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Abstract. We study the minimal number of point-to-point messages
required for general secure multiparty computation (MPC) in the setting
of computational security against semi-honest, static adversaries who
may corrupt an arbitrary number of parties.

We show that for functionalities that take inputs from n parties and de-
liver outputs to k parties, 2n+k−3 messages are necessary and sufficient.
The negative result holds even when given access to an arbitrary corre-
lated randomness setup. The positive result can be based on any 2-round
MPC protocol (which can in turn can be based on 2-message oblivious
transfer), or on a one-way function given a correlated randomness setup.

1 Introduction

Since the seminal works from the 1980s that established the feasibility of
secure multiparty computation (MPC) [24, 19, 3, 9], there has been a large
body of work on different efficiency measures of MPC protocols. In par-
ticular, a lot of research efforts were aimed at characterizing the minimal
communication complexity, round complexity, computational complexity,
and randomness complexity of MPC protocols.

In the present work we study the message complexity of MPC proto-
cols, namely the number of messages that the parties need to communicate
to each other over point-to-point channels. While there have been a few
prior works studying the message complexity of MPC in different settings
(see Section 1.2 below), this complexity measure received relatively little
attention. The goal of minimizing the message complexity of protocols
is motivated by scenarios in which sending or receiving a message has
a high cost, which is not very sensitive to the size of the message. For
instance, this is the case when using a traditional postal system for mes-
sage delivery (say, shipping optical media from one party to another), or
when establishing a communication channel between pairs of parties is
expensive due to limited connectivity.



The main focus of our work is on the standard model of computation-
ally secure MPC in the presence of a static (non-adaptive), semi-honest
(passive) adversary, who may corrupt an arbitrary subset of the parties.
In this model, we ask the following question:

How many messages are needed for securely computing functions
that take inputs from n parties and deliver outputs to k of these
parties?

For simplicity, we consider the above question in the setting of fixed,
or “oblivious,” interaction patterns, a commonly used assumption in the
MPC literature (see, e.g., [11, 20]). In this setting, it is assumed that the
protocol specifies a-priori the sender-receiver pairs of the messages sent
in each round.1

1.1 Our Contribution

Our main result is a sharp answer to the above question: we show that
in the setting discussed above, 2n + k − 3 messages are necessary and
sufficient.

The negative result holds even when the parties can communicate
over secure point-to-point channels or, more generally, even when allowing
an arbitrary input-independent correlated randomness setup. This result
builds (non-trivially) on the general characterization of the power MPC
with general interaction patterns from the recent work of Halevi et al. [20].

The positive result can be based on any 2-round MPC protocol, apply-
ing a natural greedy message forwarding strategy to emulate the quadratic
number of messages of such protocols with an optimal number of mes-
sages. Using recent constructions of 2-round MPC protocols, this ap-
proach can be instantiated in the plain model, public point-to-point chan-
nels, under the (minimal) assumption that a 2-message semi-honest obliv-
ious transfer protocol exists [4, 17]. (Alternative constructions with incom-
parable efficiency features can be based on the LWE assumption [23] or
even the DDH assumption given a PKI setup [6]). Given a general cor-
related randomness setup, the positive result can be based on any one-

1 Message complexity is more subtle when allowing dynamic interaction patterns, since
not receiving a message also conveys information; see e.g. [13] for discussion. Our
positive results do not require this relaxation. Moreover, our negative result can be
extended to capture dynamic interactions, by exploiting the fact that the adversary
can “guess” the identity of a party that sends a constant number of messages with
high success probability and corrupt all of the other parties.



way function, or even provide unconditional information theoretic security
when considering low-complexity functions such as NC1 functions.

1.2 Related Work

As mentioned above, Halevi et al. [20] consider the question of MPC
with general interaction patterns, giving a full characterization for the
“best possible security” of an MPC protocol that uses a given interac-
tion pattern with a general correlated randomness setup. Our negative
result builds on their general characterization, focusing on the case where
the “best possible security” coincides with the standard notion of se-
curity. The positive results in [20] consider a more general setting that
(inevitably) requires the use of indistinguishability obfuscation and a cor-
related randomness setup. In contrast, our positive results rely on weaker
assumptions and apply also to the plain model.

