi ∈ x̄, and the prover will use witness wi, and choosing j so that the
prover will use rj as randomness, with i, j ∈ {1, . . . , t}. The scheduling or the messages to be sent
in the different interactions with P are freely decided by V ∗. Moreover we say that the transcript of
such interactions consists of the common inputs x̄ and the sequence of prover and verifier messages

exchanged during the interactions. We refer to view
P (w̄)
V ∗(x̄,z) as the random variable describing the

content of the random tape of V ∗ and the transcript of the interactions between P and V ∗, where
z is an auxiliary input received by V ∗.

Definition 2.4 (resettable zero knowledge [CGGM00]). Let (P, V ) be an interactive argument
system for a language L. We say that (P, V ) is resettable zero knowledge (rZK) if, for any PPT
resetting verifier V ∗ there exists a expected probabilistic polynomial-time algorithm SV ∗ such that

the for all pairs (x̄, w̄) ∈ RL the ensembles {viewP (w̄)
V ∗(x̄,z)} and {SV ∗(x̄, z)} are computationally

indistinguishable.

The definition of concurrent zero knowledge can be seen as a relaxation of the one of resettable
zero knowledge. The adversarial concurrent verifier has the same power of the resetting verifier
except it can not ask the prover to run multiple sessions with the same randomness.

Definition 2.5 (concurrent adversary). Let (P, V ) be an interactive proof or argument system for
a language L, t = poly(λ), x̄ = x1, . . . , xt be a sequence of common inputs and w̄ = w1, . . . , wt
the corresponding witnesses (i.e., (xi, wi) ∈ RL) for i = 1, . . . , t. We say that a PPT V ∗ is a

3This version of soundness given by [CLP15] is slightly different from standard version with one Turing machine
P ∗. Separating them makes the proof cleaner while it is still equivalent to the standard version.
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concurrent verifier if it concurrently interacts with an unbounded number of independent copies of
P by choosing for each interaction the value i so that the common input will be xi ∈ x̄, and the
prover will use witness wi. Each copy of P runs with independent randomness. The scheduling
or the messages to be sent in the different interactions with P are freely decided by V ∗. Moreover
we say that the transcript of such interactions consist of the common inputs x̄ and the sequence

of prover and verifier messages exchanged during the interactions. We refer to view
P (w̄)
V ∗(x̄,z) as

the random variable describing the content of the random tape of V ∗ and the transcript of the
interactions between P and V ∗, where z is an auxiliary input received by V ∗.

Definition 2.6 (concurrent zero knowledge [DNS98]). Let (P, V ) be an interactive argument system
for a language L. We say that (P, V ) is concurrent zero knowledge (cZK) if, for any PPT concurrent
verifier V ∗ there exists a probabilistic polynomial-time algorithm SV ∗ such that the for all pairs

(x̄, w̄) ∈ RL the ensembles {viewP (w̄)
V ∗(x̄,z)} and {SV ∗(x̄, z)} are computationally indistinguishable.

Definition 2.7 (witness indistinguishability [FS90]). Let L be a language in NP and RL be the
corresponding relation. An interactive argument (P, V ) for L is witness indistinguishable (WI)
if for every verifier V ∗, every pair (w0, w1) such that (x,w0) ∈ RL and (x,w1) ∈ RL and every
auxiliary input z, the following ensembles are computationally indistinguishable:

{viewP (w0)
V ∗(x,z)} and {viewP (w1)

V ∗(x,z)}.

Definition 2.8 (resettable WI [CGGM00]). Let L be a language in NP and RL be the correspond-
ing relation. An interactive argument (P, V ) for L is resettable witness indistinguishable (rWI) if
for every PPT resetting verifier V ∗ every t = poly(λ), and every pair (w̄0 = (w0

1, . . . , w
0
t ), w̄

1 =
(w1

1, . . . , w
1
t )) such that (xi, w

0
i ) ∈ RL and (xi, w

1
i ) ∈ RL for i = 1, . . . , t, and any auxiliary input z,

the following ensembles are computationally indistinguishable:

{viewP (w̄0)
V ∗(x̄,z)} and {viewP (w̄1)

V ∗(x̄,z)}.

In [DN00], a construction of 2-round resettable witness-indistinguishable proof based on NIZK
proofs has been shown, and then in [GOS06], a non-interactive resettable witness-indistinguishable
proof has been shown by relying on specific number-theoretic assumptions, and from iO [BP15b].

Let us recall the definition of resettable soundness due to [BGGL01].

Definition 2.9 (resettably-sound arguments [BGGL01]). A resetting attack of a cheating prover
P ∗ on a resettable verifier V is defined by the following two-step random process, indexed by a
security parameter λ.

1. Uniformly select and fix t = poly(λ) random-tapes, denoted r1, . . . , rt, for V , resulting in
deterministic strategies V (j)(x) = Vx,rjdefined by Vx,rj (α) = V (x, rj , α),4 where x ∈ {0, 1}λ

and j ∈ [t]. Each V (j)(x) is called an incarnation of V .

2. On input 1λ, machine P ∗ is allowed to initiate poly(λ)-many interactions with the V (j)(x)’s.
The activity of P ∗ proceeds in rounds. In each round P ∗ chooses x ∈ {0, 1}λ and j ∈ [t], thus
defining V (j)(x), and conducts a complete session with it.

Let (P, V ) be an interactive argument for a language L. We say that (P, V ) is a resettably-sound
argument for L if the following condition holds:

4Here, V (x, r, α) denotes the message sent by the strategy V on common input x, random-tape r, after seeing the
message-sequence α.
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• Resettable-soundness: For every polynomial-size resetting attack, the probability that in some
session the corresponding V (j)(x) has accepted and x /∈ L is negligible.

