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Abstract

Multi-key fully homomorphic encryption (MFHE) schemes allow polynomially many users
without trusted setup assumptions to send their data (encrypted under different FHE keys
chosen by users independently of each other) to an honest-but-curious server that can compute
the output of an arbitrary polynomial-time computable function on this joint data and issue it
back to all participating users for decryption. One of the main open problems left in MFHE
was dealing with malicious users without trusted setup assumptions. We show how this can
be done, generalizing previous results of circuit-private FHE. Just like standard circuit-private
FHE, our security model shows that even if both ciphertexts and public keys of individual
users are not well-formed, no information is revealed regarding the server computation— other
than that gained from the output on some well-formed inputs of all users. MFHE schemes
have direct applications to server-assisted multiparty computation (MPC), called on-the-fly
MPC, introduced by Lépez-Alt et al. (STOC ’12), where the number of users is not known in
advance. In this setting, a poly-time server wants to evaluate a circuit C' on data uploaded by
multiple clients and encrypted under different keys. Circuit privacy requires that users’ work is
independent of |C| held by the server, while each client learns nothing about C' other than its
output. We present a framework for transforming MFHE schemes with no circuit privacy into
maliciously circuit-private schemes. We then construct 3-round on-the-fly MPC with circuit
privacy against malicious clients in the plain model.
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1 Introduction

The multi-key fully homomorphic encryption scheme (MFHE), introduced by Lépez-Alt et al. [LATV12],
allows homomorphic computation on inputs encrypted with different public keys. They construct

a MFHE under the ring learning with errors (RLWE) assumption, the decisional small polynomial
ratio (DSPR) assumption, and circular security of a multi-key homomorphic encryption scheme
Esp based on a variant of NTRU homomorphic encryption. In this paper we construct a MFHE
scheme that satisfies circuit privacy in the malicious setting, where public keys and ciphertexts

are not guaranteed to be well-formed. We also present a framework for transforming multi-key
homomorphic encryption schemes without circuit privacy or fully homomorphic property into ma-
liciously circuit-private MFHE. We then demonstrate an instantiation of this framework using a
modified scheme based on MFHE in [LATV12] without adding further assumptions.

As in [OPCPC14], we only consider the plain model. In the common reference string (CRS)
model, the malicious case can be reduced to the semi-honest case by adding non-interactive zero-
knowledge (NIZK) arguments that public key and ciphertext pairs are well-formed. Though, even
in this case, difficulties can arise, as the security needs to hold when the pairs are in the support
of honestly generated ones, but with different distributions—as discussed in [GHV10].

In [LATV12], the MFHE scheme is used to construct on-the-fly multiparty computation (MPC),
which can perform arbitrary, dynamically chosen computation on arbitrary sets of users chosen on-
the-fly. This construction allows each client user to encrypt data without knowing the identity
or the number of other clients in the system. The server can select any subsets of clients, and
perform an arbitrary function on the encrypted data without further input from the selected clients
(and without learning clients’ inputs). The encrypted result is then broadcast to the clients who
cooperate in the retrieval of the output using (short) MPC protocol. Thus, most computation is
done by the server while the decryption phase is independent of both the function computed and the
total number of parties in the system. The resulting protocol is a five-round on-the-fly MPC secure
against semi-malicious users [AJLAT12], which follows the protocol but chooses random coins from
an arbitrary distribution. The protocol can be strengthened against malicious adversaries in the
CRS model using NIZK arguments without an increase in the number of rounds.

In this paper we construct a three-round on-the-fly MPC with circuit privacy against malicious
users in the plain model. Specifically, all players send their inputs to the server, which performs
the computation and sends the results back to all users, who then decrypt the result in one round.
Since there is no way to enforce which function the server will compute, we assume that the server
is honest but curious. As with our MFHE, the circuit privacy is guaranteed against unbounded
malicious adversaries corrupting any number of clients. We also note that a variant of circuit privacy
can be achieved in [LATV12] construction by allowing the server to participate in the decryption
phase MPC described above with its encrypted result as an input. However, our construction allows
the server to minimize its interaction with the clients to only two rounds (i.e., one message from
client to server and one broadcast back to client). After the server sends its output back to the
clients, the clients communicate with one another in only one additional round in order to decrypt
the output. Since we use multi-key homomorphic encryption from [LATV12] as the base of our
construction, we also require the number of key pairs or users to be known is advance as in their
protocol.

To summarize, our main theorems are as follows:

Theorem 1.1. (informal) Assuming that there exists a privately expandable multi-key homomor-
phic encryption scheme, then there exists a maliciously circuit-private multi-key fully homomorphic
encryption scheme.



Theorem 1.2. (informal) Assuming RLWE and DSPR assumptions, and circular security of Esp,
there exists a maliciously circuit-private multi-key fully homomorphic encryption scheme.

Theorem 1.3. (informal) Assuming the preconditions of Theorem 1.1 or Theorem 1.2 hold, there
exists a three-round on-the-fly MPC' protocol where each client i € [U] in the system holds z;, and
the server chooses a circuit C' with N < U inputs and a subset V- C [U] with |V| = N. Only the
clients in V' learn C({z;}icv) (but nothing else, not even |C|), and the server learns nothing about

{xi}iE[U]-

1. The privacy guarantee for clients is indistinguishability-based computational privacy against
malicious adversaries corrupting t < N clients and honest-but-curious servers.

2. The privacy guarantee for the server is based on unbounded simulation (against possibly un-
bounded clients).

We note that condition 2 is incomparable with standard simulation framework as it requires
stronger (i.e., information-theoretic) guarantees, but also unbounded simulation. As discussed in
[OPCPC14], this is unavoidable, even for single maliciously circuit-private FHE.

1.1 Previous Work

Multi-key FHE. As stated above, [LATV12] introduces the concept of MFHE and constructs
this scheme based on a variant of the NTRU encryption scheme under the RLWE and DSPR
assumptions. The work of [CM15] gives an alternate construction based on [GSW13], the FHE
scheme under the LWE assumption. While their construction only relies on standard assumption
such as LWE, it requires an additional set up step, equivalent to the CRS model. A recent work
of [MW15] simplifies the construction of [CM15], and adds a threshold decryption protocol which
is used to construct two-round MPC in the CRS model.

Circuit privacy in FHE. In the semi-honest setting, where public keys and ciphertexts are
supported by properly generated pairs, circuit privacy has been considered in [Gen09, VDGHV10],
with the latter using Yao’s garbled circuit. The generalization in [GHV10] combines two HE
schemes—one compact fully homomorphic and the other semi-honestly circuit-private—into com-
pact semi-honestly circuit-private FHE.

The malicious setting has been addressed in the context of oblivious transfer (OT) [AIRO1,
HK12]. The work of [IP07] constructs maliciously circuit-private HE for a class of depth-bounded
branching programs by iteration from leaves of a branching program.

Finally, the work of [OPCPC14] devises a framework for transforming single-key FHE schemes
with no circuit privacy into maliciously circuit-private ones. They use techniques akin to Gen-
try’s bootstrapping [Gen09] and semi-honestly circuit-private HE constructions [AIR01, GHV10]
combining FHE schemes with maliciously circuit-private HE schemes.

One-Round OT. Several definitions of OT security have been suggested—such as a general
framework for defining two-party computation [Can00]. The work of [AIR01] proposes a definition
for one-round (2 messages) OT using unbounded simulation, which implies information theoretic
security for sender, and demonstrates a construction based on the DDH assumption. In [IP07], Ishai
and Paskin construct a one-round OT with perfect sender privacy based on the DJ homomorphic
encryption scheme [DJO01] in the semi-honest setting.



On-the-Fly MPC. Instandard MPC protocols, the computational and communication complex-
ities of each party depend on the circuit being computed. Thus, it is difficult to construct on-the-fly
MPC, where only the server performs most of the computation, while the clients compute very lit-
tle and do so independent of the circuit. This idea is explored in the work of [KMR11, HLP11].
However, the complexity of clients in the former protocol is still proportional to the size of the
circuit, while the latter is only for a small class of functions.

A line of work uses single-key FHE schemes [AJLA112, Gen09] by running a short MPC protocol
to compute a joint public key and secretly shared corresponding secret key. However, this approach
does not capture the dynamic and non-interactive properties of on-the-fly MPC. As mentioned
above, Lépez-Alt et al. [LATV12] constructed on-the-fly MPC from multi-key FHE. However, their
version is only secure against semi-malicious adversaries unless additional trusted setup assumptions
are made.

Circuit Privacy in MPC. Private function evaluation (PFE) is a special case of MPC, where
one party holds a function or circuit as an input. PFE follows immediately from MPC by evaluating
a universal circuit and taking a circuit one wants to compute as an input. However, the known
universal circuits have high complexity, namely, O(g°) for arithmetic circuits [Raz08] and O(glog g)
for Boolean circuits [Val76] for the class of circuits with at most g gates. This approach also does
not hide the size of the circuits evaluated. Previous work [MS13, MSS14] has constructed more
efficient implementation of PFEs, even against an active adversary [MSS14].

Comparison of MPC Protocols from MFHE. The following table illustrates the comparison
between our results and other MPC protocols constructed from MFHE. Note that their securities
are in different models, and thus are not directly comparable.

’ Construction ‘ Round | Adversary ‘ Setup ‘ Server-Assisted | Circuit Privacy

[LATV12] 5 semi-honest | no yes no
[LATV12] 5 malicious yes yes no

[MW15] 2 malicious yes no no
This work 3 malicious no yes yes

Table 1: Comparison of MPC protocols from MFHE

1.2 Owur Techniques

We now give an overview of our main construction of circuit-private MFHE in three steps:

Step 1. The first step is to define the main new ingredient of our construction, the privately
expandable multi-key homomorphic encryption scheme. It is a multi-key HE together with efficient
algorithms Expand such that, given a list of public keys and an encryption with respect to one of the
keys, the output is a homomorphic encryption that does not depend on which key it was previously
encrypted with. We note that in a standard construction of MFHE, a ciphertext may reveal which
key is used to encrypt it. This information may persist even after homomorphic evaluation, thus
revealing the structure of the evaluating program. Our new property allows the scheme to hide the
source of the encryption used at each node of the branching program from an adversary, therefore
hiding the branching program itself when combined with the technique in [IP07].



We show how to construct a privately expandable multi-key HE scheme from the multi-key
somewhat homomorphic encryption scheme defined in [LATV12]. The main idea is as follows: first,
we re-randomize a given ciphertext to be statistically indistinguishable from a fresh ciphertext using
algebraic properties of the scheme. We then show how to add encryptions of zero with respect to
each of the other keys, and show how to homomorphically decrypt the result to get a “low-level”
ciphertext. In fact, we note that our techniques are applicable to other known multi-key FHE
schemes as well, such as in [MW15] to obtain a privately expandable multi-key FHE.

Step 2. The next step is to construct maliciously circuit-private multi-key HE for a class of
depth-bounded branching programs. A (deterministic binary) branching program is represented
by a directed acyclic graph whose nonterminal nodes with outdegree 2 are labeled with indices
in [n], while terminal nodes with outdegree 0 and edges are labeled with 0 or 1. An input z €
{0,1}™ naturally induces a unique path from a distinguished initial node to a terminal node,
whose label determines P(z). Any logspace or NC function can be computed by polynomial size
branching programs. We inductively compute a ciphertext for each node from terminal nodes
upward. Given a ciphertext of each bit of x € {0,1}", encrypted with different public keys,
we expand the ciphertexts to hide public keys it was originally encrypted with. We use private
expandability to homomorphically compute ciphertext at each node with a key-hiding ciphertext
indistinguishable from a fresh one. Thus, each ciphertext reveals nothing about the path leading to
its corresponding node along the branching program, including which bit each node uses to decide
its path. Therefore, the output, which is the ciphertext corresponding to the root, contains no
information about the program.