The message complexity of MPC protocols has been explicitly con-
sidered in several previous works, but the model of MPC considered in
these works is quite different from ours. In particular, the message com-
plexity in the information-theoretic setting with a bounded fraction of
corrupted parties has been studied in [11, 7, 5, 13, 14]. Our focus on com-
putational security (or alternatively, allowing a correlated randomness
setup) allows us to circumvent previous lower bounds that apply to the
information-theoretic setting. In particular, our positive results circum-
vent the quadratic message lower bound from [11]. On the other hand,
considering an adversary that can corrupt an arbitrary number of parties
rules out MPC protocols that achieve sublinear message complexity in
the number of parties by assigning the computation to a small random
subset of parties (see, e.g., [12, 7, 16]).

Organization. Following some preliminaries (Section 2), we present our
negative result in Section 3 and our positive results in Section 4. In Ap-
pendix A we include a standard definition of MPC for self-containment.

2 Preliminaries

By default, we consider an MPC protocol Π for an n-party functionality
f to provide computational security against a semi-honest adversary that
may statically (non-adaptively) corrupt an arbitrary subset of the parties
and eavesdrop on all communication channels. That is, the communica-
tion takes place over public point-to-point channels.



We also consider MPC with correlated randomness setup, where the
parties are given access to a trusted source of (input-independent) corre-
lated randomness. Note that correlated randomness setup trivially allows
secure point-to-point communication over public communication chan-
nels. Thus, since our negative result applies also to this model, it applies
in particular for protocols over secure point-to-point channels.

As is typically the case for security against semi-honest adversaries,
our results are quite insensitive to the details of the model beyond those
mentioned above. We refer to reader to Appendix A or to [18] for a
standard formal treatment of MPC in this model.

3 The Lower Bound

In this section, we prove our main lower bound: in any n-party MPC
protocol for computing a function with k ≥ 1 outputs, the number of
point-to-point messages is at least 2n + k − 3. This lower bound holds
even in the setting of security against semi-honest adversaries and even
when the parties are given access to an arbitrary trusted source of (input-
independent) correlated randomness.

The work of Halevi et al. [20] gives a general characterization for
the “best possible security” of an MPC protocol with general correlated
randomness setup and a given interaction pattern. The characterization
in [20] is mainly intended for the case of limited interactions that warrant
a relaxed notion of MPC security, and is only formulated for the case
of protocols that deliver output to a single party. Here we give a simple
self-contained treatment for the case of standard MPC security with an
arbitrary number of outputs.

We start by defining a simplified notion of an interaction pattern,
which specifies an ordered sequence of pairs of parties that represent the
sender and receiver of each message. Note that we implicitly assume here
that the protocol sends only a single message in each round. However,
any protocol can be trivially converted into this form by splitting the
messages sent in each round into multiple rounds in an arbitrary order.

Definition 3.1 (Interaction pattern). An n-party interaction pattern
is specified a sequence of pairs M ∈ ([n] × [n])∗. The length of M is the
number of pairs in the sequence. We say that an n-party MPC protocol Π
complies with an n-party interaction pattern M = ((a1, b1), . . . , (am, bm))
if for every 1 ≤ i ≤ m, the communication in Round i of Π involves only
a single message, sent from party Pai to party Pbi.



It is convenient to represent an interaction pattern M by a directed
(multi-)graph, whose nodes represent parties and whose edges represent
messages sent over point-to-point channels. Each edge is labeled by its
index in M . A trail in the graph is a (non-simple, directed) path that
respects the order of edges and can visit the same node more than once.
We formalize this below.

Definition 3.2 (Interaction graph). Let M = ((a1, b1), . . . , (am, bm))
be an n-party interaction pattern. We let GM denote the labeled directed
multi-graph whose node set is [n] and whose edges form the sequence
(e1, . . . , em) where ei = (ai, bi). (Each edge ei in GM is labeled by its
index i.) A trail from node u to node v in GM is a sequence of edges
(ei1 , . . . , ei`) such that ei1 starts at u, ei` ends at v, the end node of each
eij is the start node of eij+1, and the index sequence i1, . . . , i` is strictly
increasing.

