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Abstract

In this paper, we study the leader election problem in the full information model. We

show two results in this context. First, we exhibit a constructive O(logN) round protocol

that is resilient against linear size coalitions. That is, our protocol is resilient against

any coalition of size less then �N for some constant (but small) value of �. Second,

we provide an easy, non-constructive probabilistic argument that shows the existence of

O(logN) round protocol in which � can be made as large as 1
2
� � for any positive �. Our

protocols are extremely simple.
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1 Introduction

A central problem in distributed computing is that of electing a leader. We consider this

problem in the setting where there is a �xed coalition of malicious players who are trying

to maximize the chances of one of them being elected as a leader. A protocol, on the other

hand must guarantee that there is a reasonable chance that an honest player will be elected

regardless of any devious plot hatched by the coalition. This problem received much attention

in the literature. (For example, as a good introduction, see surveys of Ben-Or, Linial and Saks

[BLS-87], Chor, Dwork [CD-89] and Linial [L-92].) This problem is studied in principally two

settings: the cryptographic setting and the information theoretic setting. In the cryptographic

setting some cryptographic assumptions are made and the computational power of all players is

limited. In the information theoretic setting, no such assumptions are made and faulty players
are assumed to be capable of arbitrarily complicated computation.

Under cryptographic assumptions [GMW-87] or assuming private channels between players
[BGW-88, CCD-88], it is possible to elect a leader in a constant number of rounds if less than
1

2
(assuming a broadacst channel) (or less then 1

3
without a broadcast [FM-88]) of the players

are dishonest. Since this setting is not the focus of this paper, we will not review the rest of
the extensive literature in this area. The interested reader is referred to the survey in Chor and
Dwork [CD-89].

In this paper, we consider this question in the full-information model, introduced by Ben-or
and Linial. This model is characterized by the following two \worst case" assumptions. First,
that all communication is public and mad via broadcast channels. That is, no two players share a
private communication channel. The second, is that dishonest players are capable of arbitrarily
complicated computations. Honest players however, are required to work in polynomial time.

There are two parameters of interest in this setting: resilience and e�ciency. Resilience deals
with the number of dishonest players that a protocol can tolerate. Let us consider a system
with N players. A protocol is �-immune if it can tolerate a coalition of size smaller than �N

dishonest players, where dishonest players have been chosen before the protocol begins in a
way which maximizes the probability of one of them being elected as a leader. Clearly, the

objective here is to make � as large as possible. A great deal of e�ort has been invested in

designing protocols which can tolerate a constant value of �. We measure e�ciency in terms of
the number of rounds of communication. In each round, every player can send a single message.
Players can send messages during the same round in an asynchronous manner. That is, the

notion of a round models the e�ects of distributed asynchrony, and the beginning of each round

represents a synchronization point in the protocol. Clearly, minimizing the number of rounds
is crucial since we minimize the number of times the system needs to be synchronized. (For

more complete de�nitions see section 2.)
In the information-theoretic setting the problem was �rst formulated by Ben-Or and Linial

[BL-85, BL-89]. In the �rst paper, Ben-Or and Linial propose a protocol that is N (log3 2)�1-

immune. The second paper improved upon this result and exhibited a one-round 1= logN -

immune protocol. A widely known result due to Kahn, Kalai and Linial [KKL-88], implies that

if each player were restricted to providing one random bit, then 1= logN is the largest possible
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value of � for any one round protocol. Since then, protocols were designed that were resilient

against larger and larger coalitions [S-89, AL-89, AN-90, BN1-93, BN2-93]. In particular, Saks

[S-89], Ajtai and Linial [AL-89] designed so-called baton-passing protocols which are 1= logN -

immune. Furthermore, Saks [S-89] also showed that no protocol can be immune against dN
2
e

coalitions. Finally, Alon and Naor showed the existence of a protocol which is �-immune for

any � < 1

3
. This constituted major progress since it established that a very large number of

dishonest players can be tolerated. Further analysis of the protocol of Alon and Naor was done

by Boppana and Narayanan where they showed that the protocol of Alon and Naor is �-immune

for all � < 0:44 in [BN1-93] and for all � < 1
2
� � and positive � in [BN2-93], establishing that

the protocol of Alon and Naor [AN-90] has, in fact, optimal resilience. Notice, however, that