The protocol above is secure against semi-honest adversaries. We then show how to modify
the protocol to achieve security against malicious adversaries. We use single-key malicious circuit-
private FHE and a modified validation circuit from [OPCPC14], generalizing their techniques. The
server (homomorphically) verifies that public keys and ciphertexts received are well-formed. This
guarantees that each corrupted party uses proper public key and ciphertext, independent of other
parties. Since we can verify before expanding the ciphertexts, we can use single-key FHE instead
of multi-key.

Step 3. In this step we finally combine the protocol from the previous step with compact
MFHE with no circuit privacy to get maliciously circuit-private MFHE. We modify the frame-
work in [OPCPC14] and obtain a framework for multi-key HE. To evaluate a given circuit, we
first use MFHE with no circuit privacy to evaluate. Then we homomorphically decrypt the output
using maliciously circuit-private HE that can evaluate the decryption function. Then we homo-
morphically decrypt to the original compact MFHE output, and only return it if public keys and
ciphertexts are well-formed. This can be checked homomorphically similarly to the previous step.
Using MFHE from [LATV12] for instantiation, we get a maliciously circuit-private MFHE scheme
based on RLWE and DSPR assumptions.

Application. Finally, we construct an on-the-fly MPC with circuit privacy from the result of
the last step. Unlike [LATV12], we consider the plain model with no setup assumptions and
malicious adversaries corrupting an arbitrary number of clients. Along the way, we also construct
a one-round l-out-of-2 OT that is secure against malicious receivers with information theoretic
security by augmenting a known construction that is only secure against semi-honest receivers with
circuit-private FHE. Finally, by using a garbling scheme and our OT protocol, we can reduce the
number of rounds from the construction in [LATV12] to three rounds, which is optimal even against



semi-honest adversaries in the plain model. The idea of the third round is as follows: Instead of
having the clients run an MPC protocol to decrypt the output, the server constructs a collection
of garbled circuits that decrypts the output for each user. The clients create an OT query for each
bit of their secret keys and send it to the server along with the ciphertext in the first round. The
server then answers those queries with corresponding garbled input for the garbled circuit. Finally,
each client decrypts and broadcasts their garbled inputs to all other clients to compute the final
output from the garbled circuits by each client.

The security of our protocol is based on unbounded simulation for the server, which is necessary
for circuit privacy as discussed in [IP07, OPCPC14]. We note that it is impossible to obtain
ideal functionality definition due to the impossibility of any computationally bounded simulators
extracting the input in one round (without trusted setup assumptions). Instead, we show the
security for honest clients based on indistinguishability of the view of the malicious adversaries
corrupting clients and the view of the honest-but-curious server.

2 Background

2.1 Notation

For positive integer n € N, let [n] = {1,...,n}. For a string x € {0,1}*, let |z| denote its length.
Let @ denote bitwise XOR operation or bitwise addition modulo 2. For a distribution A, let
x < A denote z is chosen according to a distribution A. For a finite set S, let © + S denote x
is chosen uniformly from the set S. Let A denote the security parameter. A function f : N — RT
is negligible if for every constant ¢ > 0, there exists A\g € N such that f(A\) < A\7¢ for all A > .
Algorithms may be randomized unless stated otherwise. A PPT algorithm runs in probabilistic
polynomial-time; otherwise, it is unbounded. For an algorithm A, let y <~ A(z;7) denote running
A on input x with random coins r. If r is chosen uniformly at random, we denote y <— A(z). For
two distributions X,Y, X ~*Y means X and Y are statistically closed, i.e. A(X,Y) is negligible.
For two distributions X, Y, X ~°Y means X and Y are computationally indistinguishable, i.e. for
any PPT algorithm D, |Pr[D(X) = 1] — Pr[D(Y) = 1]| is negligible.

Setup vs. Plain Model. We say a protocol is in the setup model or the common reference string
(CRS) model if every party has access to a common random string r that was ideally drawn from
some publicly known distribution prior to the beginning of the protocol. Without such setup, we
say a protocol is in the plain model.

Malicious vs. Honest-but-Curious Party. We say a party participating in a protocol is
honest-but-curious if it follows the protocol, but may perform additional computation to learn
more information than it should. We say a party is (fully) malicious if it deviates from the protocol
arbitrarily.

Representation Models. In order to use a function or a program as an input of our algorithm,
we consider a function represented by a string representation C. The correspondence between
a program C and a function f it represents must be universally interpreted by an underlying
representation model U. Formally, a representation model U : {0,1}* x {0,1}* — {0,1}* is a PPT
algorithm that takes a input (C,z) and returns f(x) for a function f represented by C. If (C,x)
is syntactically malformed, we let U(C,z) = 0 for completeness. We let |C| denote the size of
program C as a string representation as opposed to the number of gates as a Boolean circuit.



2.2 Multi-Key Homomorphic Encryption

We use the definition similar to the one defined in [LATV12] with some modifications from [MW15]
and [OPCPC14]. We fix the order of public keys in Eval and secret keys in Dec, and allow the number
of keys to be different from input size of the circuit. This definition better suits our definition of
circuit privacy that we will define in the next section.

Definition 2.1 (Multi-Key (Leveled) (U, C)-Homomorphic Encryption). Let C be a class of cir-
cuits. A multi-key (leveled) (U, C)-homomorphic scheme £ = (KeyGen, Enc, Eval, Dec) is described
as follows:

o (pk,sk) « KeyGen(1*,1%): Given a security parameter \ (and the circuit depth d), outputs a
public key pk and a secret key sk.

o ¢« Enc(pk,pu): Given a public key pk and a message p, outputs a ciphertext c.

o ¢« Eval(C, (pki,...,pkn), (I1,¢1),...,(In,cn)): Given a (description of ) a boolean circuit C
(of depth < d) along with a sequence of N public keys and n couples (I;,c;), each comprising
of an index I; € [N] and a ciphertext c;, outputs an evaluated ciphertext ¢.

e b:= Dec(sky,...,skn,¢): Given a sequence of N secret keys ski,...,skn and a ciphertezt ¢,
outputs a bit b.

has the following properties:

e Semantic security: (KeyGen, Enc) satisfies IND-CPA semantic security.

e Correctness: Let (pk;, sk;) + KeyGen(1*,1%) fori =1,...,N. Let x = x1...x, € {0,1}"
and C € C be a boolean circuit of depth < d, C : {0,1}" — {0,1}. Fori = 1,...,n, let
¢i < Enc(pky,,x;) for some I; € [N]. Let ¢ < Eval(C, (pki,...,pkn), (I1,¢1),. .., (In,cn)).
Then

Dec(skl, ey Sk‘N, é) = U(C, (:pl, RN ,mn))

& is compact if there exists a polynomial p such that |¢| < p(\,d, N) independent of C' and n. If
a scheme is multi-key (U,C)-homomorphic for the class C of all circuits (of depth < d), we call it
a multi-key (leveled) fully homomorphic (MFHE). A scheme £ is somewhat homomorphic if it is
leveled (U, C)-homomorphic for d < dmax(A, N). A scheme £ is multi-hop if an output of Eval can
be used as an input as long as the sum of the depths of circuits evaluated does not exceed d.

2.3 Lépez-Alt, Tromer and Vaikuntanathan’s Multi-Key FHE Scheme

In [LATV12], Lépez-Alt et al. construct a multi-key compact leveled fully homomorphic encryption
scheme. They first construct a multi-key leveled somewhat HE scheme Egf7, then apply Gentry’s
bootstrapping [Gen09]. The security of the scheme is based on the ring learning with error (RLWE)
assumption, the decisional small polynomial ratio (DSPR) assumption, and the weak circular se-
curity of Egp.

Let ¢ = ¢(\) be an odd prime integer. Let the ring R = Z[z]/(¢) for polynomial ¢ € Z|x]
of degree m = m(\) and R, = R/qR. Let x be the B-bounded truncated discrete Gaussian
distribution over R for B = B(\).



Definition 2.2 (Ring Learning With Error (RLWE) Assumption [BV11]). The (decisional) ring
learning with error assumption RLWE ., states that for any | = poly(\),

{(ai,ai - s+ ei) Y = {(ai, wi) Yiep
where s,e; < x and a;,u; are sampled uniformly at random over Ry.

Definition 2.3 (Decisional Small Polynomial Ratio (DSPR) Assumption [LATV12]). The deci-
sional small polynomial ration assumption DSPRy 4\ says that it is hard to distinguish the following
two distributions:

e a polynomial h := [29f_1]q, where f', g < x such that f:=2f" + 1 is invertible over R, and
71 is the inverse of f in Ry.

e a polynomial u sampled uniformly at random over R,.

We describe the multi-key leveled somewhat HE scheme here as follows.

KeyGengy (1%, 1%):
1. Fori=0,1,...,d,

(a) Sample fi g% < x and compute f?:=2f" + 1. If f is not invertible in R, resample 7.
(b) Let (f%)~! be the inverse of f*in R,.

() Let hy = 26°(/1) "y € Ry

(d) For i > 1, sample .ﬁ,a,gé,éz +— yMogail,

(e) Let o' := [hZE'i/ + 2é',iy + Pow(fi_l)]qi € Rgogqﬂ

and (' := [h’éz + 262 + Pow ((fi*1)2)} € Rgiogqi].
qi
2. Output pk = (h%,~%, ... 44, ¢L,... ¢ and sk = fi € Ry,.

Encsm (pk, p):

1. Parse pk = h. Sample s, e < ¥.

2. Output ¢ = [hs + 2e + p]qy € Ry, -

Evalsy (C, (pk1, ..., pkN), (I1,c1), ..., (In, cn)):
1. For i € [N], parse pk; = (hi, 7}, ..., v4, ¢ ¢R)

2. Given two ciphertexts ¢, ¢ € Ry, associated with subsets of the public keys K, K’, respectively.
Let ¢o = [c+ ] € Ry, and K U K" = {pk;,,...,pk;, }. For j =1,... ¢, compute

cj = <Bit(Cj—1)’%?j> 4 < qu

Then let cyqq be the integral vector closest to (gi+1/4i)- ¢ such that cqqq = ¢ (mod 2). Output
Cadd € Ry, and the associated subset K U K !



3. Given two ciphertexts ¢, ¢’ € Ry, associated with subsets of the public keys K, K’, respectively.
Let ¢ =[c- ] € Ry, and K UK' = {pki,,...,pk;, }. For j=1,...,t,

(a) If pk;; € KN K', compute

¢ = [<Bit(cj—1)7giij>]q_ € Ry,
(b) Otherwise, compute

cj = |:<B1t(C]—1)7’YZ]>i| » S qu

Then let ¢, be the integral vector closest to (gi+1/¢i) - ¢ such that ¢ = ¢ (mod 2).

Output ¢pur € Ry, and the associated subset K U K.

Decsp (ski, ..., skn,c):
1. For i € [N], parse sk; = f;.

2. Let pg = [fl fN . C]qd € qu.
3. Output ¢/ = pp (mod 2).

Remarks

1. In [LATV12], a different notation for Evalsy (C, (pki,...,pkn), (I1,¢1), ..., (In,¢pn)) is used,
namely, Evalsy (C, (pk1,c1),. .., (pkn,cn)). These two notations are equivalent when N = n
and I; = j for j = 1,...,n. For brevity, we also use this notation under such conditions.

2. We also denote the evaluation on intermediate ciphertexts ¢1, . . ., ¢, associated with nonempty
subsets of public keys K1, ..., K, respectively, by Evalsy (C, (K1,¢1), ..., (K, ¢,)).