We now identify a combinatorial condition that the interaction graph
should satisfy in order to accommodate MPC with a given set O of parties
who receive an output.

Definition 3.3 (O-connected graph). Let GM be an n-party interac-
tion graph and let O ⊆ [n]. We say that GM is O-connected if for any
(not necessarily distinct) pair of nodes s, o ∈ [n] with o ∈ O, and any
node h ∈ [n] \ {s, o}, there is a trail from s to o passing through h.

Note, in particular, that the above connectivity requirement implies the
existence of a trail from every node to every output node.

We now show that the above connectivity requirement is indeed nec-
essary to realize the standard notion of security against semi-honest ad-
versaries. We prove this for an explicit functionality that can be thought
of as a natural multi-party variant of oblivious transfer. Intuitively, this
functionality has the property that the adversary only learns partial in-
formation about honest parties’ inputs by invoking it once, but can learn
full information by invoking it twice, on any pair of input-tuples that
differ in only one entry.

Definition 3.4 (MOT functionality). For n ≥ 2 and nonempty O ⊆
[n], let MOTO : Xn → Y n be the n-party functionality defined as follows:

– The input domain of each party is X = {0, 1}3 and the output domain
is Y = {0, 1}n+1.



– Given input (ci, x
0
i , x

1
i ) from each party Pi, the functionality lets c =

c1 ⊕ · · · ⊕ cn and outputs (c, xc1, . . . , x
c
n) to all parties Pj, j ∈ O (the

output of party Pj for j 6∈ O is the fixed string 0n+1).

The proof of the following lemma formalizes an argument made in [20].

Lemma 3.5. Let n ≥ 2 and O ⊆ [n] where |O| ≥ 1. Suppose Π securely
realizes MOTO in the presence of a semi-honest, static adversary who may
corrupt any number of parties, where Π may use an arbitrary correlated
randomness setup. If Π complies with an interaction pattern M , then the
interaction graph GM must be O-connected. Moreover, this holds even in
the augmented semi-honest model, where the simulator can change the
inputs of corrupted parties.

Proof. The high level idea is that in the ideal model, even if the simulator
can arbitrarily choose the inputs of n − 1 corrupted parties, it can only
learn one out of the last two input bits of the remaining party. We show
that in the protocol, a semi-honest adversary can learn both input bits
of an uncorrupted party, contradicting security. We formalize this below.

Since GM is not O-connected, there exist nodes s, o ∈ [n] with o ∈ O
and h ∈ [n] \ {s, o} such that all trails from s to o avoid h. We argue
that the latter implies that if all parties except h are corrupted, then by
running Π once on inputs xi = 000 for all corrupted parties Pi, i 6= h,
and an unknown input xh = (ch, x

0
h, x

1
h) for party Ph, the adversary can

efficiently compute the entire input xh from its view. Indeed, the adver-
sary can recover xh from (1) the output MOTO delivers to party Po on
inputs (x1, . . . , xn), obtained directly from the honest execution; and (2)
the output of MOTO on a slightly modified input, where xs is replaced by
x′s = 100. The latter output can be obtained by running a mental exper-
iment in which the view of party Po on the modified input is simulated
given the messages sent out by party Ph in the original execution.

The simulation will simply compute the exact set of messages received
by party Po on the same local inputs and random inputs, with the only
difference that xs = 000 is replaced by x′s = 100. To see that this is
possible given the information available to the adversary, note that every
message sent in the protocol can be viewed as a deterministic function of
the local inputs and random inputs of the n parties. If some message re-
ceived by party Ph can depend on the input of party Ps, then this message
cannot influence the view of party Po; otherwise this would imply a trail
from s to o passing through h. The adversary can therefore sequentially
compute whatever modified messages are implied by the information it



has (namely, inputs and random inputs of corrupted parties and messages
sent out by party Ph), which includes all messages received by Po. ut

Given Lemma 3.5, it suffices to prove a lower bound on the number
of edges in an O-connected interaction graph GM . We start with the case
of a single output node O = {o} and later extend it to the general case.
The proof relies on the following lemma.