Definition 2.10 (commitment scheme). Given a security parameter 1λ, a commitment scheme
com is a two-phase protocol between two PPT interactive algorithms, a sender S and a receiver
R. In the commitment phase S on input a message m interacts with R to produce a commitment
c = com(m). In the decommitment phase, S sends to R a decommitment information d such that
R accepts m as the decommitment of c.

Formally, we say that com is a perfectly binding commitment scheme if the following properties
hold:

Correctness:

– Commitment phase. Let c = com(m) be the commitment of the message m given as
output of an execution of com where S runs on input a message m. Let d be the private
output of S in this phase.

– Decommitment phase5. R on input m and d accepts m as decommitment of c.

Statistical (resp. Computational) Hiding ([Lin10]): for any adversary (resp. PPT
adversary) A and a randomly chosen bit b ∈ {0, 1}, consider the following hiding experiment
ExpHidingbA,com(λ):

– Upon input 1λ, the adversary A outputs a pair of messages m0,m1 that are of the same
length.

– S on input the message mb interacts with A to produce a commitment of mb.

– A outputs a bit b′ and this is the output of the experiment.

For any adversary (resp. PPT adversary) A, there exist a negligible function ν, s.t.:∣∣∣Pr[ExpHiding0
A,com(λ) = 1]− Pr[ExpHiding1

A,com(λ) = 1]
∣∣∣ < ν(λ).

Statistical (resp. Computational) Binding: for every commitment com generated during
the commitment phase by a possibly malicious unbounded (resp. malicious PPT) sender S∗

there exists a negligible function ν such that S∗, with probability at most ν(λ), outputs two
decommitments (m0, d0) and (m1, d1), with m0 6= m1, such that R accepts both decommit-
ments.

We also say that a commitment scheme is perfectly binding iff ν(λ) = 0.

In this paper, we consider non-interactive perfectly binding computationally hiding commit-
ment schemes, which can be constructed from one-to-one one-way functions [Gol01]. Two-message
statistically binding commitment schemes can be obtained from one-way functions [Nao91, HILL99].

Definition 2.11 (pseudorandom function (PRF)). A family of functions {fs}s∈{0,1}∗ is called pseu-
dorandom if for all adversarial PPT machines A, for every positive polynomial p(), and sufficiently
large λ ∈ N, it holds that

|Pr[Afs(1λ) = 1]− Pr[AF (1λ) = 1]| ≤ 1

p(λ)
.

where |s| = n and F denotes a truly random function.
5In this paper we consider a non-interactive decommitment phase only.
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Definition 2.12 (indistinguishability obfuscation). A uniform machine iO is an indistinguisha-
bility obfuscator for a class of deterministic circuits {Cλ}λ∈N if it satisfies the following:

• Correctness: For all security parameter λ ∈ N, for all C ∈ Cλ, for all input x,

Pr[Λ← iO(1λ, C) : Λ(x) = C(x)] = 1.

• Security: For every non-uniform PPT sampleable distribution D and adversary A, there exists
a negligible function ν such that for sufficiently large λ ∈ N, if

Pr[(C1, C2, z)← D : ∀x,C1(x) = C2(x)] > 1− ν(λ),

then
Pr[(C1, C2, z)← D : A(iO(1λ, C1), z) = 1]
−Pr[(C1, C2, z)← D : A(iO(1λ, C2), z) = 1]

≤ ν(λ).

We say an iO is super-polynomially secure if there is a super-polynomial function T such
that the above condition holds for all adversary A running in time at most T (λ).

Let RU = {((M,x, t), w) : M accepts (x,w) in t steps}, SU = {(M,x, t) : ∃w, ((M,x, t), w) ∈
RU} and RU (M,x, t) = {w : ((M,x, t), w) ∈ RU}. Let TM (x,w) denote the number of steps made
by M on input (x,w).

Definition 2.13 (universal argument [BG08]). A pair of interactive Turing machines (P, V ) is
called a universal argument system if it satisfies the following properties:

• Efficient verification: There exists a polynomial p such that for any y = (M,x, t), the to-
tal time spent by the (probabilistic) verifier V , on common input y, is at most p(|y|). In
particular, all messages exchanged in the protocol have length smaller than p(|y|).

• Completeness via a relatively efficient prover: For every ((M,x, t), w) ∈ RU ,

Pr[〈P (w), V 〉(M,x, t) = 1] = 1.

Furthermore, there exists a polynomial q such that for every ((M,x, t), w) ∈ RU , the total
time spent by P (w), on common input (M,x, t), is at most q(|M |+ TM (x,w)) ≤ q(|M |+ t).

• Computational soundness: For every polynomial-size circuit family {P̃n}n∈N, and every (M,x, t) ∈
{0, 1}n \ SU , there exists a negligible function ν such that

Pr[〈P̃n, V 〉(M,x, t) = 1] < ν(n).

• Weak proof-of-knowledge property: For every positive polynomial p there exists a positive poly-
nomial p′ and a probabilistic polynomial-time oracle machine E such that the following holds:
for every polynomial-size circuit family {P̃n}n∈N, and every sufficiently long y = (M,x, t) ∈
{0, 1}∗, if Pr[〈P̃n, V 〉(y) = 1] > 1/p(|y|), then

Prr[∃w = w1 . . . wt ∈ RU (y), ∀i ∈ [t], EP̃n
r (y, i) = wi] > 1/p′(|y|)

where EP̃n
r denotes the function defined by fixing the random-tape of E to r and providing it

with oracle access to P̃n.
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By abusing the notation, we let E be the oracle machine, running in time poly(n) · t, that
extracts the whole witness. We call E a global proof-of-knowledge extractor. Note that E is not
necessarily polynomial time.