Alon and Naor solution requires linear number of rounds. A faster (in the number of rounds)

solution was constructed by Cooper and Linial [CL-93], where they showed a fairly complicated
protocol which requires O(log17N) rounds and is c-immune for some constant c << 1=2 (in
fact, c must be smaller than 1

6e6
in [CL-93] construction.)

In this paper we exhibit simple protocols that improve upon previous results in various ways:

� We �rst exhibit a constructive protocol which can tolerate a constant fraction �N (for any
� < :0045) of malicious players and runs in O(logN) rounds. (This compares favorably
to O(log17N) constructive protocol of [CL-93] which also achieves linear resilience.)

� We then show, using an Erd�os probabilistic argument, the existence of a protocol that
also requires O(logN) rounds and can tolerate any (1

2
� �)N malicious players for all

positive �. (This compares favorably to the non-constructive protocol of [AN-90, BN2-93]
which also achieves optimal resilience but runs in O(N) number of rounds.)

It should be noted that in our protocol, we use a notion of a committee, which is a sub-
set of players. The notion of a committee was introduced by Bracha [B-85] in the context
of the Byzantine agreement problem, and has since become an important tool for designing

resilient protocols. It has been used in many of the earlier papers on leader election in the

full-information model.
Using the algorithm presented in the current paper, together with the novel use of Extrac-

tors, David Zuckerman was recently able to exhibit a constructive counterpart of our second

(non-constructive) protocol and show how to implement it constructively with optimal � < 1
2

resilience [Z-96].

2 Problem Statement

There are N players. All communication is via broadcast and is public. Every player has a

unique name and the name of the sender of any message is explicitly known to all other players.

The goal is to choose one of the N players (a leader) in this setting. This seemingly simple

matter becomes complicated if some �N of the players are involved in a dishonest coalition.
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This means that they do not necessarily adhere to any speci�ed protocol. Further, given any

protocol, they will behave in a way as to maximize the chances of one among themselves being

elected leader. A protocol is said to be �-immune if regardless of which �N of the players are

dishonest, the protocol chooses an honest leader with probability bounded away from 0 as N

approaches in�nity.

A round is a round of communication. It consists of a broadcast message of polynomial

length transmitted by each player. In principle, all messages are to be transmitted and received

in parallel. However, in a distributed system, there is no guarantee on the order in which

messages are sent or delivered within a round. Thus, within any round, dishonest players may

receive (or consciously wait until they receive), the messages of the honest players before they

compose their own. The players are synchronized between rounds. Thus, all messages in round

i are received before any in round i+ 1 are transmitted. This models the e�ects of distributed
asynchrony in the most pessimistic (and thus, the most di�cult) case.

Finally, honest players have to work in polynomial time. There is however no such compu-
tational limitation on the dishonest ones. This stipulation rules out the use of cryptographic
assumptions.

3 The constructive protocol

The protocol �rst constructs a collection C of committees. The committees are constructed by

choosing an explicit constant degree d expander graph on N + o(N) vertices (for example, see
[GG-79]). Each player is represented by some vertex in the expander graph. Each committee is
composed of the players represented by di�erent vertices in a k logN long walk on the expander
graph where k is a �xed constant. A player can be a member of a committee a multiple number
of times. It is easily veri�ed that there are only a polynomial number M of such walks1.

We say that a committee is dangerous if the fraction of bad players in it exceeds � + � for
some �xed �. By B we denote the set of all dangerous committees, Our choice of committees
guarantees that the fraction of dangerous committees tends to zero rapidly as we increase the
number of committees (by increasing k). There are various proofs of this kind of notion in the

recent literature (see for instance [IZ-89]). We choose to state here a derivative of the theorem

of Gillman [G-93]. Gillman provides a Cherno� style bound on the occupation time for each

subset S of vertices during a random walk on any expander graph.