Lemma 3.6. Let n ≥ 2 and O = {o} where o ∈ [n]. Suppose GM is
O-connected and v ∈ [n] \ O has indegree d ≥ 2 and outdegree 1. Then
there is an O-connected GM ′ with the same number of edges in which v
has indegree 1 and outdegree 1.

Proof. Let ei1 , . . . , eid be the edges entering v, where i1 < · · · < id. We
obtain GM ′ from GM by replacing every edge eij = (uj , v), 1 ≤ j ≤ d−1,
by the edge e′ij = (uj , ud), where ud is the source of eid . An example of
this transformation is given in Figure 1 below. The transformation does

Fig. 1. Illustrating the graph transformation in the proof of Lemma 3.6. Here o = u6

is the output node and v = u5 is the non-output node with outdegree 1 and indegree
d = 3 ≥ 2.

not change the number of edges. It leaves eid as the only edge entering v



and does not add outgoing edges from v, thus making both the indegree
and outdegree of v equal to 1 as required. Finally, since id is larger than
the indices of all edges e′ij whose new endpoint is ud, any trail in GM can
be replaced by a valid trail in GM ′ with the same source and destination
and with a superset of the nodes of the original trail (the new trail may
replace a direct edge to v by a 2-edge sub-trail passing through ud). This
implies that GM ′ is also O-connected, as required. ut

We are now ready to prove a lower bound on the number of edges for
the case |O| = 1.

Proposition 3.7. Let n ≥ 2 and O = {o} where o ∈ [n]. Suppose GM is
an O-connected n-party interaction graph. Then GM has at least 2n − 2
edges.

Proof. We prove the proposition by induction on n. For the base case of
n = 2, note that (without loss of generality) letting s = o = 1 and h = 2
imposes the existence of a trail from 1 to 1 passing through 2, which
requires m ≥ 2 = 2 · 2− 2 edges as required.

For the induction step, suppose that the proposition holds for all k <
n, and let GM be an O-connected n-party interaction graph with m edges.
Assume towards contradiction that m ≤ 2n− 3. We show that under this
assumption, GM can be converted into an O-connected (n−1)-party GM ′

that has m′ = m − 2 edges. By the induction’s hypothesis, this implies
that m′ ≥ 2(n−1)−2, and so m = m′+2 ≥ 2n−2, leading to the desired
contradiction.

The transformation from GM to GM ′ proceeds as follows. Since O-
connectivity requires each node to have at least one outgoing edge, and
since m < 2n− 2, there must be a non-output node v whose outdegree is
exactly 1. (If all outdegrees are bigger than 1, then the non-output nodes
alone contribute at least 2n − 2 edges.) Moreover, the O-connectivity of
GM also requires the indegree of v to be at least 1 (e.g., letting v = h and
s = o). By Lemma 3.6, we may assume without loss of generality that
the indegree of v is also 1.

Let ei1 = (u1, v) be the single edge entering v and ei2 = (v, u2) be
the single edge existing v. Since v should be reachable, we have i1 < i2.
If u1 = u2, we can obtain GM ′ by just removing v and the two incident
edges from GM . The resulting graph GM ′ has n − 1 nodes and m − 2
edges as required, and it is O-connected because every trail in GM that
passes through v has a corresponding trail in GM ′ with the same source
and destination that traverses the same set of nodes excluding v.