Definition 2.14 (witness-indistinguishable universal argument [BG08]). A universal argument sys-
tem, (P, V ), is called witness-indistinguishable (WIUA) if, for every polynomial p, every polynomial-
size circuit family {V ∗n }n∈N, and every three sequences 〈yn = (Mn, xn, tn)〉n∈N, 〈w1

n〉n∈N and 〈w2
n〉n∈N

such that |yn| = n, tn ≤ p(|xn|) and (yn, w
1
n), (yn, w

2
n) ∈ RU , the probability ensembles {〈P (w1

n), V ∗n 〉(yn)}n∈N
and {〈P (w2

n), V ∗n 〉(yn)}n∈N are computationally indistinguishable.

Theorem 2.15 ([BG08]). Assuming the existence of families of collision-resistant hash functions,
there exists a 4-round public-coin WIUA.

Definition 2.16 (special-sound witness-indistinguishable proof [CLP15]). A 4-round public-coin
interactive proof for the language L ∈ NP with witness relation RL is special-sound with respect to
RL, if for any two transcripts (δ, α, β, γ) and (δ′, α′, β′, γ′) such that the initial two messages, (δ, α)
and (δ′, α′), are the same but the challenges β and β′ are different, there is a deterministic procedure
to extract the witness from the two transcripts and runs in polynomial time. Special-sound proofs
with witness-indistinguishability (WISSP) for languages in NP can be based on one-way functions.

Definition 2.17 (ZAP [GS08]). ZAPs are two round public coin witness indistinguishable proofs
introduced by Dwork and Naor [DN00]. ZAPs further have the special property that the first message
(sent by the prover) can be reused for multiple proofs. As noted in [BGGL01], any ZAP system
already has the property of resettable soundness. Furthermore, resettable witness indistinguishability
property can be obtained by applying the transformation in [CGGM00]. We refer to the resulting
system as an rZAP system having the property of resettable soundness as well as resettable witness
indistinguishability.

2.1 P-certificate with Delegatable CRS Generation

For c ∈ N, let Lc = {(M,x, y) : M(x) = y within |x|c steps}. Let TM (x) denote the number of
steps made by M on input x.

Definition 2.18 (P-certificate system [CLP15]). A tuple of PPT algorithms (Gen,Pcert, Vcert) is a
P-certificate system in the CRS model if there exist polynomials lCRS and lπ such that for c, λ ∈ N
and q = (M,x, y) ∈ Lc

• CRS Generation: CRS ← Gen(1λ, c), where Gen runs in time poly(λ). The length of CRS
is bounded by lCRS(λ).

• Proof Generation: π ← Pcert(1
λ, c, CRS, q), where Pcert runs in time poly(λ, |x|, TM (x)) with

TM (x) ≤ |x|c. The length of π is bounded by lπ(λ).

• Proof Verification: b = Vcert(1
λ, c, CRS, q, π), where Vcert runs in time poly(λ, |q|).

Completeness: For every c, d, λ ∈ N and q = (M,x, y) ∈ Lc such that |q| ≤ λd,

Pr[CRS ← Gen(1λ, c), π ← Pcert(1
λ, c, CRS, q) : Vcert(1

λ, c, CRS, q, π) = 1] = 1.
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Strong soundness: There exists a super-polynomial function T (λ) = λω(1) and a super-constant
function C(λ) = ω(1) such that for every probabilistic algorithm P ∗ with running time bounded by
T (λ), there exists a negligible function ν such that for every λ ∈ N and c ≤ C(λ),

Pr

 (q, st)← P ∗(1λ, c),
CRS ← Gen(1λ, c),
π ← P ∗(st, CRS)

: Vcert(1
λ, c, CRS, q, π) = 1 ∧ q /∈ Lc

 ≤ ν(λ).

A P-certificate system is two-message if the generation of the CRS Gen also depends on the
statement q, i.e. CRS ← Gen(1λ, c, q). The two-message P-certificate system can be considered
an interactive protocol as follows: the prover sends q to the verifier; the verifier replies with CRS ←
Gen(1λ, c, q); the prover sends π ← Pcert(1

λ, c, CRS, q); the verifier accepts if Vcert(1
λ, c, CRS, q, π) =

1.
A two-message P-certificate system has a simple verification procedure if the verification al-

gorithm Vcert only depends on the security parameter 1λ, the CRS and the proof π, i.e. it is
independent of the statement q and the language index c. In this case, we denote the verification
by Vcert(1

λ, CRS, π).
A P-certificate system is unique if for every λ, c ∈ N, CRS, q ∈ {0, 1}∗, there exists at most

one π ∈ {0, 1}∗ such that Vcert(1
λ, c, CRS, q, π) = 1.

Note that the uniqueness of a P-certificate holds even against invalid CRS.

Definition 2.19 (delegatable CRS generation [CLP15]). A two-message P-certificate (Gen,Pcert,Vcert)
has delegatable CRS generation if Gen consists of three subroutines: SetUp, PreGen and CRSGen,
and there exist polynomials ld and lCRS satisfying the following properties:

• Parameters Generation: (PP,K) ← SetUp(1λ, c), where SetUp is probabilistic and runs in
time poly(λ). PP is a public parameter and K is a secret parameter.

• Statement Processing: d = PreGen(PP, q), where PreGen is deterministic and runs in time
poly(λ, |q|) and the length of d is bounded by ld(λ) independent of |q|.