Theorem 2.4 ([LATV12]). Assuming the DSPR and RLWE assumptions, and that the scheme
Esuy = (KeyGengy, Encsp, Evalgyr, Decgyr) described above is weakly circular secure, then there
exists a multi-key compact leveled fully homomorphic encryption scheme for N keys for any N € N,
obtained by bootstrapping Esp .

2.4 Circuit-Private Homomorphic Scheme

We describe the circuit privacy of single-key homomorphic encryption defined in [IP07, OPCPC14].
In the next section we will define our multi-key variant based on this definition.

Definition 2.5. Let £ = (KeyGen, Enc, Eval, Dec) denote a (U, C)-homomorphic encryption scheme.
We say £ is (maliciously) circuit-private if there exist unbounded algorithms Sim(l)‘, pk*,ci,...,ch,b)

and deterministic Ext(1*, pk*, ¢*) such that for all \, pk*, ¢, ..., ¢, and all programs C : {0,1}" —
{0,1} € (U,C), the following holds:

o fori=1,...,n, z} = Ext(1}, pk*, c})

2

o Sim(1*, pk*, ci,...,ct, U(C,x%,...,x%)) ~° Eval(1}, O, pk*, ¢, ..., ck)

YN n rn
We say the scheme is semi-honestly circuit-private if the above holds only for well-formed
pk* = pk, ¢ = ¢;, i.e. (pk,sk) + KeyGen(1}) and ¢; + Enc(pk,z;) for some x; € {0,1},
1=1,...,n.
Theorem 2.6 ([OPCPC14]). Assume an FHE scheme with decryption circuits in NC* exists.
There exists a maliciously circuit-private single-key fully homomorphic encryption scheme.



2.5 Branching Program

Definition 2.7. A (binary) branching program P over x = (z1,...,%,) is a tuple (G = (V, E), vg, T,
Yy, ¥E) such that

e G is a connected directed acyclic graph. Let I'(v) denote the set of children of v € V.
e vy is an nitial node of indegree 0.

e T CV is a set of terminal nodes of outdegree 0. Any node in V \T has outdegree 2.

Yy : V — [n]U{0, 1} is a node labeling function with ¢y (v) € {0,1} forv € T, and ¢y (v) € [n]
forve V\T.

e Yp : E — {0,1} is an edge labeling function, such that outgoing edges from each vertex is
labeled by different values.

The height of v € V, denoted height(v), is the length of the longest path from v to a node in T.
The length of P is the height of vg.

On input x, P(x) is defined by following the path induced by x from vy to a node v; € T, where
an edge (v,v') is in the path if Ty, ) € YE(v,v"). By the last property, such v' is unique. Then
P(z) = ¢y (v). Similarly, we also define P,(x) by following that path from any node v € V instead
of vg.

Definition 2.8. A layered branching program of length | is a branching program P = (G =
(V,E),vo,T,vv,vE) such that for any e = (v,v") € E, height(v) = height(v') + 1.

Every path from an initial node to a terminal node in a layered branching program has the same
length. Every branching program can be efficiently transformed into a layered branching program
of the same length [Pip79]. For simplicity, we assume all branching programs are layered.

2.6 Oblivious Transfer

We use the statistical indistinguishability definition for OT instead of a real/ideal world definition
since the ideal world simulator can break the receiver security for a one-round protocol.

Definition 2.9 (OT Protocol). A one-round 1-out-of-2 OT protocol is a tuple of PPT algorithms
(GoT, QoT, AoT, DoT) involving two parties, a sender and a receiver. The sender’s input is a pair
(so,81) such that |so| = |s1| = 7. The receiver’s input is a bit b € {0,1}. The protocol proceeds as
follows:

o The receiver generates (pk,sk) < Got(1Y), computes q < Qot(1*,17,pk,b), and sends
(pk,q) to the sender.

e The sender computes a < AoT(S0, $1, Pk, q) and sends a to the receiver.
e The receiver computes DoT(sk,a).

The protocol is correct if Dot (sk,a) = sp.

Receiver privacy: (Got,QoT) is semantically secure.

Sender privacy (semi-honest case): There exists an expected polynomial time simulator
SimoT such that for any b € {0,1}, (pk, sk) < Got(11), ¢ + QoT(1*,17, pk,b) and s, s1 € {0,1}7,

AoT(50, 51, Pk, q) ~° SimoT (s, Pk, q).
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Sender privacy (malicious case): There exists an unbounded simulator Simot such that
for any pk*,q* of appropriate length, and so,s1 € {0,1}7, there exists b* = b(pk*,q*) such that

AOT(SO7 Slapk*a q*) o~® SimOT(Sb* 7pk*7 q*)
The protocol has perfect sender privacy if the distributions are the same.

One-round 1-out-of-2 OT protocol with sender privacy against malicious adversaries can be con-
structed from circuit-private (single-key) homomorphic encryption scheme by evaluating Cy, s, (b) =
Sp. Since circuit privacy guarantees that the evaluated ciphertext only depends on the output, it
hides s1_p even from an unbounded adversary.

2.7 Garbling Scheme

Definition 2.10 (Garbling Scheme). A garbling scheme is a tuple of PPT algorithms (GarbCircuit,
GarbEwval) such that for any circuit C : {0,1}"* — {0,1} and z € {0,1}", (G, e) + GarbCircuit(1*,C)
and X = e(x), we have GarbEval(G, X) = C(x).

Security: For any circuits Cy,Cy : {0,1}" — {0,1} and z € {0,1}" such that Cy(xz) = C1(x),
if, for i = 0,1, (Gy,e;) = GarbCircuit(1),C;) and X; = e;(z), then (Go, Xo) is computationally
indistinguishable from (G1,X1), i.e. for any PPT adversary A, there exists a negligible function v
such that

|PI‘[A(G0,X0) = 1} — Pl"[.A(Gl,Xl) = 1” S I/()\)

A garbling scheme is projective if each bit of the garbled input X = e(x) only depends on one
bit of x. In this case, we may assume that e can be represented by (XP, Xi,..., X% X1) where
e(xy...zy) = X7 X0

3 Privately Expandable Multi-Key Homomorphic Encryption

In this section we will define the properties of multi-key homomorphic encryption which are required
for the construction of multi-key circuit private HE for branching programs discussed in the next
section. Informally, private expandability allows masking of a ciphertext encrypted under a public
key using other public keys in order to hide the key it was originally encrypted with. We then
show how to modify the multi-key HE from [LATV12] to achieve such property. We note that the
multi-key HE from [MW15] can be modified to have this property in a similar way (as shown in
Appendix A). However, since it only works in the setup model, we cannot get a meaningful result
in circuit privacy.

3.1 Private Expandability

We define an “expanded” ciphertext as one that associates with all public keys to be used in
the evaluation algorithm. This notion is also used in [MW15]. However, expanded ciphertexts
in [MW15] do not hide the original public key it is encrypted with. In both our construction
and the one in [MW15], an expanded ciphertext can be thought of as a single-key homomorphic
encryption ciphertext that can be decrypted with some function of all secret keys. In our case, it
is the product of all secret keys; in the [MW15] case, it is the appending of all secret keys.

Definition 3.1. A multi-key HE scheme (KeyGen, Enc, Eval, Dec) is privately expandable if there
exist polynomial time algorithms Expand, Eval, Dec such that, fori =1,..., N, (pk;, sk;) < KeyGen(1*),

11



e Let ¢ < Enc(pk;, ). Then for any j € [N],

e~ e~

¢ := Expand(pki, ..., pkn,i,c) ~° Expand(pky, ..., pkn, j, Enc(pk;, 1))
and [f):e/c(skl, ooy skn, €)= 1
o iffori=1,...,N, Dec(sky,...,sky,&)=b;, then

Dec(ski, ..., sky,Eval(P,pki,...,pkn,¢1,...,5)) = P(bi,...,b).

We sometimes replace Eval and Dec with Eval and 5&:, respectively, and denote (KeyGen, Enc,
Expand, Eval, Dec) a privately expandable HE scheme if Expand, Eval and Dec satisfy the above
conditions.

3.2 Privately Expandable Multi-key HE based on LTV Encryption Scheme

In [LATV12], Lopez et al. constructed a multi-key FHE scheme with security based on ring learning
with error assumption (RLWE) and decisional small polynomial ration assumption (DSPR) by
further assuming circular security. We will show that we can modify the scheme to be privately

expandable by constructing Expand, E/gl, Dec without additional assumption.

Let Esr = (KeyGengyy, Encspr, Evalgr, Decsyr) be the multi-key somewhat homomorphic scheme
given in [LATV12] defined in the previous section.

A ciphertext of gy is a polynomial in R, = Zg4[z]/(z™ + 1) which can be represented by a
vector in Zg. In this scheme, N must be known in advance. We choose n = N 1/ 6,, g = 2™ for some

¢ < e Thus, g =2V * for § > 1. We need to use a bootstrappable somewhat homomorphic version
instead of a bootstrapped FHE as we need its multi-hop property while we only need to evaluate
low depth circuits. Let ¢t € N and U; be a discrete uniform distribution on {0, ..., ¢}, which can be
sampled in time O(logt). We define

—~—— 1

Expand (pk1,...,pkn,i,c):
1. For each j € {1,...,N}
e Parse pk; = h;.
e Let sj,ej < U],
o Let ¢; = hjsj + 2e;
N
2. Output ¢ =c+ ) ¢j.
j=1

The following lemma is a variant of the smudging lemma in [AJLAT12]:

Lemma 3.2. Let aj,ay € Z™ be B-bounded. Then A(ay + b,as + b) < 4nB/t where b« U*. If t
18 superpolynomial in A, then they are statistically indistinguishable.

Proof. Let ¢1,co € Z be corresponding entries in a1 and ag, respectively. Then |c¢; —ca| < 2B. Thus,
A(cr + U, co +U;) < 4B/t. Therefore, A(aj + b,as +b) < 4nB/t. Since n and B are polynomial
in A\, A(a; + b, a2 + b) is negligible for superpolynomial ¢. O

We apply the above lemma to get the following result.
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Lemma 3.3. Let (pkk,sk:k) — KeyGengy (1M,14) for k = 1,...,N. For i € [N], let ¢ +

Encgm (pki, p). Lett < 18(N( B ~)- Then

¢ := Expand (pki,...,pkn,i,c) ~° Expand (pki1,...,pkn, J, Encsu (pkj, 1))
for any j € [N], and Decg(ski,...,skn,¢) = p.

Proof. Suppose t is superpolynomial. Then for any s,e < x and s;,e; + U], [s + s;] ~° [s ] and
[e+e;] ~° [e;] by Lemma 3.2. Thus, for ¢ = h;s+2e+m, we have [c+ (h;s;+2¢;)] ~° [m+(h;si+e;)].
Then

—~—t
Expand (pki,...,pkn,i,¢) ~° [m + Z (hgsk + 2er)].
k€[N]

By the same reason,

—~~— 1
Expand (pkla ce apkN7j7 Ean(pk?j, M)) = [m + Z (hk’sk + 2€k)]
ke[N]

Therefore, they are statistically indistinguishable.
Now let ¢ =m+3_c1nj(hjsj+2e;) where s;, e; bounded by ¢. For each j € [N], f;(h;s;+2e;) =
2(g;sj+fje;) is bounded by E :=2nBt+2nB(2t+1) = 2nB(3t+1) < 8nBt. Then for f = f1... fn,

fe=fm+ > (I ) filhys; +2e))
JE[N] ke[N\{7}

is bounded by (nB)Y + N(nB)N~'E < 9N(nB)Nt, which can be decrypted if it is less than

q/2. Thus, for t < %(W), the correctness follows from that of LTV scheme. Note that as

q= N = (2N6 )N, t is still superpolynomial in N and thus A. O

Lemma 3.4 (implied from [LATV12]). For any C > 0, for sufficiently large A, N = N(\) € N,
there exists a multi-key somewhat homomorphic encryption scheme for N keys and circuits of depth
d > Cdpec where dpec s the depth of its decryption circuit.