It remains to deal with the case where u1 6= u2. The O-connectivity
of GM implies the existence of a trail τu2,v,o from u2 to the output node
passing through v. We obtain GM ′ from GM by removing the node v,
replacing the two edges ei1 , ei2 by the single edge e′i1 = (u1, u2) (with
index i1), and removing the first edge ei0 = (u2, u3) of τu2,v,1. Again, GM ′

has n−1 nodes and m−2 edges as required. Replacing ei1 , ei2 by e′i1 clearly
does not hurt O-connectivity, since (as before) any trail passing through
v can be replaced by a similar trail that only excludes v. We need to show
that removing the edge ei0 also does not hurt O-connectivity. Note that,
since τu2,v,o should pass through ei1 and then ei2 , we have i0 ≤ i1 < i2.
We show that for any h 6= u2, o, a trail τu2,h,o from u2 to o via h can be
replaced by a trail τ ′u2,h,o in GM ′ . Indeed, by the O-connectivity of GM ,
there is a trail τv,h,o in GM from v to o via h. This trail starts with ei1 ,
and thus all of its other edges have indices bigger than i1. Removing the
first edge ei1 , we get a trail τ ′u2,h,o that does not use ei0 (since i0 ≤ i1),
as required. ut

Finally, we extend the lower bound of Proposition 3.7 to the case of
more than one output. This relies on the following lemma.

Lemma 3.8. Let n ≥ 2 and O ⊆ [n] be a set of k = |O| ≥ 2 output nodes.
Let M be a minimal interaction pattern such that GM is O-connected.
Then:

1. The last edge in M enters an output node in O;

2. Removing this last edge results in an interaction pattern M ′ such that
GM ′ is O′-connected for some O′ ⊂ O with |O′| = |O| − 1.

Proof. If the last edge in M does not enter an output node from O, then
it can be removed from M without hurting the O-connectivity of GM ,
contradicting minimality. Now suppose that the last edge in M enters
o ∈ O. Removing this last edge from GM results in an O′ interaction
graph for O′ = O \ {o}. Indeed, since the removed edge has a maximal
index, it cannot be used as an intermediate edge in any trail ending in
o′ ∈ O′. ut

Combining Proposition 3.7 and Lemma 3.8 we get the main theorem of
this section.

Theorem 3.9. Let n ≥ 2 and O ⊆ [n] be a set of k = |O| ≥ 1 output
nodes. Suppose GM is an O-connected n-party interaction graph. Then
GM has at least 2n+ k − 3 edges.



Proof. The theorem follows by induction on k, using Proposition 3.7 as
the base case (k = 1) and Lemma 3.8 for the induction step. ut

Together with Lemma 3.5, we get the following corollary:

Corollary 3.10. Let n ≥ 2 and O ⊆ [n] where |O| = k ≥ 1. Suppose Π
securely realizes MOTO in the presence of a semi-honest, static adversary
who may corrupt any number of parties, where Π may use an arbitrary
correlated randomness setup. If Π complies with an interaction pattern
M , then M involves at least 2n+k−3 messages. Moreover, this holds even
in the augmented semi-honest model, where the simulator can change the
inputs of corrupted parties.

4 Upper Bounds

In this section we complement the lower bound from Section 3 by pre-
senting matching upper bounds in several different models. We note that
our focus here is on the computational model of security, which allows us
to bypass strong lower bounds for the information-theoretic model from
the recent work of Damg̊ard et al. [13].

Using standard general transformations (cf. [18]), the secure compu-
tation of any (non-reactive) randomized multi-output functionality f can
be reduced to the secure computation of a related deterministic, func-
tionality f ′ that delivers the same output to all parties. This reduction
does not incur additional messages. We thus restrict our attention to the
latter type of functionalities.

As a final simplification, it suffices to prove an upper bound of 2n− 2
messages for the case only one party has an output. Indeed, in the case of
k > 1 parties should receive the output, we can first deliver the output to
one of these parties using 2n− 2 messages, and then use k− 1 additional
messages to communicate the output to the other parties. This yields a
total of 2n+ k − 3 messages, as required.

Theorem 4.1. Let f be an n-party functionality delivering output to
party P1. Suppose there is a 2-round n-party MPC protocol Π for f in
the common random string (CRS) model. Then there is a similar protocol
Π ′ for f in the plain model in which the parties send a total of 2n − 2
point-to-point messages. Furthermore, if Π relies on a trusted source of
correlated random inputs, then Π ′ can be implemented using the same
correlated randomness.