• CRS Generation: κ ← CRSGen(PP,K, d), where CRSGen is probabilistic and runs in time
poly(λ) and the length of κ is bounded by lCRS(λ).

Gen outputs CRS = (PP, κ).

Theorem 2.20 ([CLP15]). Assuming the existence of an indistinguishability obfuscation for P/poly
and an injective one-way function (that are super-polynomially secure), there exists a (super-
polynomially secure) two-message P-certificate system with (strong) soundness, uniqueness and
delegatable CRS generation.

3 Constant-Round Resettable Zero Knowledge

In [CLP15], Chung et al. construct a constant-round concurrent ZK argument assuming the exis-
tence of families of collision-resistant hash functions, one-way permutations, and indistinguishability
obfuscators for P/poly (with slightly super-polynomial security). We present it here as follows:

Let com be a non-interactive perfectly binding computationally hiding commitment scheme. As
mentioned in [CLP15], the protocol can be modified to work with a 2-message statistically binding
commitment scheme based on one-way functions [Nao91, HILL99]. Let {Hn}n∈N be a family of
collision-resistant hash functions. Let (Gen,Pcert,Vcert) be a two-message P-certificate system with
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strong soundness, uniqueness and delegatable CRS generation where Gen consists of subroutines
(SetUp,PreGen,CRSGen). Let D = D(n) be a super-constant function such that D(n) ≤ C(n) for
C(·) in Definition 2.18. Let (PUA, VUA) be a constant-round public-coin WIUA. Let (PSS , VSS) be
a constant-round public-coin WISSP. Let (PZK , VZK) be a constant-round ZK argument.

Let Πn,c3,PP,K,ρCRSGen
and Π′n,c3,κ be programs defined as follows:

Πn,c3,PP,K,ρCRSGen
: on input (d, ρ)

1. If c3 6= com(d; ρ), output ⊥.

2. Output CRSGen(PP,K, d; ρCRSGen).

Π′n,c3,κ: on input (d, ρ)

1. If c3 6= com(d; ρ), output ⊥.

2. Output κ.

Let OnVcert
be a (deterministic) P-certificate oracle which, on input CRS, outputs a (unique) π

such that Vcert(1
n, CRS, π) = 1.

Let Emun be a deterministic polynomial-time machine which, on input (S, y, σ), emulates the
execution of the deterministic oracle machine S on input y with access to the oracle OnVcert

. Emun
simulates OnVcert

by, on input CRSi in the ith call from S, checking if πi in σ = (π1, π2, . . .) satisfies
Vcert(1

n, CRSi, π) = 1. If so, it returns πi to S, and halts otherwise.
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Constant-Round Concurrent Zero-Knowledge Argument Γ [CLP15]

The prover P and the verifier V on common input 1n and x, and private input w for P :

1. V sends h← Hn to P .

2. P sends c1 = com(0; ρ1) to V .

3. V sends r ← {0, 1}4n to P .

4. P sends c2 = com(0; ρ2) to V .

5. P and V run (PUA, VUA) for the following statement: either x ∈ L or there exists S,
j ∈ [m], s ∈ {0, 1}n, σ, ρ1, ρ2 such that

• c1 = com(h(S); ρ1) and

• c2 = com(h(q); ρ2) where q = (Emun, (S, (1
n, j, s), σ), r).

V rejects if VUA rejects.

6. V runs (PP,K)← SetUp(1n, D) and sends PP to P .

7. P sends c3 = com(0; ρ3) to V .

8. P and V run (PUA, VUA) so that P proves to V that either x ∈ L or there exists q, ρ2, ρ3

such that c2 = com(h(q); ρ2) and c3 = com(d; ρ3) where d = PreGen(PP, q). V rejects if
VUA rejects.

9. V computes Π̂← iO(Πn,c3,PP,K,ρCRSGen
) and sends Π̂ to P .

10. V and P run (PZK , VZK) so that V proves to P that there exist K, ρSetUp, ρCRSGen, ρiO
such that

• (PP,K) = SetUp(1n, D; ρSetUp) and

• Π̂ = iO(Πn,c3,PP,K,ρCRSGen
; ρiO).

P aborts if VZK rejects.

11. P sends c4 = com(0; ρ4) to V .

12. P and V run (PSS , VSS) so that P proves to V that either x ∈ L or there exists d, ρ3, ρ4

such that c3 = com(d; ρ3) and c4 = com(CRS; ρ4) where CRS = (PP, Π̂(d, ρ3)). V rejects
if VSS rejects.

13. P and V run (PSS , VSS) so that P proves to V that either x ∈ L or there exists CRS, ρ4

and P -certificate π such that c4 = com(CRS; ρ4) and Vcert(CRS, π) = accept. V accepts
if VSS accepts. Otherwise, V rejects.

Theorem 3.1 ([CLP15]). Assuming the existence of families of collision-resistant hash functions,
one-way permutations, and indistinguishability obfuscators for P/poly that are super-polynomially
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secure, there exists a constant-round concurrent zero-knowledge argument for NP.

3.1 From Concurrent ZK to Resettable ZK

Let Γ = (PΓ, VΓ) be an `-round concurrent ZK argument. We construct a O(`)-round resettable
ZK argument Λ as follows:

Let com be a non-interactive perfectly binding computationally hiding commitment scheme. Let
(PrsZK , VrsZK) be a constant-round resettably-sound ZK argument with the simulator SimrsZK .