Lemma 3.0.1 It is possible to choose a collection C of committees such that:

� jCj = M � poly(N). The degree of the polynomial depends on k and the out degree of the

expander graph.

� jBj �M1���2 for some �xed constant � < 12.

1The number of committees is smaller than N � dk logN . The �rst factor represents the number of starting
points and the second factor the number of walks from each starting point. Each walk is a committee.

2It should be noted that the value of � depends on the gap between the largest and next largest eigenvalues
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The protocol works in two stages. In the �rst stage, a committee C 2 C will be chosen.

In the second stage, a leader is chosen in C. The second stage is accomplished either non-

constructively by using the [AN-90, BN2-93] sequential protocol or by using the �rst stage one

more time recursively and then working on problem instance of size O(log log n), for which

explicit construction of [AN-90] protocol is derived by enumerating all possible [AN-90] pro-

tocols for O(log log n) players and picking the optimal one. In either case, since jCj is only
logarithmic in N after the �rst stage, the second stage runs in time O(logN). Henceforth, we

will concentrate on the �rst stage.

The �rst stage works in a series of rounds. At the beginning, all M committees are marked

`eligible'. Let Ei be the collection of eligible committees at the inception of round i. In round

i, each player publishes a list of size
l
jEij
N

m
. Each entry in this list is the name of a committee

in Ei. In the case of honest players each entry is chosen independently and randomly from
Ei. Dishonest players may choose their lists in any arbitrary fashion. Every committee in the
published lists are marked `not eligible'. The protocol terminates when there are fewer than
N committees left in the eligible set. At this point player 1 chooses an arbitrary committee
C from among the remaining eligible committees. If there is no such committee, the protocol

fails. In section 4 we prove the following theorem pertaining to this protocol:

Theorem 4.1: The protocol described here is an O(logN) round leader election protocol that is

�-immune for every � smaller than :0045.

4 The proof

In this section we will address the two issues that arise in proving the main theorem in this
paper. We �rst address the easier issue, and show that the protocol runs in O(logN) rounds.
Then, we address the main issue, that of showing that the protocol described here has the
required immunity.

4.1 Rounds

Consider an arbitrary committee C 2 C. The probability that C is eliminated in an arbitrary
round i is at least the probability that C is eliminated by one of the votes cast by the honest
players. There are at least (1 � �) jEij votes cast by honest players. Each vote eliminates C

for the expander graph. The theorem of Gillman implies that � can be taken to be roughly 1
20
th the eigenvalue

gap. Expanders that have an eigenvalue gap arbitrarily close to 1 are known. We note that Gillman's bound
is somewhat weaker than the standard Cherno� bound in the sense that � should ideally be close to 1=2. An
improvement in this yields an increase in the value of � in our main theorem (4.1). In [K-94] Nabil Kahale
have shown small improvement, increasing � somewhat, but still not achieving optimal 1=2. Optimal bound of
� arbitrary close to a 1=2 was recently achieved by David Zuckerman [Z-96].
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with probability 1

jEij
. Thus, we obtain

Pr [C is not eliminated in round i jC 2 Ei]
� (1� 1

jEij)
(1��)jEij

� e�(1��)

Therefore, we have:

Pr[C 2 Ei+1] � e�i(1��)

So, we have the following lemma:

Lemma 4.1.1 With probability 1� 1

N
, the protocol completes in fewer than lnM

1��
rounds.

Proof : By substituting lnM

1��
for i in the preceding discussion and applying Markov's inequality.

2

4.2 Resilience

The proof of the resilience of this protocol is based on a simple but crucial trade-o� that we
elaborate upon next. As we increase �, the rate at which E decays becomes increasingly faster

with respect to the rate at which B decays. The protocol works if � is small enough so that
this increased decay rate of E is still not enough to overcome the initial size disadvantage that
B had with respect to E. In this case, all the bad committees will be eliminated before there
are only N eligible committees left. The resilience �gure, :0045 represents the value of � where
the trade-o� between the decay rate and the initial size disadvantage is made.