The depth of circuits that can be evaluated is important here because the construction in the
next section will require that the scheme can perform evaluation twice.

Now let t satisfy the above condition. Let dy = dpec and d > 3dg + 2. We define a scheme
F = (KeyGen £, Encr, Expand z, Evalr, Decr) as follows:

KeyGen (1%, 1%):
1. Let (pko, sko) + KeyGengy (1*,1%) and (pke, ske) < KeyGengp (17, 14+d0)
2. Let fog = Encom(pke, sko)

3. Output pk = (pko, pke, fs) and sk = skg.

Enc;(pk‘, M):
1. Parse pk = (pko, pke, fsk)-

2. Output Encgy(pko, p).
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Expand z(pki, ..., pkn,i,c):

1. Parse pk; = (pkoj, pke j, fsk,j)-

— t

2. Let ¢ = Expand (pko1,...,pko.n,1,c¢)

3. Output ¢ = Evalgy(Decsu (-, ¢), (ke1, for1)s-- - (Pke N, fskN))-

Evalf(P,pkl,...,pkN,El,...,én):
1. Parse pk; = (pko,j, pke j, fsk.j)-
2. Let K = {pky,...,pkn}

3. Output ¢ = Evalgy (P, (K, ¢1),. .., (K, é)).

Decr(sky,...,skn,¢):
1. Parse sk; = skg ;.
2. Output p’ = Decgp(ske 1, ..., sken,C).
Note that Decr has the same size as Decgp.

Lemma 3.5. The scheme F = (KeyGen r, Encr, Expand ~, Eval z, Decr) above is a privately expand-
able multi-key compact somewhat homomorphic scheme that can evaluate circuits up to a depth of
2dg + 2.

Proof. The security and compactness of F follows directly from that of £&. By Lemma 3.3, for
¢ = Encr(pki,p), ¢ = Expandz(pki,...,pkn,i,c) is a level-dy encryption of u associated with
K = {pke1,...,pke n} under scheme £. Thus, the correctness of evaluation and decryption of F
follows from that of £.

—~~— t
Also, by Lemma 3.3, ¢ ~° Expand (pki,...,pkn, j, Ence(pkj, it)). Then the result of homomor-
phically decrypting both sides gives ¢ ~° Expandz(pki,...,pkn, j, Enc(pk;, ). Since each fg

are level 1 encryption under £, the output of Expandz is of level dy. Thus, we can further evaluate
circuits up to depth 2dy + 2 as required. O

Remarks

1. Recent results of Albrecht et al. [ABD16] give a sub-exponential (in \) attack on DSPR
assumption when ¢ is super-polynomial, which is required in [LATV12].

2. Since our protocol is also based on gy with super-polynomial ¢, security parameter and
other variables involved need to be chosen carefully to remain secure under such attack.

3. Another possible solution is to use the recent technique in [DS16] to construct a privately
expandable scheme without adding superpolynomial-size errors to the ciphertexts. However,
careful application of this technique is required in order to guarantee that the resulting scheme
is both privately expandable and correctly decryptable. We leave this as an open problem.
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4 Circuit-Private Multi-Key HE for Branching Programs

We first define the multi-key version of circuit privacy given in the previous section.

Definition 4.1. Let £ = (KeyGen, Enc, Eval,Dec) denote a multi-key (U,C)-homo-morphic en-
cryption scheme. We say € is (maliciously) circuit-private if there exist unbounded algorithms
Sim(1*, (pk, c}), ..., (pkl, ct),b) and deterministic Ext(1}, pk*, c*) such that for all \, pk}, ..., pkk,

Li,....L,, cf,...,c, and all programs C : {0,1}" — {0,1} € (U,C), the following holds:
o fori=1,...,n, z} := Ext(l)‘,pkz,c;f)

b Slm(l)\7 (pkit7 A 7pk}kv)7 (Il7 CT)’ MR (In,c;), U(C7 -CUT, M x;‘;))
~* Eval(1*, C, (pk%, ... ,0kN), (I1,¢1), ..., (In,c}))

We say the scheme is semi-honestly circuit-private if the above holds only for well-formed
pkj. = pkr,, ¢; = ¢; pairs, i.e. (pkr,,skr,) < KeyGen(1*) and ¢; + Enc(pky,, z;).

In this section we construct a circuit-private multi-key HE for a class C of (depth bound)
branching programs. As discussed above, the difficulty in the multi-key setting is that each decision
one makes while traversing a branching program is dependent on its corresponding input bit, which
in turn is dependent on which public key it is encrypted with. Using such encryption may reveal bit
positions of the path it takes to reach a terminal node. Using a privately expandable multi-key HE
scheme (previous section) solves this problem. Another implication of private expandability is that
we can generate a fresh expanded encryption of bit b that is indistinguishable from an expanded
encryption of any given encryption of b. This allows us to construct a simulator for circuit privacy,
given an output bit.

We first give a construction that is secure against semi-honest adversaries where each pair of
public key and ciphertext is correctly generated. The intuition behind this construction is as follows:
given a branching program P, we assign to each node of P a ciphertext that multi-key decrypt to
an output computed with that node as a root. Thus, the ciphertext assigned to the actual root
will decrypt to the actual output. In order to construct such a ciphertext (called label below), we
privately expand the input corresponding to a position given by y of that node in order to hide
the position. We then homomorphically construct a ciphertext encrypting each bit of its child that
is specified by the encrypted input (without knowing the input bit). Note that this result will be
an encryption of an encryption of the output. Finally, we homomorphically decrypt it twice using
HE evaluation. We show that, in this case, the output can be simulated knowing the public keys,
ciphertext, and the output; it is thus independent of the program being evaluated.

We then show that we can augment this construction to handle malicious public key and ci-
phertext pairs using a single-key circuit-private FHE since the evaluated output does not depend
on the branching program, unlike in the general case.

4.1 Semi-Honest Model

Let F = (KeyGenz, Encr, Expandr, Evalr, Decr) be a privately expandable multi-hop multi-key
compact somewhat homomorphic scheme that can evaluate circuit up to depth 2dg + 2 where dj
is the depth of Decr. Let I be the length of branching programs, and let p(\,l) be a polynomial
to be specified later. Let Dec%(ski,...,skn,c) = Decx(ski,...,skyn,Decx(ski,...,skn,c)). We
describe £ = (KeyGeng, Encg, Evalg, Decg) together with Expand and ac/:, an expanded encryption
under a random public key. Note that [1] is an encryption of 1 with no randomness.
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KeyGeng(1*, 1):
1. Let d = p(\ ).
2. Let (pkr, skr) « KeyGenx(1*,19).

3. Output pk = (pkr, fsx := Encr(pkr, skr)) and sk = skr.

Encs(pk, p):
1. Parse pk = (pkr, fsk)
2. Let ¢ < Encr(pkr, 1)

3. Output ¢

Expand(pki, ..., pkn,i,c):
1. For j =1,...,N, parse pkj = (pkrj, fsk;)-
2. Let co =cand ¢, =[1] — ¢

3. Compute ¢, = Expandz(pkr1,...,pkr N, i, cq)
and ¢y = Expandz(pkr1,...,pkFr N, i, cy)

4. Output ¢ = (Cq, Cy).

EE/C(pkh s 7pkN7 H):
1. Let i + [N] and compute ¢ < Enc(pk;, u).

2. Output ¢ = Expand(pk, ..., pkn,i,c).

Evalg(P, (pk1,...,pkn), (I1,¢1), ..., (In,cn))
1. Let P= (G = (V,E),vo, T, Vv, ¢¥E).
2. For j =1,..., N, parse pk; = (pkr j, fsk.;)-
Let fs; = Expandz(pkFz1,....,0kF N, 7, fsk,j)
3. Fori=1,...,n, Let (¢as, ¢y ;) = Expand(pki,...,pkn,i,¢;).
4. For each v € T, let label(v) := ¥y (v).
5. For each v € V'\ T with both children labeled, let h := height(v), i := 1y (v)

(a) Fort =1,...,s = [label(ug)| where I'(v) = {ug,u1}, YE(v,u) =0, YE(v,u1) =1
i. Let ro = label(up)[t] and r = label(uq)[t].
ii. Let 21, 29 < E;rc(pkl, ..., pkn,0)
iii. Consider 4 cases:
A ifrg=r1 =0, a; := 21 + 2o
B. ifrg=0;r1 =1, a; := Cay + 21
C.ifro=1r1=0,a;:=¢,; +=
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D. ifro=r1 =1, a; := Ca,i + ¢y
(b) ay, = ay...as; if h =1, label(v) < ay,
(c) otherwise, label(v) Eval;(Dec%:,pk;l, ....PkF N, fsk’l, .. .,fsk,N,av)

6. Output ¢ = label(root)

Decg(ski, ..., skn,¢)
1. Parse sk; = skr ;.

2. Output ' := Decr(skr,...,skrn,¢)

4.2 Correctness and Security Against Semi-Honest Adversaries

The correctness is a direct result of the following lemma:

Lemma 4.2. Let x = x1...2,. Fori=1,...,N, (pk;,sk;) < KeyGen(1*,1). Fori =1,...,n,
¢i = Enc(pky,, x;) for some I; € [N]. Then for any branching program P = (G = (V, E),vo, T, ¥y, ¥E)
and for each v € V\ T with i = ¢y (v),

1. Decr(skr1,...,skr n,a,) = label(uy,);
2. Decr(skri,...,skrn,label(v)) = Py(x);
3. Decs(sk‘l, ceey Sk‘N, é) = P(l’)

Proof. Let I'(v) = {ug,u1}. For each ¢ € [s], consider the value p = z; that é,; encrypts. If 4 =0,
we get a sum of two encryptions of 0 in the first two cases, and a sum of an encryption of 1 and an
encryption of 0 in the last two cases. If p = 1, we get a sum of two encryptions of 0 in the first case
and third case, and a sum of an encryption of 1 and an encryption of 0 in the second case and the last
case. All of which are correct with respect to 7o, 1. Thus, Decr(skr 1,...,skr N, ay) = label(ug, ).
For v with height(v) = 1, we have label(v) = a,. Thus, Decr(skr,...,skr n, label(v)) =
label(uy,) = P,(x) as u,, € T. Now assume that height(v) > 1. Since label(v) < Evalz(DecZ, for1,
..,fsk,N,av), inductively, by part 1, we have Decr(skr1,...,skr n,label(v)) = Dec?:(skﬁl, cel
skr n,ay) = Decr(skra,...,skr n,label(ug,)) = Py(z).
Applying part 2 to the case v = vy, we get

Decs(ski,...,skn,¢) = Decr(skra,...,skr n,label(vy)) = Py (x) = P(x).
O

Now we prove circuit privacy against semi-honest adversaries, i.e., when each public key and
ciphertext pair is generated correctly.

Lemma 4.3. Assuming F is privately expandable HE scheme with circular security. Then the
scheme Eg is a semi-honestly circuit-private HE scheme for branching programs.