Constant-Round Resettable Zero-Knowledge Argument Λ

The prover P and the verifier V on common input 1n and x, and private input w for P :

1. V sending m0 = (com(r1), . . . , com(r`)) to P .

2. P chooses a random seed s for a pseudorandom function fs : {0, 1}∗ → {0, 1}l(n) where
l(n) is the upper bound on the size of random bits PΓ needs in each round of Γ.

3. P and V run Γ with the following modifications:

• For each message mi that VΓ sends in the ith round of Γ, V and P run (PrsZK , VrsZK)
so that V proves to P that mi is computed using random bits ri committed in m0

in the first round.

• For each message m′i that PΓ sends in the ith round of Γ, P applies fs to the
transcript so far and uses the output as random bits to compute m′i.

3.2 Proofs

Lemma 3.2. Λ is a resettable ZK argument system.

Proof. First, we consider the protocol ΛF where we replace a pseudorandom function fs by a truly
random function F : {0, 1}∗ → {0, 1}l(n). We argue that ΛF is indistinguishable from Λ by the
reduction to the security of pseudorandom function as follows. We construct an adversary APRF
having access to an oracle computing either fs or F such that APRF runs Λ (or ΛF ) with the
following modification: for each message m′i sent by an honest P , APRF asks the oracle using the
transcript of the protocol up to that point as input; it then uses the oracle output as the random
bits to compute m′i. Finally, APRF runs and outputs the output of the distinguisher on the view of
the protocol. Since APRF runs the honest P from the beginning to the end, it has access to private
parameters of P , and thus is able to finish the protocol. Thus, any non-uniform polynomial-size
verifiers must behave in the same way except with negligible probability.

Let V ∗RES be a resetting verifier in ΛF . We construct a concurrent verifier V ∗CONC such that

for any PCONC there exists PRES such that {viewPRES
V ∗
RES
} and {viewPCONC

V ∗
CONC

} are computationally

indistinguishable as follows: V ∗CONC runs V ∗RES internally and delivers messages between V ∗RES and
PCONC while recording the first message (commitments) of V ∗RES and every message of PCONC .
Whenever V ∗RES resets PRES and sends the first message, V ∗CONC checks if it has been sent before.
If so, V ∗CONC resends the appropriate responses or continues the session if necessary. Otherwise,
V ∗CONC starts a new session of PCONC . The randomness used in this new session is indistinguishable
from the randomness PRES used by applying F to the new transcript (as m0 is different).
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Claim. For a fixed seed s and m0, for each i ∈ [`], V ∗r cannot find two different messages mi,m
′
i

in the ith round such that it can make PRES accepting the ith resettably-sound ZK argument except
with negligible probability.

Proof. Let the first round message m0 = (c1, . . . , c`). Assume for contradiction that there exists
i ∈ [`] such that V ∗r can find mi 6= m′i and the corresponding resettably-sound ZK argument that
PRES accepts with non-negligible probability. In such case, by the resettable soundness of the
ZK argument, mi and m′i are both computed correctly with respect to the protocol ΛF using the
randomness committed in ci. In other words, there exists a deterministic polynomial-time function
µi such that mi and m′i have the form mi = µi(ri) with ci = com(ri) and m′i = µi(r

′
i) with

ci = com(r′i), for some ri 6= r′i. However, this implies com(ri) = com(r′i), which contradicts the
perfectly binding of com.

Thus, the transcript of the whole session depends only on s and m0. Therefore, {viewPRES
V ∗
RES
} and

{viewPCONC
V ∗
CONC

} are computationally indistinguishable.

Lemma 3.3. Λ is sound.

Proof. Suppose there exists a cheating prover P ∗RES that can prove a false theorem x /∈ L with
non-negligible probability. Consider the following hybrid experiments:

Exp0: Run 〈P ∗RES , VRES〉(1n, x).
Let Exp1,0 be the same as Exp0, and for i = 1, . . . , `,
Exp1,i: Similar to Exp1,i−1 except that the execution of PrsZK(ri) following the message mi is

replaced by the execution of Sim
P ∗
RES,i

rsZK where P ∗RES,i is the residual rsZK verifier (note that P ∗RES
runs VrsZK) who has received m0, . . . ,mi as inputs. Assume for contradiction that there exists
a distinguisher D for Exp1,i and Exp1,i−1. We construct a distinguisher D′ for the (standard)
zero-knowledge property of (PrsZK , VrsZK) as follows. First, we generate r1, . . . , ri−1, ri+1, . . . , r`
uniformly and let c̃i = com(0). Then we produce the transcript for P ∗RES as in Λ except that we use
c̃i instead of ci = com(ri). By the computational hiding of com, P ∗RES cannot distinguish c̃i from

ci. Given either {viewPrsZK
VrsZK

} where VrsZK is run by P ∗RES,i or Sim
P ∗
RES,i

rsZK , we generate the rest of the
transcript for protocol Λ using rj generated earlier. Finally, D′ runs D on the entire transcript. In
either case, the transcript is computationally indistinguishable to either Exp1,i or Exp1,i−1. Thus,
D′ can break the zero-knowledge property of (PrsZK , VrsZK), which is a contradiction. Hence,
Exp1,i and Exp1,i−1 are indistinguishable.

Let Exp2,0 be the same as Exp1,`, and for i = 1, . . . , `,
Exp2,i: Similar to Exp2,i−1 except that com(ri) in the first message m0 is replaced by com(0).

Consider the following reduction to the computational hiding property of com: Acom sends ri and 0
to Scom; it passes the commitment from Scom as the ith commitment in m0 of Exp2,i−1 (or Exp2,i);
Acom can complete the experiment as it does not need to know which message it commits using
SimrsZK ; Acom outputs the output of the experiment. The computational hiding property implies
that Exp2,i and Exp2,i−1 are indistinguishable.

