
Brief Announcement: Space-Time Tradeoffs for Distributed
Verification∗

Mor Baruch
School of Electrical

Engineering
Tel Aviv University

Tel Aviv, Israel
mor@eng.tau.ac.il

Rafail Ostrovsky
†

Departments of Computer
Science and Mathematics

UCLA
Los Angeles, CA 90095
rafail@cs.ucla.edu

Will Rosenbaum
Department of Mathematics

UCLA
Los Angeles, CA 90095-1555
wrosenbaum@math.ucla.edu

ABSTRACT
Verifying that a network configuration satisfies a given boolean
predicate is a fundamental problem in distributed comput-
ing. Many variations of this problem have been studied, for
example, in the context of proof labeling schemes (PLS) [12],
locally checkable proofs (LCP) [10], and non-deterministic
local decision (NLD) [8]. In all of these contexts, verification
time is assumed to be constant. Korman, Kutten and Ma-
suzawa [11] presented a proof-labeling scheme for MST, with
poly-logarithmic verification time, and logarithmic memory
at each vertex.

In this paper we introduce the notion of a t-PLS, which
allows the verification procedure to run for super-constant
time. Our work analyzes the tradeoffs of t-PLS between
time, label size, message length, and computation space.
We construct a universal t-PLS and prove that it uses the
same amount of total communication as a known one-round
universal PLS, and t factor smaller labels. In addition, we
provide a general technique to prove lower bounds for space-
time tradeoffs of t-PLS. We use this technique to show an
optimal tradeoff for testing that a network is acyclic (cycle
free). Our optimal t-PLS for acyclicity uses label size and
computation space O((logn)/t). We further describe a re-
cursive O(log∗ n) space verifier for acyclicity which does not
assume previous knowledge of the run-time t.

Keywords
Distributed algorithms, proof-labeling schemes, space-time
tradeoffs.

∗A full version of this manuscript can be found on the
arXiv [5].
†Supported in part by NSF grants 09165174, 1065276,
1118126 and 1136174, US-Israel BSF grant 2008411,
OKAWA Foundation Research Award, IBM Faculty Re-
search Award, Xerox Faculty Research Award, B. John
Garrick Foundation Award, Teradata Research Award, and
Lockheed-Martin Corporation Research Award.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

PODC’16 July 25–28, 2016, Chicago, IL, USA.
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3964-3/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2933057.2933071

1. INTRODUCTION
The problem of determining if a network configuration

satisfies some predicate has been studied in the context of
checking the ouptut of a distributed algorithm [3, 9], design-
ing self-stabilizing algorithms [1, 2, 6, 11], and complexity
theory [7, 8, 9]. A network configuration is represented by
an underlying graph, where each vertex represents a proces-
sor, edges represent communication links between proces-
sors, and each vertex has a state. For example, the state
of every vertex can be a color, and the predicate signifies
that the coloring is proper. Processors learn about the net-
work by exchanging messages along the edges. Some prop-
erties are local by nature and easy to verify, yet many nat-
ural problems—for example, testing if the network contains
cycles—cannot be tested in less than diameter time, even if
message size and local computational power are unbounded.

In order to cope with strong time lower bounds, Kor-
man, Kutten, and Peleg introduced in [12] a computational
model, called proof-labeling schemes (PLS), where ver-
tices are given auxiliary global information in the form of
labels. This auxiliary information may allow vertices to ver-
ify that a property is satisfied more efficiently than could be
achieved without the aid of labels. Specifically, a PLS con-
sists of two components: a prover and a verifier. The
prover is an oracle which assigns labels to vertices. The ver-
ifier is a distributed algorithm which runs on the labeled
configuration and outputs true or false at each vertex as
a function of its state, its label, and the labels it receives.
A PLS is complete if for every legal configuration (satis-
fying the predicate), prover can assign labels such that all
vertices output true. The PLS is sound if for every ille-
gal configuration (which does not satisfy the predicate) for
every labeling, some vertex outputs false.

1.1 Our Contributions
In this brief announcement we consider proof-labeling schemes

with super-constant verification time t, and analyze trade-
offs between time, label size, message size, and computation
space. Our main contributions are as follows:

• A universal scheme which can verify any predicate
P on a network.