Proof. We construct a simulator Simg as follows:
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Simg(1*, 1Y, (pk1, ..., pkn), (I1,c1), .. ., (In, cn), b):
1. Fori =1,...,N, parse pk; = (pkr, fski)-
2. Let outy = b.
3. Forh=1,...,1,

(a) Fort =1,...,s = |outp_1|, we construct outy[t] as follows:

i. Let yo,y2 + E;E:(p/ﬁ, ..., Pkn,0) and y; + Eﬁ(/:(pkl, .., DkN, 1).
ii. Consider 2 cases:
A. If outp_1[t] = 0, outy[t] :== yo + ya.
B. If outp_1[t] = 1, outp[t] := y1 + 2.
(b) If h > 2, replace outy with EvaI;:(Dec%,pkgl, . ,pk]:,N,fSk’l, ... ,fsk,N,outh)

4. Output out = out;

Let P = (G = (V, E),v.,T,¢vy,¥g). For h=1,...,1, let v" € V be the vertex at height h along
the path indicated by x. We have b = U(P,z},..., 7)) = 1y (v°) and v' = vg. The result follows
from the following claim when h = I:

Claim. For h =0,...,l, out), ~° label(v").

Proof. Clearly, outy = label(v®) = U(P,x1,...,2,) = b. Suppose outp_; = label(vh1). Let
i =1y (v"). For each bit b = outy,_1[t], if b = 0, we have outy[t] = yo + y2 and

0 — { 21+ 200 Coi+21 = Yp(vh,oh 1)
[ 2 -1

0;
Cyi + 21 if 2; = Y, v" 1) =1

Clearly, 21 and yo have the same distribution as both are Em:(pk:l, ...,Pkn,0). By private ex-
pandability, ¢, Cy; are statistically indistinguishable from yp when z; = Yp(h vl =0
and z; = Yp(v",v"71) = 1, respectively. We have a; ~* outy[t]. Similarly, if b = 1, we have
outp[t] = y1 + y2 and

Cyi+ 21 if ; :wE(vh,vh_l)
ay = ’ —1

0;
1

Ea’i + z1 or 5a,z‘ + E%i if ; = QﬂE(?}h, ol )
By private expandability, ¢4 ;, ¢q,; are statistically indistinguishable from y; when z; = 1 g, v" 1)
0 and z; = wE(vh,vh_l) = 1, respectively, while ¢, ; is statistically indistinguishable from y, and
z1 when z; = ¥p(v", v"1) = 1. Again, we have a; ~° outy[t]. Now average over the choice
of outp—1 =~° label(vy—1), we have a; ~° outp, and the result follows by applying Eval;(DecQF,
fsk,ly ooy fsk,Ny ) to both. ]

We have Simg((pk1, . ..,pkn), (I1,¢1)s ..., (In,cn), b) ~° Evalg(P, (pki,...,pkn), (I1,c1)s ..y (In,cn))-
O
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4.3 Handling Malicious Inputs

Once we have an evaluation algorithm that can hide a branching program when public keys and
ciphertexts are well-formed, we then consider the case when they are not properly generated. We
use a single-key FHE with circuit privacy in Theorem 2.6 (such as one constructed in [OPCPC14])
to homomorphically check the validity of each multi-key public key and ciphertext pair. If the check
fails, we ”mask” the output using a random string. The simulator can be constructed using the
extractor guaranteed by the circuit privacy of single-key FHE to extract random coins and verify
directly. If the check fails, it returns a random string with the same distribution as the masked
output.

Let P be a circuit-private single-key FHE. We a define a circuit verifying each public key and
corresponding ciphertexts:

out if (pk, sk) < KeyGen (1)
and for each i € [n],
Validatey 4, (pk, sk, 7k, (c1,71), ..., (cn, ), out) = ci = Encr(pk, pi;ri)
for some p; € {0,1};
0 otherwise

We add a random string S € {0,1}*, where s = s(\,d) = |label(root)|, to the output of Eval and
return an encryption of S only if the verification passes. The original output can be computed if S
can be recovered; otherwise, it is uniformly distributed. We define

vy = Evalp(VaIidate(pk:]-, R {(Ci7 ')}Iz':j? Sj)apkp,japsk,japkr,jv {pre,i}li:j)

where py,.; = Encp(pkp j,7k,j), Psk,; = Encp(pkp j, skj) and pre; = Encp(pkpi,7e,i), all of which
are included in the new public key pk or the new ciphertext c. We also include skp in the new
secret key sk. Finally, the new Eval returns (label(root) & (S1 @ ... ® SN),v1,...,UN).

We describe £y = (KeyGen,,, Encys, Evalys, Decyy) using the above Expand and Enc.

KeyGen,, (1%, 1%):
1. Let d = p(\,1).
2. Let (pkr, skr) < KeyGenx(1*, 1% 7).
3. Let (pkp, skp) < KeyGenp(17).

4. Compute fy, := Encr(pkz, skr;re), per := Encp(pkp, 1)
and pg, = Encp(pkp, skr).

5. Output pk = (pkz, fsk, Pkr, Psk) and sk = (skr, skp).

EnCM(pka M):
1. Parse pk = (pkr, fok, PkP, Dr» Dsk:)-

2. Let cr < Encr(pkr, p;re)
3. Compute p,. = Encp(pkp,re)

4. Output ¢ = (cx, Pre)-
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EvalM(P) (pkh s )pkN)) (Ilu 01)7 ceey (In,Cn))

1. Let P = (G = (‘/, E)7U07T7 q/JV71/}E)'

9. Forj=1,...,N,
(a) Parse pkj = (pkrj, fsk.j> PP js P js Psk.j)-
(b) Let S; <= {0,1}* and v; = Evalp(Validate(pk;, -, -, {(ci; )} 1,25, 95), Pk s Psk.j» Phejs {Preitri=;).
(c) Let forj = Expandz(pkz 1, ..., pkF N, J, fok.j)

3. Fori=1,...,n,
(a) Parse ¢; = (CFi, Pre,i)-
(b) Let (Eaﬂ', 5%1) = Expand(pk:l, Ce ,p/{N, i, C]:J).

4. For each v € T, let label(v) := ¥y (v).

5. For each v € V' \ T with both children labeled, let h := height(v), i := 1y (v)

(a) Fort=1,...,s = [label(ug)| where I'(v) = {ug,u1}, YE(v,u) =0, YE(v,u1) =1
i. Let ro = label(up)[t] and r; = label(uq)]t].
ii. Let 21, 29 + Em:(pkl, ..., Pkn,0)
iii. Consider 4 cases:
A ifrg=r1 =0, a; := 21 + 2o
B.ifro=0;r1 =1, at := Ca;i + 21
C.ifro=1r1=0,a;:=¢,;+ 2
D. if ro=7"1 = 1, ag = 6&,@‘ + E%i
(b) ay, = aq...as; if h =1, label(v) < ay
(c) otherwise, label(v) Evalf(DeCQf,pk;l, ..., PkF N, fsk’l, .. .,fsk,N,av)

6. Output ¢ = (label(root) ® (S1 & ...® SN),v1,...,VN)

Decys(ski, ..., skn,¢)
1. Parse ¢ = (¢, V1, .., VkN)-
2. Forj=1,...,N,
(a) Parse sk; = (skr;, skp ;).
(b) Let Sj = Decp(skp_ j, vy j)-
3. Let @ =G (S1@...0SN)

4. Output p/ := Decr(skr1,...,skrn,c)

4.4 Security Against Malicious Adversaries

We now prove that the above construction is secure against malicious adversaries as defined in
Definition 4.1 by constructing a pair of algorithms Exty; and Simj,.

Theorem 4.4. Assume F is a privately expandable multi-key HE scheme with circular security and
P is maliciously circuit-private FHE. Then the above construction is a maliciously circuit-private
HE scheme for the branching program.

Proof. Let Extp and Simp be as defined in Definition 2.5. We construct Exty; and Simj; as follows:
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Extar (17, 14, pk*, ¢*):
1. Parse pk* = (pk%, f3., Pk, pi,» P%)- 1f it is malformed, output 0.
2. Let r} = Extp(pkp, py.) and sk = Extp(pk}, pl;).
3. If (pk%, sk%) # KeyGen (1%, 1% 7%), return 0.
4. If ¢* = Encr(pk’, p;r}) for some p € {0,1}, output p.

5. Otherwise, output 0.

Simar (12,18, (pks, . ... kN, (I1,¢7), ..., (In,c), b):
1. Fori=1,...,n,

(a) Parse ¢f = (C*f,ivp:e,z‘)-
(b) Let ¢f = Expand(pk;, ..., pky,1,c)).

2. Forj=1,...,N,

(a) Parse pki = (pk¥ ;. fo ;s PKD s Phy js Pak. i)

(b) Do the same test as in Ext for pk; and {cf}r,=j. If any of the test fails, let v, ; =
Simp (P} ;. Dsg. i+ Pr,j» 1Pre,it =5+ 0)-

(c) Otherwise, let Sj < {0,1}* and v; = Simp(pk} ;, D3y Phy js {Pre,it =5 S5)-

(d) Let fi, ;= Expandz(pkXy, .., pky no Jy Fi)
3. If any of the tests above fail, let out be a random string of length s and skip to the last step.
4. Otherwise, let outy = b.
5. For h=1,...,1,

(a) Fort =1,...,s = |outp_1|, we construct outy[t] as follows:

i. Let yo,y2 Envc(pkl, ..., Pkn,0) and y; < EE:(pkl, oy DEN, 1),
ii. Consider 2 cases:
A. If outp_1[t] = 0, outy[t] :== yo + ya.
B. If outp_1[t] = 1, outp[t] :== y1 + yo.
(b) If h > 2, replace outy with Evalz(Deck, pki ..., Dk} s i 1o o o s 0utn)

6. Output out = (out; & (S1® ... B SN), Vk1s---, VkN)

We show that they satisfy the Definition 4.1.
Assume there exists j € [N] such that Validate(pk’ ;, sk’ ;, 7 5, {(c},72;)} =, Sj) = 0 for

i e
sk ; = Extp(l)‘,pk:;;’j,p:hj), Thj = Extp(l’\,pk;;,j,pzm) and 17 ; = Extp(lA,pk}‘;,j,pje’i) for I; = j.
Then by circuit privacy of P, v; is statistically indistinguishable from Simp (17, Pk ;3 Dik j> Phrj» {Prei} 1i=550)
independent from S;. Thus, out has the same distribution as a random string of length s in both
Eval and Simj,.
Now suppose that all Validate’s are not zero, then pk*fﬂ- and c*fﬂ- are generated correctly. Since
out; is computed the same way as in Simyy, the result follows from Lemma 4.3. 0
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Combining the above result with Lemma 3.5 results in the following theorem:

Theorem 4.5. Let F be a privately expandable multi-hop multi-key compact somewhat homomor-
phic encryption scheme that can evaluate a circuit up to depth 2d+ 2 where d is the depth of Decr.
Then the scheme described above is a maliciously circuit-private multi-key HE scheme for branching
pPrograms.

Corollary 4.6. Assuming RLWE and DSPR assumptions, and circular security for Esp, there
exists a maliciously circuit-private multi-key HE scheme for branching programs.

5 Circuit-Private Multi-Key FHE

In this section we devise a framework turning a compact MFHE scheme and a circuit-private
multi-key HE scheme into a circuit-private MFHE. This is a multi-key variant of the framework
in [OPCPC14]. As we discussed earlier, it is difficult to turn a single-key circuit-private HE scheme
and a MFHE scheme into a circuit-private MFHE in the plain model. When both homomorphic
encryption schemes are multi-key, each pair of public key and secret key can be generated together,
thus allowing homomorphic decryption between two schemes. We use MFHE evaluation to evaluate
a given circuit. We then switch to the circuit-private scheme to verify the input. Finally, we switch
it back to the original scheme for compactness. Unlike the single-key case, we cannot verify all
public keys and ciphertexts at once as it would lead to a larger verification circuit. We rely on
thefully homomorphic property of the former to combine the result.

Let F = (KeyGenz, Encr, Evalz, Decr) be a leveled compact multi-key FHE scheme and P =
(KeyGenp, Encp, Evalp, Decp) be a leveled multi-key circuit-private homomorphic scheme. Define
the following programs:

out if (pkr,skr) = KeyGenz(1*, 1% r7x)

KValidate™? k = :
alida epk;,out(s FiTFK) 0 otherwise.