Now we construct a cheating prover P ∗CONC for Γ by running Exp2,` internally as follows:
P ∗CONC sends com(0) to P ∗RES ; P ∗c passes every messages from P ∗RES to VCONC ; P ∗CONC passes
every message from VCONC to P ∗RES then runs SimrsZK while P ∗RES runs VrsZK . Thus, P ∗CONC
can prove a false theorem x /∈ L with non-negligible probability, which contradicts the soundness
of Γ.

Theorem 3.4. Assuming one-way functions, there exists a compiler transforming an `-round con-
current zero-knowledge argument to a O(`)-round resettable zero-knowledge argument.
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Proof. The resettable zero knowledge and soundness are proved in Lemma 3.2 and Lemma 3.3,
respectively. The completeness follows from the completeness of Γ by inspection. For each round
of Γ, P and V has to run additional O(1) rounds for resettably-sound ZK protocol that V uses
the committed random bits, and 1 extra round in the beginning. Thus, the round complexity is
O(`).

Corollary 3.5. Assuming the existence of families of collision-resistant hash functions, one-way
permutations, and indistinguishability obfuscators for P/poly that are super-polynomially secure,
there exists a constant-round resettable zero-knowledge argument for NP.

Proof. We instantiate Λ by letting Γ be the constant-round concurrent zero-knowledge argu-
ment system of [CLP15]. Perfectly binding com can be constructed from one-way permuta-
tions. A constant-round resettably-sound ZK argument can be constructed from one-way func-
tions [COP+14].

4 Concurrent ZK with Resettable Soundness

In this section, we construct a constant-round resettably-sound concurrent ZK argument based on
the constant-round cZK argument in [CLP15]. We make use of our constant-round rZK argument
from the previous section (Corollary 3.5), the technique used in [BGGL01] to add resettable sound-
ness to a public-coin protocol, and our new techniques to deal with non-public coin nature of the
cZK protocol in [CLP15].

4.1 Construction

Let Γ be the constant-round concurrent ZK argument from [CLP15] described in Section 3. We
construct a constant-round concurrent ZK argument with resettable soundness ∆ as follows:

Let (PrZK , VrZK) be a constant-round resettable ZK argument with the simulator SimrZK . The
verifier V chooses a random seed s for a pseudorandom function fs : {0, 1}∗ → {0, 1}l(n), where
l(n) is the upper bound on the size of random bits V need in each round of Γ. Then P and V run
Γ with the following modifications. In Step 10, instead of running a ZK argument (PZK , VZK), V
and P run the resettable ZK argument (PrZK , VrZK). Additionally, for each message m that V
sends in Γ, V uses the output of fs applying to the transcript from the protocol up to this point
as random bits to compute m.

4.2 Proofs

Before we prove that the protocol above is a concurrent ZK argument with resettable soundness,
we consider another modification, Γ′, of the protocol Γ in [CLP15]. First, P and V repeat Step
7-9 for t times with V using the same ρCRSGen for some t = poly(n). Let Step 7j − 9j denoted jth
repeat of Step 7-9. Secondly, we remove the zero-knowledge proof in Step 10, and replace it with
“P chooses i ∈ [t] and sends i to V ”, and then P and V follows the rest of the protocol ignoring
Step 7j − 9j for j 6= i.

Lemma 4.1. Γ′ is a sound interactive argument.

Proof. We strictly follow the proof of soundness of Γ in [CLP15] with a modification necessary
for the repetition of Step 7-9. Assume for contradiction that there is a non-uniform deterministic
polynomial-time prover P ∗ and a positive polynomial p such that for infinitely many n ∈ N, P ∗
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can convince V to accept x /∈ L with non-negligible probability 1/p(n). Let E be the global proof-
of-knowledge extractor of the WIUA (PUA, VUA), and E′ be the knowledge extractor of the WISSP
(PSS , VSS). We define the experiment Exp which runs 〈P ∗, V 〉(1n, x) with the following addition:

• In Step 5, let P ∗prefix1
be the residual WIUA prover who has received prefix1 = (h, r) in Step 1

and 3. Run w1 ← E
P ∗

prefix1
s1 , where s1 is uniform randomness. If E fails, halt and output ⊥.

• In Step 7j, for j = 1, . . . , t, let P ∗prefix2,j
be the residual WIUA prover who has received prefix2,j

consisting of h, r, WIUA messages, PP and Π̂k in Step 1, 3, 5, 6, 8k and 9k for k = 1, . . . , j−1.

Run w2,j ← E
P ∗

prefix2,j
s2,j , where s2,j is uniform randomness. If E fails, halt and output ⊥.

• In Step 12, let P ∗prefix3
be the residual WISSP prover who has received prefix3 consisting of h, r,

WIUA messages, PP and Π̂j in Step 1, 3, 5, 6, 8j and 9j for j = 1, . . . , t. Run w3 ← E
′P ∗

prefix3
s3 ,

where s3 is uniform randomness. If E′ fails, halt and output ⊥.

• In Step 13, let P ∗prefix4
be the residual WISSP prover who has received prefix4 consisting of

prefix3 and WISSP messages in Step 12. Run w4 ← E
′P ∗

prefix4
s4 , where s4 is uniform randomness.

If E′ fails, halt and output ⊥.

• If V rejects, output ⊥. Otherwise,

– Parse w1 = (S, j, s, σ, ρ1, ρ2). If w1 does not have this form, output ⊥.