• A general technique for proving label size lower bounds
for t-round schemes.

• Tight lower and upper bounds for testing if a network
is cycle free.

• A cycle-free verifier which uses space O(log∗ n).

357

2. MODEL AND DEFINITIONS

2.1 Computational Framework
A graph configuration Gs consists of an underling graph

G = (V,E), and a state assignment function ϕ : V → S,
where S is a state space. The state of a vertex includes all of
its local information. It may include the vertex’s identity (in
an ID based configuration), the weight of its adjacent edges
(in a weighted configuration), or the result of an algorithm
executed on the graph.

In a proof-labeling scheme, an oracle assigns labels ` :
V → L. Verification is performed by a distributed algo-
rithm on the labeled configuration in synchronous rounds.
In each round every vertex receives messages from all of its
neighbors, performs local computations, and sends a mes-
sage to all of its neighbors. At the beginning of each round,
a vertex scans its messages in a streaming fashion. The
computational space is the maximum space required by a
vertex in its local computation. Each vertex may send dif-
ferent messages to different neighbors in a round. When a
vertex halts, it outputs true or false. If the vertex labels
contain unique identifiers, then we require that an algorithm
has the same output for all legal assignments of unique IDs.

Given a family F of configurations, and a boolean predi-
cate P over F , a PLS for (F ,P) is a mechanism for deciding
P(Gs) for every Gs ∈ F . A PLS consists of a prover p, and
a verifier v. The prover is an oracle which, given any con-
figuration Gs ∈ F , assigns a bit string `(v) to each vertex v,
called the label of v. The verifier v at each vertex outputs
a boolean value. If the outputs are true at all vertices, v
is said to accept the configuration. If v outputs false in
at least one vertex, v is said to reject the configuration.
For correctness, a proof-labeling scheme (p,v) for (F ,P)
must be (1) complete and (2) sound. Formally, (p,v) is
complete if P(Gs) = true then, using the labels assigned
by p, the verifier v accepts Gs. The scheme is sound if
P(Gs) = false then, for every label assignment, the verifier
v rejects Gs.

The verification complexity of a proof-labeling scheme
(p,v) is the maximal label size—the maximal length of a
label assigned by the prover p on a legal configuration (sat-
isfying P). Here, we introduce proof-labeling schemes with
more than one verification round. In particular the runtime
t of v can be super-constant. We define the message size
of the scheme (p,v) to be the largest message a vertex sends
during the execution of v on a legal configuration with the
labels assigned by p. We denote a proof-labeling scheme
with t-round verification by t-PLS.

3. UNIVERSAL SCHEME
A universal scheme is a PLS that verifies any sequen-

tially decidable property. In this section we assume that
each vertex has a unique identifier. A single round 1-PLS
can be obtained by having the labels encode a proposed
description of the network (along with the states of each
vertex). The labeling can be verified in a single round by
each vertex ensuring that each of its neighbors’ labels are
consistent with its label [12, 10, 4]. For t > 1, we obtain the
following gereneralization a universal scheme.

Theorem 1. Let F be a family of configurations with
state set S and diameter at least D. Let P be a boolean
predicate over F . Suppose that every state in S can be

represented using s bits. For every t ∈ Ω(D) there exists
a t-PLS for (F ,P) with label and message size O((ns +
min{n2,m logn})/t) where n is the number of vertices, and
m is the number of edges in the graph.

For t = 1 Theorem 1 reduces to the well-known univer-
sal scheme. For larger values of t, labels are significantly
smaller, and the total communication is the same as the one
round scheme. The idea of the proof of Theorem 1 is to
break the labels of the 1-round scheme into O(t) “shares.”
In t communication rounds, the verifier v reconstructs the
original 1-round labels, which are then accepted or rejected
as in the 1-round PLS. We refer to this technique as label
sharing.

4. LOWER BOUND TECHNIQUE
The main tool we use for proving lower bounds for t-PLS

is Theorem 5. Towards proving Theorem 5, will will find
it useful to consider orientated edges in the network. We
denote the head and tail of a directed edge e by H(e) and
T (e), respectively.