. Ad _ [ out if cr =Encg(pkr,bi;rrE) for some b; € {0,1}
CValidatey ;o out(TFE) = { 0  otherwise.
m if DeCp(Ska, ey Sk‘pJ\[, CZ') =m
CombineDec(skp 1,...,skp N,C1,...,CN+n) = forVi=1,...,N+n

0 otherwise.

5.1 Construction
KeyGen(1%,19):
1. Let (pkr,skr) = KeyGen (1}, 1% rzk) and (pkp, skp) + KeyGenp(1*,19) where dy is the

maximum between the depth of KVaIidate;,’:; CVaIidate;‘,’gd and Decr.

,out’ F,CF,out

2. Let pgi, = Encp(pkp, skr), pryx = Encp(pkp,rFi) and fo., = Encr(pkr, skp).

3. Olltput pk - (pkp7pk.7'—7psk_rap’r]:}(7 fskp)a sk = Sk]:-
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Enc(pk, p):
1. Parse pk = (pkp7pk]:7psk]:7p7"]:}(7 fskp)-
2. Let cr = Encr(pkr, pu;rrE) and Drrgp < Encp(pkp,rrE).

3. Output ¢ = (cF,pryp)-

Eval(C, (pk1,...,pkn), (I1,¢1)s- -y (In,cn))
1. For i = 1a ey N7 parse pk:l = (pkp,ivpkf,i7pskf,iapT]:K,i? fskp,i)'
2. Fori=1,...,n, parse ¢; = (CFi, Prrp,i)-

3. If C is syntactically malformed, does not match n, or pk; or ¢; has incorrect size, replace C'
with a program returning 0.

4. Let outy = Evalg(C, (pk]:J, . ,pk:]:,N), (Il,C]:,l), ceey (In,C}"n)).

5. Let outp = EV3|7)(D€C]_‘(', OUt]:)7 (pk'P,la s ,ka’N), (Lpsk]:,l)v ceey (Nv psk]:,N))'

6. Fori=1,..., N, let
. A\d ) .
outg; = Evalp(KValldateka,houtP, (PEp .1y DEP.N), (b Pskiri)s (5 Prrg i)

7. Fori=1,...,n, let
. \d .
Outqi = EvaIp(CVaIldatepkfmcf,houtp, (pkp’l, A ,pk‘pJ\[), (27p7'fE,'i))'

8. Output ¢ = Evalr(Decp(:, CombineDec(-,outk 1,...,outg n,outca, ... ,outcy)), (Pkra,...,
Pkr.N), (1, fskpa)s s (N, fskp,N))-
Dec(sky, ..., skn,¢)
1. Fori=1,...,N, parse sk; = skr;.
2. Output y = Decr(skr1,...,skr n,¢).
We now prove that this construction gives a leveled compact circuit-private MFHE.

Theorem 5.1. Assume a compact leveled MFHE scheme F and a leveled (U,Cr)-homomorphic

circuit-private multi-key HE scheme P exist., where Cr includes Decg(-, outr), KVaIidate;‘,’;i’OmP

and CVaIidate;‘]i croutp for all N\, d, pkr,cr, outp,outr. The resulting scheme in the above con-

struction is a leveled compact circuit-private MFHE.

Proof. Correctness, semantic security and compactness follow from scheme F and P. Let Extp and
Simp be as in Definition 4.1 for circuit private scheme P. We describe a pair of algorithms

Ext(1*, pk*, c*):
1. Parse pk* = (pk;‘;,pk*f,p:kf,p:fw ;‘kp) and c* = (c*f,p;'iFE).
2. Let sk = Extp(1*, pkp,ply ), mii = Extp(1, phip, pi, ) and rip = Extp (1), pkh, pr ).
3. if (pk%, sk%) # KeyGenf(l/\;r*fK), output 0.

4. if ¢ = Encr(pk’, b;r%p) for some b € {0,1}, output b; otherwise, output 0.
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Sim(1*, (pk3, ..., pkY), (11, ¢5)s - .oy (In, €5), b):

1. Fori=1,...,N,

(a‘) Pa’rse pk;,k = (pkfkp,ﬂpk;:,’i’p:k]:,ﬁp:]:}(,i’ :k)p,i)'

(b) Let sk¥; = Extp(l)‘,pk:;‘;,i,p:k%i) and 7%, = Extp(l’\,pk:;‘)7i,p1’fFK7i).

2. Let outyp = Simp (17, (pk;‘;’l, . ,pk}@}N), (1vp:k;,1)v e (N7p:kf,N)v b).

3. Fori=1,...,n,

(a) Parse ¢f = (C}‘:,pp;ﬁﬂ;,i)-
(b) Let ’rj;-—E,i = EXtP(l/\7pk;;yi’pi}'E:i)'
(c) If ¢&; # Encr(pk¥ ;. bis 15 ;) for any b; € {0, 1},
let outf,; = Simp (17, (pk:;‘;’l, e 7pk;<37N)a (Iiap;}-E,i)v 0).
(d) Otherwise, let out,; = Simp (17, (pkal, e 7101@73,1\7)7 (Lis P i) OULD).
4. Fori=1,...,N,
(a) It (pkj;-‘7i7 Sk;‘,i) 7& KeyGen]—'(lA;T;K,i)v
let out}ﬂ. = Simp(l)\, (pkak)717 R 7pk’>]k3,N)7 (iap:kf,i)a (iap:}-K,i)7 0)

(b) Otherwise,
let out}e; = Simp (17, (Pkp 15+ s PED N )5 (6 D3k 1) (807 3)s OULD).

5. Output ¢* = Evalz(Decp (-, CombineDec(-,out}(’17 coey OUtTe N OULT ,out*c’n)), (pk:*ﬁl, ..
pk},N)v(Lf:kp,l)v“->(N7 S*k'p,N))'

*

Foreach i =1,...,N,if Vg,; = KVaIidate;‘,’géi’out; (sk}’i,r}-Kﬂi) = 0, then the test in step 4 of

Sim fail. By circuit privacy of P, outg ; ~° out}ﬂ-. Otherwise, Vi ; = out. Then the test in step
3 passes. Thus, by circuit privacy of P, outp ~* outl,. Then

S . Ad L% .k ~S *
OUtK,i — EvaI'P(Kvalldatepk}iyouti;)v (Z>psk]:,i)7 (var].—K,i)) - OUtK,i‘

A similar argument can be made for outc; ~* outai for each i = 1,...,n. Therefore ¢ ~° ¢* as
the last step of Sim is the same as the last step of Eval. O

5.2 Instantiation

Finally, if we instantiate the result of Theorem 5.1 by our construction in Theorem 4.5, we get the
following results:

Corollary 5.2. Assume there exists a privately expandable multi-hop multi-key compact somewhat
homomorphic encryption scheme that can evaluate circuits up to depth 2d+2 where d is the depth of
its decryption circuit. Then there exists a maliciously circuit-private multi-key fully homomorphic
encryption scheme.

Corollary 5.3. Assuming RLWE and DSPR assumptions, and circular security for Esp, there
exists a maliciously circuit-private multi-key fully homomorphic encryption scheme.
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6 Three-Round On-the-Fly MPC with Circuit Privacy

In this section we consider one application of the circuit-private MFHE scheme—on-the-fly MPC
protocol. In this setting, a large number of clients P; uploaded their encrypted inputs to a server or
a cloud, denoted by S. The server selects an N-input function F' on a subset of clients’ input, and
performs the computation without further information. Afterward, the server and the clients whose
inputs are chosen run the rest of the protocol. At the end of an on-the-fly MPC protocol, only
those clients learn the output while the server and other parties learn nothing. Furthermore, the
communication complexity and the running time of clients should be independent of the function
F. As in standard MPC, the input of each client should not be revealed to any other parties,
including the server. In addition, we require circuit privacy for the server. Clients should not learn
anything about the function other than its output. We give the formal definition of on-the-fly MPC
protocol from [MW15] as follows:

Definition 6.1. Let C be a class of functions with at most U inputs. An on-the-fly multi-party
computation protocol II for C is a protocol between Py, ..., Py, S where P; is given x; as input, for
i€ [U], and S is given an ordered subset V C [U] of size N and a function F' on N inputs. At the
end of the protocol, each party P; fori € V outputs F({x;}icv) while P; fori ¢ V and S output L.
The protocol consists of two phases:

e Offline phase is performed before F,V is chosen. All parties participate in this phase.

e Online phase starts after F,V is chosen. Only S and P; for ¢ € V participate in this phase,
and ignore all messages from P;, i ¢ V.

We require that the communication complexity of the protocol and the computation time of Py, ..., Py
be independent of (the complexity of) the function F. Furthermore, the computation time of P; for
i ¢V is independent of the output size of F.

We then define the security and circuit privacy of on-the-fly MPC protocol in the plain model
against malicious adversaries.

Definition 6.2. An adversary A corrupting a party receives all messages directed to the corrupted
party and controls the messages that it sends. Since the server ignores messages from parties outside
V', we assume w.l.o.g. that an adversary only corrupts computing parties, i.e., parties in V.

Let Viewry s(F,V,Z) denote the collection of messages the server S receives in an execution of
protocol I1 on a subset V' C [U] with |V| = N, an N-input function F € C and input vector . Let
Viewn, 4(F, V,Z) denote the joint collection of messages A receives through corrupted parties in an
ezecution of protocol 11 on V', F' and Z.

An on-the-fly multi-party computation protocol 11 for C is secure if

e for every adversary A corrupting parties {P;}ier with |T| =t < N, for all V. C [U] with
|V| = N, for all N-input function F' € C and for all input vectors &, &' such that x; = x} for
any i €T,

[Viewr 4(F, V, %)y = F({z;}iev)] ~=° [Viewn a(F,V, &)y = F({z}}iev)] -

e for every server S, for all V C [U] with |V| = N, for all N-input function F € C and for all
imput vectors T, T,

Viewn,s(F, V. @)y = F({zi}iev)] = [Viewns(F,V,7)|y = F({z}iev)] -
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Let the ideal world protocol be where the computation of F is performed through a trusted
functionality F. FEach party P; sends their input x; to F, the server sends F and V to F, which
performs the computation and sends the output F({z;}icy) to each P;, i € V. Let IDEALx s(F,V, z)
denote the joint output of the ideal-world adversary S, parties Pi,..., Py and the server S. Let
REAL 4(F,V,z) denote the joint output of the real-world adversary S, parties Py, ..., Py and the
server S.

The protocol 11 has (malicious) circuit privacy if for every malicious (and possibly unbounded)
adversary A corrupting any number of clients, there exists an unbounded simulator S with black-box
access to A such that for all V- C [U] with |V| = N, for all N-input function F' € C and for all
input vectors &, IDEALx s(F,V,z) ~° REAL A(F,V, x).

Adding circuit privacy to an on-the-fly MPC protocol via circuit-private MFHE scheme has
two implications beyond the definition state above. First, it automatically strengthen the protocol
against malicious adversaries without using setup. This is because the evaluated output only
depends on the output and encrypted input even against malformed public keys and ciphertexts.
On the other hand, it implies that the clients do not know the function being evaluated, which in
turn makes it difficult, if even possible, to verify against a malicious server. Therefore, we assume
that the server is only honest-but-curious, that it follows the protocol, but may try to learn clients’
input data.

Naturally, the MFHE scheme leads to server-assisted MPC by having each client generate keys,
and encrypt its inputs and uploads to the server. The server then runs an evaluation algorithm
on the encrypted inputs. However, in order to decrypt the evaluated output, one needs to have all
secret keys. One solution, as in [LATV12], is to run another MPC protocol with each client’s secret
key as input to decrypt. However, this results in multiple rounds in the plain model. In order to
solve this problem, we use a projective garbling scheme.