– Let q = (Emun, (S, (1
n, j, s), σ), r). For j = 1, . . . , t, if w2,j 6= (q, ρ2,j , ρ3,j) for some

ρ2,j , ρ3,j , output ⊥.

– Let d = PreGen(PP, q). If w3 6= (d, ρ3,i, ρ4) for some ρ4 where i ∈ [t] is chosen by P ∗ in
Step 10, output ⊥.

– Let CRS = (PP, Π̂(d, ρ3,i)). If w4 6= (CRS, ρ4, π) for some π, output ⊥.

• output (S, q, r).

By the weak proof-of-knowledge property of WIUA and special soundness of WISSP, when P ∗

convinces V to accept x /∈ L, the extractors E and E′ succeed in extracting the witnesses described
above (instead of the actual witness of the theorem) with non-negligible probability 1/p′(n). By
perfectly binding property of com and collision-resistance ofH, the consistency check in the last step
will pass except with negligible probability ν(n). In this case, except with negligible probability,
c3,j sent in Step 7j is com(d; ρ3,j) for the same d = PreGen(PP, q) for all j = 1, . . . , t. Otherwise, we
can construct a cheating WIUA prover that commits to c′ = com(d′; ρ′) with d′ 6= PreGen(PP, q)
with non-negligible probability by randomly pick j ∈ [t] and commit to c′ = c3,j . This breaks the

soundness of WIUA. So, the only output of Π̂j is CRSGen(PP,K, d, ρCRSGen) = κ for all j = 1, . . . ,m
except with negligible probability ν ′(n). Thus, the probability that Exp does not output ⊥ and
every Π̂j output the same κ is 1/p′(n) − ν(n) − ν ′(n) which is non-negligible. We call this event
Good.

Now consider a series of experiments Exp′j for j ∈ [t] defined as follows: Exp′0 = Exp, and Exp′j
differs from Exp′j−1 in Step 9j where we replace Π̂j ← iO(Πn,c3,j ,PP,K,ρCRSGen

) with Π̂′j ← iO(Π′n,c3,j ,κ)
where κ = CRSGen(PP,K, d; ρCRSGen). When Good occurs, by perfectly binding property of com,
Π′n,c3,j ,κ and Πn,c3,j ,PP,K,ρCRSGen

are functionally equivalent except with negligible probability. In

this case, Exp′j−1 and Exp′j are indistinguishable by the reduction to iO as follows: DiO runs Exp′j−1
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(or Exp′j) up to Step 8j and outputs Π′n,c3,j ,κ and Πn,c3,j ,PP,K,ρCRSGen
and the state of the experiment

z; up to receiving obfuscated program Π̂ and z, AiO sends Π̂ to P ∗, continues the experiment until
the end, and outputs the output of the experiment. Thus, Exp′j−1 and Exp′j are indistinguishable
by the security of iO. Hence, by hybrid argument, the probability of Good event is non-negligible
in Exp′j for j = 1, . . . , t. Let Exp′ = Exp′t.

Now suppose that Good and q is false occurs with non-negligible probability. Then we construct
P ∗Pcert that breaks the strong soundness of the P-certificate system as follows: P ∗Pcert runs Exp′ up to
Step 5 where it extracts q from w1. Up on receiving CRS = (PP, κ) where (PP,K)← SetUp(1n, D)
and κ← CRSGen(PP,K,PreGen(PP, q)), it continues Exp′ using PP and κ and output π extracted
from w4. If Good occurs, by the soundness of WISSP, P ∗Pcert succeeds and Vcert(CRS, π) = 1
except with negligible probability. Thus, P ∗Pcert contradicts the strong soundness of the P-certificate
system. Hence, Good and q is true occurs with non-negligible probability. We call this event Good′.
By averaging argument, there exists h such that Good′|h occurs with non-negligible probability.

Finally, consider Exp′′ where Exp′ is run twice with this h but with the second execution replacing
r in Step 3 by an independent random string r′. With non-negligible probability, both executions
succeed and output (S, q, r) and (S′, q′, r′). Since c1 must be the same in both executions, S = S′

except with negligible probability by perfectly binding property of com and collision-resistance of
H. Since q = (Emun, (S, (1

n, j, s), σ), r) and q′ = (Emun, (S, (1
n, j′, s′), σ′), r′) are true, we have

SO
n
Vcert (1n, j, s) = r and SO

n
Vcert (1n, j′, s′) = r′. We have that |(1n, j, s)| < 3n < 4n = |r| and

|(1n, j′, s′)| < |r′|. However, the deterministic machine SO
n
Vcert predicts independent r and r′ with

non-negligible probability. This is information theoretically impossible as there are at most 23n

possible outputs for SO
n
Vcert . Thus, we reach a contradiction.

As in the proof of soundness of Γ in [CLP15], the WIUA global proof-of-knowledge extractor
E runs in super-polynomial time as a part of the witness q is of super-polynomial size. Thus, the
collision-resistant hash functions H, the commitment scheme com and indistinguishability obfusca-
tors iO need to be super-polynomially secure.

Now we can prove the main theorem of this section.

Theorem 4.2. ∆ is a concurrent ZK argument with resettable soundness.