Proof. We assume for simplicity that Π does not rely on correlated ran-
domness other than (possibly) a CRS. The “furthermore” part of the
theorem is obtained by a straightforward extension of the following proof.

Let αi,j denote the message sent from Pi to Pj in Round 1, and βi
the message sent from Pi to P1 in Round 2. The high level idea is to use
a “two-way chain” interaction pattern moving from P1 to Pn and back
to P1, where at each point each party computes whatever messages it
can given the information received so far and forwards these messages
along with previous information it received to the next party. Concretely,
protocol Π ′ emulates the messages of Π as follows:

1. P1 picks the CRS σ, and based on σ, its local input, and its local
randomness computes the messages α1,j for all 2 ≤ j ≤ n. It sends a
single message consisting of σ and the n− 1 messages α1,j to P2.

2. For i = 2, . . . , n− 1, party Pi uses the Π ′-message α′i−1 received from
Pi−1 to compute the Π-messages αi,j , for all j 6= i, and sends these
messages to Pi+1 together with the information received from Pi−1.

3. Party Pn uses the CRS σ, its local input, and its local randomness to
compute the messages αn,j , 1 ≤ j ≤ n − 1. It additionally uses the
messages αi,n received from Pn−1 to compute the message βn. It sends
the messages αn,j and βn to Pn−1 along with the message of Pn−1.

4. For i = n − 1, . . . , 2, party Pi uses its local input, local randomness,
and the information received from Pi+1 to compute the message βi.
It sends βi along with the message it received from Pi+1 to Pi−1.

5. Party P1 uses its local input, local randomness, and the information
received from P2 to compute the output of Π.

Overall, the protocol involves 2n− 2 messages (n− 1 in each direction),
as required. Correctness follows from the fact that Π ′ perfectly emulates
the messages sent in Π. Security follows from the fact that the view of
any (static, semi-honest) adversary corrupting a subset of the parties in
Π ′ is identically distributed (up to message ordering) to the view of a
similar adversary corrupting the same subset of parties in Π. ut

Using recent 2-round MPC protocols from [4, 17], we get the following
corollary for message-optimal MPC in the plain model.

Corollary 4.2. Suppose a 2-message (semi-honest) oblivious transfer pro-
tocol exists. Then, any polynomial-time n-party functionality delivering
output to k parties can be securely computed in the plain model with
2n+ k − 3 messages.



We note that the assumption that a 2-message oblivious transfer pro-
tocol exists is necessary, since such a protocol is a special case of Corol-
lary 4.2 with n = 2 and k = 1.

We are able to further reduce the computational assumptions in the
offline-online model, where a trusted source of (input-independent) corre-
lated randomness is available. The latter can be generated by the parties
themselves using an interactive MPC protocol that is carried out in an
offline, input-independent preprocessing phase. Given a correlated ran-
domness setup, 2-round MPC becomes considerably easier [10, 21]. In
particular, such protocols can be achieved unoconditionally for function-
alities in low complexity classes such as NC1, or can be based on any
one-way function for general polynomial-time computable functionalities.
The following theorem is informally mentioned in [21], we provide a proof
sketch for self-containment.

Theorem 4.3. Suppose a one-way function exists. Then, any polynomial
time n-party functionality f can be realized by a 2-round protocol with a
correlated randomness setup. Furthermore, the same result holds uncon-
ditionally (and with information-theoretic security) for functionalities f
in the complexity class NC1 or even (uniform) NL/poly.

Proof. (sketch) Assume for simplicity that each input of f is a single bit
and the output is only revealed to P1; the general case can be reduced to
this case. Consider any decomposable randomized encoding [15, 1, 22] (or
projective garbling [2]) for f . Such an encoding can be expressed as an
efficiently samplable joint distribution Rf = ((r01, r

1
1), . . . , (r0n, r

1
n)) such

that given (r1x1 , . . . , r
n
xn) one can recover f(x) but cannot learn anything

else about x. The existence of such Rf for polynomial-time computable
functionalities f (with computational hiding of x) can be based on any
one-way function [24]. For functions f in NC1 or even (uniform) NL/poly,
it exists unconditionally with perfect hiding of x [15, 1].