After the server runs the evaluation algorithm, it creates a garbled circuit of MFHE decryption
with secret keys as input. In order to create a garbled input, the server cannot give e to the
clients as it will allow the clients to generate multiple garbled inputs, thus rendering the security
meaningless. We solve this problem by using a 1-out-of-2 oblivious transfer (OT). In order to
minimize the round complexity of our MPC protocol, we consider an OT protocol that runs in one
round. However, the standard one-round 1-out-of-2 OT protocols known are only secure against
semi-honest receivers.

6.1 One-round 1l-out-of-2 OT Against Malicious Receivers

Before we describe the MPC protocol, we first show that we can use a circuit-private single-key FHE
to construct a one-round 1-out-of-2 OT protocol that is secure against malicious receivers. This
protocol serves as a building block for the construction of a three-round on-the-fly MPC protocol.
Let F = (KeyGen £, Encr, Evalr, Decr) be maliciously circuit-private (single-key) FHE in The-
orem 2.6. We define a circuit Cy, p, (x) = b,. We define OT s = (GoT, QoT, AoT, DoT) as follows:
Got(1):
1. Let (pkr, skr) < KeyGenz(17).

2. Output pk = pkr and sk = skr.

QOT(pkv b):
1. Output ¢ = Encx(pk,b).
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Aot(s0, 51,pk, q):
L. Fori=1,...,7, let a; = BEvalz(Cy;[3) 5, [1]> PF> q)-

2. Output a = (ay,...,ar).

Dot(sk,a):

1. Parse a = (ay,...,ar).

2. Fori=1,...,7, let s[i] = Decr(sk,a;).

3. Output s = (s[1],...,s[7]).
Lemma 6.3. There exists an unbounded algorithm Sim such that for any sg,s1 € {0,1}7, pk*, ¢*
of appropriate length, there exists b* = b(pk*,q*) € {0,1} such that

Sim(sp, pk™, ¢*) = Aot (s0, 51, pk™, ¢").

Proof. Let Extr, Simx be the extractor and the simulator guaranteed by circuit privacy. We define
Sim as follows:
Sim(s, pk*, ¢*):

1. Let b* = Extr(pkFx, q*).

2. Fori=1,...,7, let aj = Extz(pk*, q*, sp+[s))-

3. Output a* = (af,...,ak).

For each i = 1,...,7, we have a} ~° Evalz(Cyj s, (i, Pk", ¢") by circuit privacy of F. Note that
for i =1,...,7, for fixed pk*, ¢*, the distributions on each side are independent (only depend on
randomness used for Evalr and Extr). Thus, the joint distributions a* ~* Aot (s, s1,pk™, ¢*). O

Theorem 6.4. Assuming a circuit-private single-key FHE, there ezists a one-round I-out-of-2
oblivious transfer protocol that is secure against malicious receivers.

6.2 Construction

Let £ = (KeyGen, Enc, Eval, Dec) be a (leveled) compact maliciously circuit-private MFHE scheme
with secret key length s = s(\) and using r = r(A) random bits for key generation. For simplicity,
we assume that each client’s input is 1 bit. The protocol can be easily generalized to the case
where each client holds many bits of input. Compactness of the MFHE implies that the evaluated
output do not depend on the size of the input. Thus, the rest of our protocol stays the same.
Let (GoT, QoT, AoT, DoT) be a one-round 1-out-of-2 OT protocol. Let (GarbCircuit, GarbEval) be
a projective gabling scheme. Let U be the set of indices of all clients in the system. We describe
an on-the-fly MPC protocol Iy (V, F, z) as follows:
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On-the-Fly MPC Protocol

Step 1: For i € [U], client P; generates a key pair (pk;,sk;) = KeyGen(1*;7;) and en-
crypts his input ¢; < Enc(pk;,x;). For each j = 0,...,s +r — 1, P; also generates
(pkz)m,'ské-r’i) — GOT(V‘). It computes bitwise ¢/ = QOT(pkf)T’Z., ski[j]) for 7 =0,...,s — 1,
and ¢, = Qot1(pkdy ;,7ilj]) for j = 0,...,r—1. It then sends (pk;, ¢;, pkoT s ¢) to the server
S.

The server S then selects a circuit C representing the function F' on inputs {z;};cy for a
subset V' C U such that |V| = N. We may assume w.l.o.g. that V = [N].

Step 2: The server S computes ¢ = Eval(C, pky,...,pkn,c1,...,cn). S computes a garbled
circuit (G,e) = GarbCircuit(l)‘,gqpkl,m,pk]\,) where

Dec(sky,...,skn,c) if (pki,sk;) =

KeyGen(17*; 7
Gepkr,...phn ((sk1,71), ..., (skn,TN)) = yGen( )

for all i € [N];
1 otherwise
and e = (XS,X&,...,X]()\,(r+§)_1,X]1\,(T+S)_1). For each i € [N] and j = 0,...,7 4+ s — 1, it
computes a] = Aot(pkoT.isq} X?(Hs)ﬂ., Xl.l(Hs)Jrj). It sends (G, a, ..., aZHS*l) (and V) to P,

for each 71 € V.

Step 3: For i € V, client P; computes its garbled input Xj,4¢1; = DOT(skOT7i,ag)
for j = 0,...,7 + s — 1 and broadcasts to other Py € V. Each client computes y =
GarbEvaI(G, X(),...,XN(TJrS),l).

Remarks

1. The upper bound on the number of clients whose inputs are used in a computation must be
known in advance. This requirement is inherited from the multi-key homomorphic encryption
scheme in [LATV12] that we use to construct our MFHE. It is also the case for the on-the-fly
MPC construction in [LATV12].

2. Private channel (from the server) between clients is required to prevent the server learning
clients’ secret keys. This requirement can be done by the honest-but-curious server passing
public keys of all parties in V along with its messages in step 2. The public key of P; can be
used to encrypt a garbled input from P; to F;.

3. We require circular security between MFHE and OT schemes. This can be done without
additional assumptions by using OT constructed from the same circuit-private homomorphic
scheme in Section 4.

Theorem 6.5. Let £ = (KeyGen, Enc, Eval, Dec) be a leveled compact MFHE scheme. Let OT =
(GoT,Qot, AoT, Dot) be an OT protocol. Let Gb = (GarbCircuit, Garb-Eval) be a projective
garbling scheme. If £ is maliciously circuit-private, OT is secure against malicious receivers, and
Gb is a secure garbling scheme, then the protocol Il is a 3-round secure on-the-fly MPC protocol
with circuit privacy.

28



Proof. First, we will show the privacy for honest clients against malicious adversaries corrupting
t < N clients. Let T' C [N] be the set of corrupted clients.

Lemma 6.6. For any y € {0,1}, z,2’ € {0,1}", F : {0,1}" — {0,1} and T < [N] such that
=1, foranyi €T,

[Viewr a(F, z)|ly = F(z)] ~° [Viewn 4 (F, 2)|ly = F(z)] .

Proof. Let G and G’ be garbled circuits A receives in step 2 with input z and 2/, respectively.
Note also that by the sender security of OT against malicious adversaries, 4 can receive at most
one garbled input for each client it controls. Since both circuits evaluate to y on garbled inputs
corresponding to valid secret keys and 0 otherwise, (G, X) ~¢ (G’, X'). Since a; and garbled inputs
do not depend on z,z’, [Viewr 4(F, )|y = F(x)] ~° [Viewr 4(F, 2')|y = F(2')]. O

Now we show the privacy for clients against honest-but-curious servers. Using the sender security
of OT, we may replace each bit of secret keys and random coins in queries 71 with a random bit.
Then by the security of £, we may replace clients’ input in ¢; with random bits. Thus, the honest-
but-curious server learns nothing about {ZL‘Z‘}Z'E[U]. Since this indistinguishability argument can be
separately for each client, the security for honest clients can be achieved regardless of corrupted
clients’ messages.

Last, we will show the privacy for the server against unbounded adversaries. Since we do not
guarantee client privacy here, we may assume w.l.o.g. that the adversary corrupts all clients in V.
Let T =V = [N] be the set of corrupted clients.

Let Ext and Sim be the unbounded algorithms in Definition 4.1. We construct an unbounded
simulator S, as follows:

Step 1: The simulator receives {(kai, Ei,p~ko-|—7z-, ?i)}ieT from Ay, and runs Ext for £ to compute

corrupted input & = Ext(1%, p~ki,5i). It then submits to the ideal functionality F to obtain b =
F(zy,...,Zn).

Step 2: For i ¢ T, the simulator generates a key pair (pk;, sk;) < KeyGen(1*). The simulator
runs Sim for £ to compute é = Sim(1%, (pky,...,pky), (1,é1),..., (N,éx),b). It then computes a
garbled circuit (G, e) = GarbCircuit(1*, g, P p~kN) where

Dec(sky, ..., sky,é) if (pk;,sk;) =
KeyGen(1*;7;)

957p7~cl7...,p~kw((5k1’ r)s e (sk, i) = for all i € [N];
1 otherwise
agd e= (X3, X¢4,.. .‘,X%(Hs)_l, ]1\/(r+s)—1)' For eachi € [N]and j =0,...,r+s— 1, it computes
al = AOT(pk:OTﬂ-,qf,X&r+S)+j,Xll(T+s)+j). It sends (G’,aY,..., ai™ 1) (and V) to Ajs for each
1e7T.

Step 3: The simulator receives garbled inputs Xj(,44)4; for j =0,...,7+s—1and i € T from
A and retrieves (sk;,7;) using e. It then verifies if (pk;, sk;) = KeyGen(1*; 7)) for all i € T. If not,
it outputs L and aborts.
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Output: The simulator receives the output of the corrupted parties from Ag and returns it as its
output.

By Definition 4.1, ¢ ~° ¢. Thus, G' ~* G. We have IDEALf s, (F,V,x) ~° REALp 4, (F,V,z) by
circuit privacy of £. O

7 Conclusion and Open Questions

We have shown that we can construct circuit-private MFHE from the existing multi-key HE and
single-key circuit-private FHE. We also use it to construct an on-the-fly MPC with circuit privacy
against malicious clients in the plain model. However, our construction inherits the same assump-
tion as the construction of MFHE of Lépez-Alt et al., including DSPR and RLWE. So, the main
open question is:

Is it possible to construct a multi-key homomorphic encryption (with circuit privacy) under
standard assumptions such as LWE in the plain model?

Since our technique only relies on properties that exist in many single-key constructions, we
expect that we can apply it to other multi-key HE as well. Moreover, circuit privacy for on-the-fly
MPC requires some degree of trust toward a server party. Our construction assumes the server to
be honest-but-curious. We would like to capture a wider range of unintended behavior of the server
while still achieving circuit privacy. So, another open question is:

Is there a better model for on-the-fly MPC with circuit privacy?
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A Privately Expandable MFHE Based on the GSW FHE Scheme

In this section we provide an alternate construction of the privately expandable homomorphic
encryption scheme in Section 3 from multi-key FHE based on the GWS FHE scheme, constructed
in [CM15] and simplified in [MW15]. In fact, the security of this construction is only based on
LWE, and the modification is simpler than the one we use in Section 3. However, it requires a
setup phrase, while our definition of circuit privacy is only meaningful in the plain model. We
include this construction in order to show that our transformation is generic enough for, and
hopefully applicable to, future construction of multi-key homomorphic encryption.

A.1 Multi-key FHE from the GSW Encryption Scheme

We define another construction of the MFHE scheme by Mukherjee and Wichs [MW15], based
on the Gentry-Sahai-Waters (GSW) FHE scheme [GSW13], as follows. Let G € Zy*™ be a fixed

matrix.