Definition 2 (Edge crossing). Let G = (V,E) be a
graph, and e1, e2 ∈ E be two directed edges. The edge
crossing of e1 and e2 in G, denoted by C(e1, e2, G), is the
graph obtained from G by replacing e1 and e2, by the edges
(T (e1), H(e2)) and (T (e2), H(e1)).

Edge crossings were formalized as a tool for proving lower
bounds of verification complexity in [4]. We now show how
to use edge crossing in order to prove lower bounds for label
size of t-PLS.

Definition 3 (Edge k-neighborhood). Let G = (V,E)
be a graph, and e = (u, v) ∈ E. The k-neighborhood of e in
G, denoted by Nk(e,G), is the subgraph (V ′, E′) of G satisfy-
ing (1) w ∈ V ′ if and only if w ∈ V and min(dist(w, u), dist(w, v)) ≤
k, and (2) e′ ∈ E′ if and only if e′ ∈ E ∩ (V ′ × V ′).

Proposition 4. Let (p,v) be a deterministic t-PLS for
(F ,P) with label size |`|. Suppose that there is a configura-
tion Gs ∈ F which satisfies P and contains r directed edges
e1, . . . , er, whose t-neighborhoods Nt(e1, Gs), . . . , Nt(er, Gs)
are pairwise disjoint, contain q vertices each, and there ex-
ist r state preserving isomorphisms σi : V (Nt(e1, Gs)) →
V (Nt(ei, Gs)) for i = 1, . . . , r such that σi(H(e1)) = H(ei)
and σi(T (e1)) = T (ei). If |`| < (log r)/q, then there exist
i, j with 1 ≤ i < j ≤ r such that every connected component
of C(ei, ej , Gs) is accepted by (p,v).

The main result of this section follows from Proposition 4.

Theorem 5. Let F be a family of configurations, and let
P be a boolean predicate over F . Suppose that there is a
configuration Gs ∈ F which satisfies

1. P(Gs) = true,

2. Gs contains r directed edges e1, . . . , er, whose t-neighborhoods
Nt(e1, Gs), . . . , Nt(er, Gs) are pairwise disjoint, con-
tain q vertices each, and there exist r state preserv-
ing isomorphisms σi : V (Nt(e1, Gs)) → V (Nt(ei, Gs))
for i = 1, . . . , r such that σi(H(e1)) = H(ei) and
σi(T (e1)) = T (ei), and

3. for every i 6= j, there exists a connected component Hs

of C(ei, ej , Gs) such that P(Hs) = false.

Then the label size of any t-PLS for (F ,P) is Ω((log r)/q).

358

5. ACYCLICITY
In this section we focus on the acyclicity property, and give

tight t-PLS lower and upper bounds. The lower bounds hold
in computational model where vertices have unique identi-
fiers, and the labels are allowed to depend on the ID of a
vertex. The upper bounds apply even in a weaker computa-
tional model where vertices do not have unique IDs.

Definition 6 (Acyclicity). Let F be the family of all
connected graphs. Given a graph configuration Gs ∈ F ,
acyclic(Gs) = true if and only if the underling graph G
is cycle free.

Theorem 7. Every scheme which verifies acyclic in t
communication rounds requires labels of size Ω ((logn)/t).

The proof of Theorem 7 is an applicaiton of Theorem 5
to a network consisting of a path. The result follows by
observing that any edge-crossing of a path contains a cycle.

Theorem 8. Suppose G = (V,E) is a graph with diam-
eter D. For every t ≤ min {logn,D}, there exists an O(t)-
PLS for acyclic with labels and messages of size O((logn)/t).
Further, the verifier v uses space of size O((logn)/t).

The upper bound of Theorem 8 is obtained by applying
label sharing to a well-known 1-PLS. In the 1-PLS, the la-
bels consist of an integer between 0 and n − 1. A unique
“root” is assigned label 0, while each other label is a vertex’s
distance from the root. Each vertex then verifies that either
(1) its label is 0 and all its neighbors have label 1, or (2)
its label is ` > 0, and it has a unique neighbor with label
`− 1, while all other neighbors have label `+ 1. Theorem 8
follows by breaking the 1-PLS labels into Θ(t) shares of size
Θ((logn)/t). Each vertex then verifies that the correspond-
ing 1-PLS labeling is correct by examining the labels in its
t-neighborhood.