Given Rf as above, a protocol for f in the correlated randomness
model proceeds as follows. To generate the correlated randomness, sample
((r01, r

1
1), . . . , (r0n, r

1
n)) from Rf , pick a secret mask ρi ∈ {0, 1} for each

input bit xi, and use n-out-of-n (e.g., additive) secret sharing to share
each (r0i , r

1
i ) between the parties, where the pair entries are permuted

according to ρi. That is, each party gets a “left share” of rρii and a “right

share” of r1−ρii . Moreover, the permutation bit ρi is revealed to party Pi.
In the online phase, on input xi, party Pi sends its masked input

x′i = xi⊕ ρi to all other parties. In the second round, each party sends to
P1 the n shares corresponding to the bits x′i, namely if x′i = 0 then the



left share (of rρii ) is sent and otherwise the right share (of r1−ρii ) is sent.
Given the shares received from all parties, P1 reconstructs (r1x1 , . . . , r

n
xn),

from which it can decode f(x1, . . . , xn). Security follows from the security
of the randomized encoding and the fact that the unrevealed values ri1−xi
are not revealed to the adversary even when corrupting an arbitrary strict
subset of the parties. ut

Combining Theorem 4.1 and Theorem 4.3, we get the following corol-
lary for message-optimal MPC with correlated randomness setup.

Corollary 4.4. Suppose a one-way function exists. Then, any polyno-
mial time n-party functionality f delivering output to k parties can be
securely computed with a correlated randomness setup and 2n+ k− 3 on-
line messages. Furthermore, the same result holds unconditionally (and
with information-theoretic security) for functionalities f in the complexity
class NC1 or even (uniform) NL/poly.

5 Conclusions and Future Research

In this work we provide a tight characterization of the message complexity
of computationally secure MPC in the presence of semi-honest adversaries
that can corrupt any number of parties. Our work leaves several natural
directions for future research.

One direction is understanding the type of achievable security and
necessary setup for extending the positive results to accommodate mali-
cious adversaries. While such an extension is fairly simple in some settings
(e.g., for NC1 functions with a correlated randomness setup and settling
for “security with selective abort” [21]), characterizing the minimal mes-
sage complexity in the plain model or with stronger forms of security
seems like a challenging problem.

Another direction is to better understand the message complexity of
MPC in the case where at most t parties can be corrupted. This relaxed
setting is more sensitive to the distinction between static vs. adaptive
corruption (with or without erasures) and between fixed vs. dynamic
interaction pattern. Partial results are given in [11, 7, 8, 5, 13, 16].

Acknowledgements. The first and third authors were supported in part
by NSF-BSF grant 2015782 and BSF grant 2012366. The first author
was additionally supported by ERC grant 742754, ISF grant 1709/14,
DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, NSF
grants 1619348, 1228984, 1136174, and 1065276, a Xerox Faculty Re-
search Award, a Google Faculty Research Award, an equipment grant



from Intel, and an Okawa Foundation Research Grant. This material is
based upon work supported by the DARPA through the ARL under Con-
tract W911NF-15-C-0205. The third author was additionally supported
by NSF grant 1619348, DARPA, OKAWA Foundation Research Award,
IBM Faculty Research Award, Xerox Faculty Research Award, B. John
Garrick Foundation Award, Teradata Research Award, and Lockheed-
Martin Corporation Research Award. The views expressed are those of
the authors and do not reflect the official policy or position of the DoD,
the NSF, or the U.S. Government.

References

1. B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in NC0. In FOCS,
pages 166–175, 2004.

2. M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled circuits. In
Proc. CCS ’12, Raleigh, NC, USA, October 16-18, 2012, pages 784–796, 2012.

3. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In
STOC, pages 1–10, 1988.

4. F. Benhamouda and H. Lin. k-round mpc from k-round ot via garbled
interactive circuits. Cryptology ePrint Archive, Report 2017/1125, 2017.
https://eprint.iacr.org/2017/1125.