If we choose � so that � + � < 1

2
, then, it su�ces to show that the probability that the

committee C, is dangerous is small. Recall that C is the committee that is chosen after the
�rst stage of the protocol. This is because of the following reasoning: Let � be chosen to be

such that � + � < 1
2
. Then, if C is not dangerous, by de�nition, the fraction of bad players

in C is smaller than 1
2
. Thus, we can use the result of Boppana and Narayanan [BN2-93] to

complete our proof immediately.

Lemma 4.2.1 If ` � ln(N jBj)
(1��) , then

Pr(9 a dangerous committee in E`) � 1

N

Proof : Let C 2 B be a dangerous committee. Consider a �xed round i in the �rst phase.

Each vote cast by an honest player in this round eliminates C with probability 1

jEij
. There are

(1 � �) jEij votes cast by honest players. Thus, the probability that C is not eliminated in
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the ith round is at most
�
1� 1

jEij

�(1��)jEij � e�(1��). Therefore, the probability that C is not

eliminated in rounds 1 through ` is e�(1��)`. Thus, we get

E (jE` \ Bj) � e�`(1��) jBj
If we apply Markov's inequality and substitute the value of ` we obtain the lemma. 2

Lemma 4.2.1 states that if the protocol runs for more than ln(N jBj)
(1��)

rounds, then it is highly

unlikely that any dangerous committee survives. In order to complete the proof, it would be

su�cient to show that it is very likely that the protocol runs for at least
ln(N jBj)
(1��)

rounds. This

is what we shall exhibit now. We begin with a lemma of what is called a Cherno� bound for

occupancy, studied in [KMPS-94], where we throw (1��)t balls independently at random into

t bins. The bound says that the number of empty bins does not deviate signi�cantly from the
expected value.

Lemma 4.2.2 Let X1;X2 � � �X(1��)t be uniformly and independently chosen from f1; 2; � � � tg.
Let Yi = 1 if 9j such that Xj = i. Let Y =

Pt
1 Yi. Then, E (Y ) = t(1 � e�(1��)) and

Pr(jY � E (Y )j � log t
p
t) � o

�
1

poly(t)

�

Proof : [KMPS-94] 2

Lemma 4.2.3 Let Zi = jEi+1j. Let p = e�(1��) � �. If �i = �i log2N
q
pi jCj, for � = 1p

p
, then

for any i � N ,

Pr

h
Zi < pi jCj � �i

i
� o

 
1

poly(N)

!

Consequently, if ` � � ln( jCjN )
ln(e�(1��)��)

, then

Pr [Z` � N ] � 1� o

 
1

poly(N)

!

Proof : We will show the following conditional statement for every choice of k. The lemma
and its consequence follow by simply taking a union bound over all k thereafter.

Pr

h
Zk � pk jCj � �k

���Zk�1 � pk�1 jCj � �k�1
i

� o

 
1

poly(N)

!

This conditional statement follows immediately with the help of the following consequence of

the occupancy bound described above.

Pr

�
Zk � pZk�1 � logN

q
Zk�1

�
� o

 
1

poly(N)

!
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Conditioning on the value of Zk�1 we obtain the following.

Pr

�
Zk � pZk�1 � logN

q
Zk�1

���
Zk�1 � pk�1 jCj � �k�1

i
� o

 
1

poly(N)

!

Plugging in the value of �k�1 and doing a little algebraic manipulation gives the the conditional

statement and hence, the lemma. 2

Theorem 4.1 The protocol described in section 3 is an O(logN) round leader election protocol

that is �-immune for every � smaller than :0045.