The scheme from Theorem 8 gives asymptotically opti-
mal label size for t ≤ logn. Further, the communication
per round and local memory usage is linear in the label size.
However, the scheme above crucially requires each vertex to
be given a truthful representation of the parameter t, the
runtime of the verification. This may be undesirable as for
t ∼ logn, the labels are of size O(1), yet any representation
of t is significantly larger (Ω(log logn)). We describe a ver-
ifier for acyclic that only assumes that the space provided
to each processor is O(log∗ n). The tradeoff is that our al-
gorithm runs in time which may be linear in n in the worst
case.

Theorem 9. There exists an O(n)-PLS for acyclic which
uses labels and space of size O(log∗ n). In each round, the
communication per-edge is O(1).

The O(log∗ n) space scheme of Theorem 9 combines the
ideas of label sharing with recursion. At the top level of
recursion, we simulate the 1-PLS for acyclicity. Shares of the
labels are stored in paths emanating from the proposed root,
which we refered to as blocks. Each block has size O(logn),
and stores its distance from the purported root, where each
node’s share consists of a single bit. The correctness of the
block labels are verified recursively using sub-blocks of size
O(log logn). After O(log∗ n) levels of recursion, the blocks
have constant size, and the correctness of the labeling can
be trivially verified.

While verification time in Theorem 9 is O(n) in the worst
case, the actual time depends on the labels given to the ver-
tices. In particular, for every acyclic graph G, with diameter
D, there exists a correct labeling which will be accepted in
time O(logD). Thus there is a tradeoff between the runtime
of the algorithm and the amount of truthful information
about D given to the vertices.

6. REFERENCES
[1] Y. Afek, S. Kutten, and M. Yung. The local detection

paradigm and its application to self-stabilization.
Theor. Comput. Sci., 186(1-2):199–229, 1997.

[2] B. Awerbuch and R. Ostrovsky. Memory-efficient and
self-stabilizing network reset (extended abstract). In
Proceedings of the Thirteenth Annual ACM
Symposium on Principles of Distributed Computing,
PODC ’94, pages 254–263, New York, NY, USA, 1994.
ACM.

[3] B. Awerbuch, B. Patt-Shamir, and G. Varghese.
Self-stabilization by local checking and correction. In
32nd Symposium on Foundations of Computer Science
(FOCS), pages 268–277. IEEE, 1991.

[4] M. Baruch, P. Fraigniaud, and B. Patt-Shamir.
Randomized proof-labeling schemes. In Proceedings of
the 2015 ACM Symposium on Principles of
Distributed Computing, PODC, pages 315–324, 2015.

[5] M. Baruch, R. Ostrovsky, and W. Rosenbaum.
Space-time tradeoffs for local verification. Manuscript,
available at www.arxiv.org, 2016.

[6] L. Blin, P. Fraigniaud, and B. Patt-Shamir. On
proof-labeling schemes versus silent self-stabilizing
algorithms. In 16th Int. Symp. on Stabilization,
Safety, and Security of Distributed Systems (SSS),
LNCS, pages 18–32. Springer, 2014.

[7] A. Das Sarma, S. Holzer, L. Kor, A. Korman,
D. Nanongkai, G. Pandurangan, D. Peleg, and
R. Wattenhofer. Distributed verification and hardness
of distributed approximation. SIAM J. Comput.,
41(5):1235–1265, 2012.

[8] P. Fraigniaud, A. Korman, and D. Peleg. Towards a
complexity theory for local distributed computing. J.
ACM, 60(5):35, 2013.

[9] P. Fraigniaud, S. Rajsbaum, and C. Travers. Locality
and checkability in wait-free computing. Distributed
Computing, 26(4):223–242, 2013.

[10] M. Göös and J. Suomela. Locally checkable proofs. In
30th ACM Symp. on Principles of Distributed
Computing (PODC), pages 159–168, 2011.

[11] A. Korman, S. Kutten, and T. Masuzawa. Fast and
compact self stabilizing verification, computation, and
fault detection of an MST. In 30th Annual ACM
Symposium on Principles of Distributed Computing
(PODC), pages 311–320, 2011.

[12] A. Korman, S. Kutten, and D. Peleg. Proof labeling
schemes. Distributed Computing, 22(4):215–233, 2010.

359