SetUpggw (1%, 19):

1. Choose a lattice dimension parameters n = n(\,d), By-bounded error distribution x =
X(A,d), a modulus ¢ = Bx2w(d)‘1°g” such that LWE,,_1 4 B, holds, and let m = nlogq +
w(log \).

2. Choose a matrix B € Zg‘_lxm uniformly at random.

3. Output params := (q,n,m, x, By, B).

KeyGeng gy (params):

1. Sample 5« ZI'~'. Let sk =1 = (—5,1) € ZP.
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2. Sample e <— x". Let b=sB +e € Z;', and pk = A = [f} € Zy*™.
3. Output (pk, sk).

Encgsw (pk, p):
1. Parse pk = A € Zy™™.
2. Let R« {0,1}m*™,

3. Output C' = AR+ uG.

Evalgsw (C,é1,...,¢,):
1. For Cy,Cy € Zy™™, we define homomorphic addition and multiplication as follows:
o Add(Cy,Cs) = Cy + Ch.
o Mult(Cy,Cq) = C1G(Cy).
Decgsw (sk, ¢):
1. Parse sk =t. Let w = (0,...,0, [q/2]) € ZJ.
2. Compute v = tCG~H(w™).
3. Output Hﬁﬂ

Now we describe MFHE scheme by Mukherjee and Wichs [MW15] as follows:

SetUp (12, 19):

1. Output SetUpg gy (17, 19).

KeyGen y (params):

1. Output KeyGeng gy (params).

Encarw (pk, p):
1. Parse pk = A € Zy™™.
2. Let R + {0,1}m*m,
3. Let C = AR+ uG.
4. For i,j € [m], let U; j < Encgsw (pk, R[i, j]). Let U = {Ui,j}’%:l.

5. Output ¢ = (C,U).
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Expand ;- (pk1, - .., kN, i, C):
1. Parse ¢ = (C,U).

2. For j € [N], parse pk; = A; = [ B; ] where b; is the last row of A;.

b
3. For j € [N]\ {i}, let X = LCombgsw (U, bj — bi).

4. Let C € ZZN xmN he g concatenation of Cap € Zy*™ defined as follows:

C ifa=19
Cop =14 Xj ifa=i#jand b=
0™*™  otherwise.

A~

5. Output ¢ =C.

EvaIMW(C', 61, PN ,én):

1. Run Evalggy with dimension n’ = nN and m’ = mN, and

G 0 ... 0
: G 0
0 0 G

with corresponding G~

Decyrw (ski, ..., skn, €):
1. For i € [N], parse sk; = t; a row vector.
2. Horizontally appending all secret keys f := [t1...ty] € ZZN .
3. Output p/ = Decgsw (£, ¢).

Theorem A.1 ( [MW15]). Assuming the LWE, 14y B, assumption, the scheme (SetUpyy,
KeyGen 117, Encarw, Expand py-, Evalyrw, Decyrw) is compact leveled multi-key fully homomorphic.

We further modify the scheme as follows:

Add*(c1, c2)
1. For i = 1,2, parse ¢; = (C;, U;)
2. Compute C' =C1+Co, U =U; + U,
3. Output ¢ = (C,U)
For i,7 € [m], let

m
P; j(m1,Co, Ry, Ro) = ZRl [i, k]G~ (Ca) [k, j] + miRa[i, j] = (RiG~(C2) + miRe) [i, ]
k=1
be a program. For any fixed Co, this program consists of at most m + 1 additions.

34



Mult*(pk, c1, c2)
1. For i = 1,2, parse ¢; = (C;, U;)
2. Compute C = C1G71(Cy), U = Evalgsw (P(-, Oy, -, -), pk, C1, U1, Us)
3. Output ¢ = (C,U)
Let Eval*(C,pk,cq,...,c,) use the above Add* and Mult*.

Lemma A.2. Let (pk,sk) < KeyGenggy (1F,19) with pk = A € Zy*™ and sk =t € Zy. Fori=
1,...,n, let ¢; < Encpyw (pk,m;) be B-noisy encryption. Let ¢ = (C,U) = Eval*(P,pk,c1,...,cp).
Then C = AR +mG with tU; j = R[i, jItG + e; j, and ||e; j||oc < (m + 1)?B where d is the depth of
P.

Proof. We will show that if the statement hold for ¢; = (C1,U;) and co = (Ca, Us), then it is true
for (C*,U") = Add*(c1, ca) and (C*,U*) = Mult*(pk, c1, c2).

For k =1,2, let C), = ARy + m;G and tU]m"j = Rk[’b,j]tG + €k Then CT = A(Rl + RQ) +
(m1 + mg)G and tU;j = (Ru[i, j] + Roli, J))tG + (6171'7]' + 6271‘7]') = (R1 + Ro)[i, jItG + 62:]- with
||e;rj|\oo < 2f. Also,

C* = (AR; + m1G)G Y ARy + maG) = A(R1G™1(C2) + miRy) + (mym2)G = AR* + (mymy)G.

We have tU;; = P, j(m1, C2, Ri, Ro)tG+e;; = R*[i, jltG+e; with [|e]] | < (m-+1)5. Therefore,
for any depth d program P, we have C' = AR + mG with tU; ; = RJ[i, j|tG + e; j, and ||e; j||oc <
(m+1)7B. O

Note that the noises of U and C are bounded by the same quantity.
Let v € Z7'. Define A Zy*™ as follows:

ij . UM ifa=nandb=3j
Z7la b = { 0  otherwise.
Let LCOmbGSI/V(U7fu) = Z Ui,jG_l(Zqi;’j)
ij=1

Lemma A.3 (Generalized from [MW15]). Let M € Z;**™ be a matrir. Lett = (—s,1) € Zg. For
i,j € [m], let Ui; € Zy*™ such that tU; j = M[i, j|ltG + e;; with |le;j|loc < 8. Let v € Zi*. Then
tLCombgsw (U, v) = vM + " with ||"|| < m33.

Proof.

tLCOmbGSW(U,v) =t Z Uiij_l(Zf,’j)
ij=1
= D (MG + )G H(Z)
1,J
= (M[i, 1tz + €} )
L, J

M
i7j
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with

0 0
> : : on—t
o I T B )
S M e S M mloi
Thus, tLCombgsw (U,v) = vM + €”. Since e ; = ei;GY(ZH), le; lloc < mB. And since e” =
D€l < m3p. O
i\j

A.2 Privately Expandable Homomorphic Encryption

Let (KeyGen v, Encarw, Expandyyy, Evalymr, Decyir) be the multi-key version of GSW FHE
scheme given in [MW15]. Let t € N and U; be a discrete uniform distribution on {0,...,¢}.
We define

—~~— 1

Expand (params, pki,...,pkn,i,c):
1. For each j € {1,...,N}

o Let Rj < U™ ™.
e Compute ¢} = Encyw (pkj, 0; Rj) = (AjRj, Encasw (pkj, Rj)) where pk; = A;.
e For j =i, ¢; = Add*(c], c); otherwise, ¢; = Add™ (¢}, Encarw (pk;, 0)).
o Compute ¢ = Expandy (pk1, . .., pkn, j, ¢;)-
N
2. Output ¢ = ) ¢j.
j=1
For ¢ B-noisy encryptions, ¢; is t8-noisy encryption, c; is t(m4 + m)[-noisy encryption, and ¢
is t(m* + m) N B-noisy encryption. Note that U[0,t] can be sampled in time O(logt).

Lemma A.4. Let params < SetUp, iy (11, 19), (pk, sk) < KeyGen ;v (params) and c < Encarw (pk, ).
Then for t superpolynomial in X,

[c + Encarw (pk, 0; Ry)] ~° [Encarw (pk, 1) + Encarw (pk, 0; Ry)]
where addition is Add* and Ry < U™ ™.

Proof. Let ¢ = (C,U) with C = AR+ uG. Then the sum on the left is of the form A(R+ R:) + uG
and the sum on the right is of the form A(R' + R;) + puG. Since each entry of R’ and R; are
independent, each entry of R+ R; is either U; or U; + 1 while each entry of R’ + R; is U; + I where
I is Bernoulli with p = 1/2. Since AU, Uy + 1) = t%, which is negligible for ¢ superpolynomial
in A, and both A(U,U; + I) and AU + I,Uy + 1) are smaller, they are also negligible. Thus,
A(R+ Ry, R+ Ry) < O(m?/t). Therefore, A(R+ Ry) + uG ~° A(R'+ R;) + puG. The result follows

from the property of Add*. O

Note that such value of ¢ is possible as ¢ is exponential while m, IV, 5 are at most polynomial
in .
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Lemma A.5. Let params < SetUpy (11, 19), (pky, ski) < KeyGen,w (params) for k € [N].
—~~— t —~— 1

Then, fori,j € [N], Expand (pki,...,pkn, i, Encarw (pki, 1)) and Expand (pka, ..., pkn, j, Encyrw (pkj, 1))

have the same distribution.

—~~— t
Proof. 1t suffices to show that ¢; +¢; in both executions of Expand has the same distribution when
i # j. By the definition of Expand,y, ¢; has the form

C; 0 O 0
c; = X@l N O Xi,N < ith row
i 0 0 O C;

where C; = A; R; 4 G for the first distribution and C; = A; R; for the second distribution, and X j,
only depend on R; and pky. Since ¢; has similar form but with C; = A;R; for the first distribution
and Cj = A;R; + puG for the second distribution instead. Thus, both distribution has the form

C 0 0 0 0
Xi71 e C e Xi,j e Xi,N < 1th row
Gte=| S :
Xj1 .o Xji ... C ... X;n | ¢ Jjthrow
| 0 0 . 0 C ]
where C' = A;R; + AjR; + nuG. O

Then combining Lemma A.4 and Lemma A.5 gives the following theorem:

Theorem A.6. Let params + SetUp iy (14, 19), (pky, ski) < KeyGen .y (params) for k € [N].
For i € [N], let ¢ + Encprw (pks, ). Let poly(N\) < t < q/4(m® +m?)N?B. Then

—~— 1 —~—— 1
¢ := Expand (pk1,...,pkn,i,c) ~° Expand (pk1,...,pkn, J, Encarw (kj, 1))
for any j € [N], and Decprw (sk1,...,skn,¢) = u.

Now let ¢ satisfy the above condition and dy be the depth of Decyy (-, ¢) for any valid ciphertext
¢. We define a scheme F = (SetUp r, KeyGen r, Encr, Expand r, Evalz, Decr) as follows:

SetUp (1%, 19):

1. Output params < SetUp,y (11, 19+d0),

KeyGen z(params):
1. Let (pkarw, skarw ) <— KeyGenyyy (params).

2. Output pk = (pkyrw, Encyrw (Pkarw, skarw)) and sk = sk .
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Encr(pk, u):
1. Parse pk = (pkyw, f).

2. Output Encpyrw (pkarw, ).

Expand - (pki, ..., pkn, i, c):

1. Parse pk‘j = (pk‘MWJ,fj). Let fj’ = ExpandMW(pkal, .. ,pkMW’N,j, fj)

— t

2. Let ¢ = Expand (i, ¢)
3. Output ¢ = Evalyw (Decarw (-, €), f1s -5 fi)-
Finally, we let Evalr = Evalysi and Decr = Decpsw -

Theorem A.7. The scheme F = (SetUpr, KeyGenr, Encr, Expand r, Evalr, Decr) above is pri-
vately expandable.

The proof of this theorem is the same as in Lemma 3.5. Note that unlike the scheme in Section 3,
which is constructed from somewhat homomorphic encryption, this scheme is constructed from a
(leveled) fully homomorphic scheme. Thus, it is also (leveled) fully homomorphic.
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