5. E. Boyle, K. Chung, and R. Pass. Large-scale secure computation: Multi-party
computation for (parallel) RAM programs. In Proc. CRYPTO 2015, Part II,
pages 742–762, 2015.

6. E. Boyle, N. Gilboa, Y. Ishai, H. Lin, and S. Tessaro. Foundations
of homomorphic secret sharing. In Proceedings of ITCS 2018, 2018.
https://eprint.iacr.org/2017/1248.

7. E. Boyle, S. Goldwasser, and S. Tessaro. Communication locality in secure multi-
party computation - how to run sublinear algorithms in a distributed setting. In
Proceedings of TCC 2013, pages 356–376, 2013.

8. N. Chandran, W. Chongchitmate, J. A. Garay, S. Goldwasser, R. Ostrovsky, and
V. Zikas. The hidden graph model: Communication locality and optimal resiliency
with adaptive faults. In Proceedings ITCS 2015, pages 153–162, 2015.
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A Secure Multiparty Computation

For completeness, we provide here an overview of the standard definition
of MPC we use. We refer the reader to [18] for a more complete treatment.

We consider by default an n-party functionality f to be a deterministic
mapping of n inputs to n outputs.

An n-party protocol Π prescribes a randomized interaction between
parties P1, . . . , Pn on their local inputs xi. This interaction may proceed
in rounds, where in each round each party can send a message to each
other party. Since our current focus on message complexity rather than
round complexity, we may assume without loss of generality that only a
single message is sent in each round. Formally, Π is a polynomial-time
computable next message function that on input i (party identity), 1k

(global security parameter), xi (local input of Pi), ri (local random input
of Pi) and (mij ) (sequence of messages received so far by Pi) specifies the
next message Pi should send and its destination, or alternatively the local



output yi of Pi. In the plain model, the ri are independently random bit-
strings, whereas in the correlated randomness model they can be picked
by a PPT sampling algorithm D(1k).

We make the following correctness requirement: if parties P1, . . . , Pn
interact according to Π on inputs 1k and (x1, . . . , xn), then they end
up with local outputs (y1, . . . , yn) = f(x1, . . . , xn) except with negligible
probability in k.

The security of a protocol (with respect to the functionality f) is
defined by comparing the real-world execution of the protocol with an
ideal-world evaluation of f by a trusted party. More concretely, it is re-
quired that for every adversary Adv, which attacks the real execution of
the protocol, there exist an adversary Sim, also referred to as a simula-
tor, which can learn essentially the same information in the ideal-world.
Since we consider security against semi-honest adversaries and determin-
istic functionalities, we are only concerned with simulating the view of
Adv and not its effect on the outputs of uncorrupted parties.

The real execution. In the real execution of Π, the adversary Adv, given
an auxiliary input z, corrupts a set I ⊂ [n] of the parties and outputs their
entire view. This view consists (without loss of generality) of their inputs
xi, random inputs ri, and messages received from other parties. (The
outgoing messages are determined by the above information.) The output
of Adv on a protocol Π defines a random variable REALπ,Adv(z),I(k,x).

The ideal execution. In the ideal world, there is a trusted party who
computes f on behalf of the parties. The simulator Sim, given an auxiliary
input z, corrupts a set I ⊂ [n], receives the inputs and outputs of parties
in I, and computes some (randomized) function of this information. The
interaction of Sim with f defines a random variable IDEALf,Sim(z),I(k,x)
whose value is determined by the random coins of Sim.

Having defined the real and the ideal executions, we now proceed to
define our notion of security. We say that Π securely computes f in the
presence of semi-honest adversaries if for every I ⊂ [n] and PPT adversary
Adv (whose running time is polynomial in k) there exists a PPT simulator
Sim, such that for every sequence of polynomial-size auxiliary inputs zk
and inputs x = (x1, . . . , xn), the following quantity is negligible in k:

|Pr[REALΠ,Adv(z),I(k,x) = 1]− Pr[IDEALf,Sim(z),I(k,x) = 1]|.

We also consider the case of information-theoretic security, in which
both Adv and Sim are computationally unbounded.