Proof : The lemmas 4.2.1 and 4.2.3 together imply that if ` is chosen such that ln(N jBj)
(1��) <

` <
ln( jCjN )

� ln(e�(1��)��)
, then after ` rounds, it is very likely that all the dangerous committees are

gone and that the �rst phase is not yet complete. This in turn implies that the committee C
is unlikely to be dangerous. We know that jCj = M and jBj = M1���2 where � is 1=20th of
eigenvalue gap for the expander graph of our choice. We also take note that there are explicit

expander constructions that produce expanders with eigenvalue gap arbitrarily close to 1.
Substituting these values, we notice that it is su�cient if we can �nd an ` satisfying

ln(NM1���2)

(1� �)
< ` <

ln
�
M

N

�
� ln (e�(1��) � �)

Notice further that as we increase the length of the walk on the expander in the construc-
tion of the committees by increasing k, and thus increase M relative to N , ln(NM1���2) �
(1� ��2) lnM and ln(M

N
) � lnM . Thus, we need to �nd a ` satisfying

(1� ��2) ln(M)

(1 � �)
< ` <

ln (M)

� ln (e�(1��) � �)

Finally, we notice that if � is small enough, then such an ` exists. The largest possible value
of � is easily computed as the solution the equation

(1� ��2)

(1� �)
=

1

� ln (e�(1��) � �)

where � = 1
2
� � and � is 1

20
. It is easily veri�ed that the solution to the above equation is at

least :0045. This completes the proof of the main theorem. 2
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5 Non Uniform protocols

In this section we study non-uniform protocols. We assume, in this case, that we design our

protocol probabilistically. It is easy to see that this situation implies the non-uniform case. The

part of the protocol that we single out for attention is the construction of committees. Suppose

we replace the expander based deterministic construction by a random construction as follows.

A collection C = fCi : 1 � i �Mg of committees is chosen with jCij = k logN . Each member

of each committee is chosen independently and uniformly at random from f1; 2; � � �Ng.
Let X, jXj = �N be any subset of f1; 2; � � �Ng. We wish to view X as the set of dishonest

players. An immediate consequence of the Cherno� bound is that for any i

Pr [jX \ Cij � (� + �) jCij] � 2
��2k logN

4

Here, the probability is taken over all possible choices of Ci. Thus, if k is chosen to be 4�

�2
where

� is an yet un-chosen constant, then,

Pr [jX \ Cij � (� + �) jCij] � N��

Let Bad(X) be the sets in C such that jCi \Xj � (� + �) jCij. Then, clearly, the expected size
of Bad(X) is at most N��M . Additionally, for any �, the probability that the size of Bad(X)

exceeds �M is at smaller than

 
M

�M

!
N���M . Using the fact that

 
M

�M

!
< M�M and

choosing � = N=M , we obtain,

Pr (jBad(X)j � N) �
�
M

N�

�N
If we choose � to be a large enough constant so that M � N��1, we observe that

Pr (jBad(X)j � N) � N�N

Since there are at most 2N possible choices for X, we get the following lemma,

Lemma 5.0.4 There exists a collection C = fCi : 1 � i � Mg of committees such that for any

X of size �N , jBad(X)j � M1�� for any � < 1. The size of M is polynomial in N . The degree

of the polynomial depends only on �. And so that the size of any committee Ci is O(logN). The

size of committees depends polynomially on ��1 and (1
2
� �)�1.

Proof : Consider the union bound over the possible choices of X in the previous discussion.

2

It is now easily seen that by choosing the value of � = 4=5, the root of the equation

(1� �)

(1� �)
=

1

� ln (e�(1��) � �)

is larger than 1

2
. Thus, showing the existence of a protocol that is 1

2
-immune and runs in

O(logN) rounds. This completes the proof of the second main theorem:

Theorem 5.1 For every � > 0, there exists an O(logN) round leader election protocol that is

�-immune for � = 1

2
� �.

9



6 Further Research and Open Problems

We remark that due to the inherent simplicity of our solution it is conceivable that our technique

can be parallelized in order to reduce the number of rounds even further. Moreover, it is

conceivable that our technique might �nd other applications. For example, it might be useful

in the [GGL-91] setting.
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