Proof. Since the rZK argument (PrZK , VrZK) is also a ZK argument and we only further modify
an honest verifier V , the concurrent zero-knowledge of ∆ follows directly from the concurrent zero-
knowledge property of Γ. Now we consider the protocol ∆F where we replace a pseudorandom
function fs by a truly random function F : {0, 1}∗ → {0, 1}l(n). We argue that ∆F is indistinguish-
able from ∆ by the reduction to the security of pseudorandom function as follows. Fix x /∈ L and
P ∗RES that convinces a resettable verifier VRES to accept x /∈ L with probability ε through protocol
∆F . We construct an adversary APRF having access to an oracle computing either fs or F such
that APRF runs ∆ (or ∆F ) with the following modification: for each message m sent by an honest
VRES , APRF asks the oracle using the transcript of the protocol up to that point as input; it then
uses the oracle output as the random bits to compute m. APRF outputs the output of V . Since
APRF runs the honest VRES from the beginning to the end, it has access to private parameter K
that V generates in Step 6, and thus is able to compute the obfuscated program and rZK messages
in Step 9 and 10. Thus, any non-uniform polynomial-size provers must behave in the same way
except with negligible probability. Hence, the completeness follows from the completeness of Γ.

We now show the resettable soundness of the protocol. Assume for contradiction that there is
a non-uniform polynomial-time resetting prover P ∗RES that convinces a resettable verifier VRES to
accept x /∈ L with probability ε through protocol ∆F . We construct a polynomial-time (standard)
prover P ∗S , emulating P ∗RES , that convinces a (standard) verifier VS to accept the same x /∈ L
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through protocol Γ′ repeating Step 7-9 for t times, where t = poly(n) is the total number of
messages sent by P ∗RES . Let c be the number of (prover) rounds in ∆.

The cheating prover P ∗S proceeds as follows. First it uniformly selects i1, . . . , ic ∈ {1, . . . , t}. It
invokes P ∗RES while emulating VRES . In the jth round of ∆F , P ∗S answers a message from P ∗RES
according to the following cases:

• If the prefix of the current session transcript is identical to a corresponding prefix of a previous
session, then P ∗CONC answers by using the same answer it has given in the previous session.

• Otherwise, P ∗S either forwards the message to VS and then forwards the reply it receives, or
generates the reply itself according to the following conditions:

– If the message is c3 or WIUA in Step 7j−8j, P ∗S repeats its decision whether to forward
the message in Step 6. In other words, if P ∗S forwards the message in Step 6, it will
forward this message. If it generates the reply in Step 6 itself, it will generate the reply
for this message as well. This is because it can only generate an answer in Step 9i if it
has generated the answer in Step 6 of the same transcript (instead of passing to VS).

– If the message is i ∈ [t] in Step 10, P ∗S does not forward the message, but instead runs
the simulator SimrZK with P ∗RES corresponding to obfuscated program in Step 9i.

– If the index of the current message from P ∗RES does not equal to ij selected previously,
P ∗S generates a reply message using a uniformly selected random bits.

– Otherwise, P ∗S forwards the current message to VS and sends P ∗RES a reply it receives
from VS .

In each case, P ∗CONC records the messages from both sides for later use.

By the resettable zero-knowledge of (PrZK , VrZK), the probability of P ∗RES proving a false
theorem x /∈ L only changes negligibly by running SimrZK instead of PrZK . By the property
of truly random function, the view of P ∗RES is identical to the distribution that P ∗RES sees when
interacting with an honest VRES . If the chosen i1, . . . , ic equal the indices of the messages that
correspond to the c messages sent in a session in which P ∗RES convinces VRES to accept x /∈ L,
then P ∗S will also convince VS to accept x /∈ L by our construction of VRES . Thus, the probability
of VS accepting x /∈ L is at least ε/tc − ν(n) for some negligible function ν. This probability is
non-negligible. Therefore, it contradicts Lemma 4.1.

Let Λ = (PrZK , VrZK) be the constant-round resettable ZK protocol obtained in Corollary 3.5,
we get the following corollary.

Corollary 4.3. Assuming the existence of families of collision-resistant hash functions, one-way
permutations, and indistinguishability obfuscators for P/poly that are super-polynomially secure,
there exists a constant-round resettably-sound concurrent zero-knowledge argument for NP.

5 Simultaneous Resettable ZK

To obtain our main theorem, we apply a combination of the transformations in Theorem 4 and 5
in Section 6, and Theorem 6 and 7 in Appendix C of [GS08] to our protocol in Section 4 to obtain
simultaneous resettability.

More specifically, we combine three transformations in [GS08]:
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• from resettably-sound (relaxed) concurrent zero-knowledge argument to hybrid-sound hybrid-
resettable zero-knowledge argument;

• from hybrid-sound zero-knowledge argument to resettably-sound zero-knowledge argument
while maintaining (hybrid) resettability;

• from hybrid-resettable zero-knowledge argument to resettable zero-knowledge argument while
maintaining (hybrid) resettable soundness;

We refer to Section 1 for an informal discussion and [GS08] for formal definitions of relaxed con-
current zero-knowledge, hybrid resettability and hybrid soundness.

Theorem 5.1 (implied from [GS08]). Assuming the existence of ZAPs (i.e., 2-round resettably-
sound resettable witness-indistinguishable proof systems) and family of pseudorandom functions,
there exists a transformation from an `-round resettably-sound concurrent zero-knowledge argument
to a O(`)-round resettably-sound resettable zero-knowledge argument.

Applying the transformations to the protocol ∆ in Corollary 4.3 results in the following theorem.
Note that ZAPs can be constructed from iO and one-way functions [BP15b], which can then be
transformed to have resettable soundness and resettable witness indistinguishability. Furthermore,
only the first transformation is based on ZAPs while all of them assume pseudorandom functions.

Theorem 5.2. Assuming the existence of families of collision-resistant hash functions, one-way
permutations, and indistinguishability obfuscators for P/poly that are super-polynomially secure,
there exists a constant-round resettably-sound resettable zero-knowledge argument for NP.
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