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Abstract

Yao’s garbled circuit construction is a fundamental construction in cryptography and recent effi-
ciency optimizations have brought it much closer to practice. However these constructions work only for
circuits and garbling a RAM program involves the inefficient process of first converting it into a circuit.
Towards the goal of avoiding this inefficiency, Lu and Ostrovsky (Eurocrypt 2013) introduced the notion
of “garbled RAM” as a method to garble RAM programs directly. It can be seen as a RAM analogue
of Yao’s garbled circuits such that, the size of the garbled program and the time it takes to create and
evaluate it, is proportional only to the running time on the RAM program rather than its circuit size.

Known realizations of this primitive, either need to rely on strong computational assumptions or do
not achieve the aforementioned efficiency (Gentry, Halevi, Lu, Ostrovsky, Raykova and Wichs, EURO-
CRYPT 2014). In this paper we provide the first construction with strictly poly-logarithmic overhead in
both space and time based only on the minimal and necessary assumption that one-way functions ex-
ist. Our scheme allows for garbling multiple programs being executed on a persistent database, and has
the additional feature that the program garbling is decoupled from the database garbling. This allows a
client to provide multiple garbled programs to the server as part of a pre-processing phase and then later
determine the order and the inputs on which these programs are to be executed, doing work independent
of the running times of the programs itself.
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1 Introduction
As individuals and organizations push massive amounts of personal data and the associated computational
demands to the cloud, guaranteeing privacy of this data wile simultaneously enabling easy access to it
poses tremendous challenges. Consider the following concrete problem. A client, say Alice, wants to
store a large private dataset or database D on an untrusted server, referred to as “the cloud." Subsequently,
Alice wants the cloud to be able to compute and learn the output of arbitrary dynamically chosen private
programs P1, P2, . . . on private inputs x1, x2, . . . and the previously stored dataset, which gets updated as
these programs are executed. Furthermore, Alice wants to achieve this non-interactively, i.e. by sending just
one message for each program/input to the server.

Solutions using Yao’s Garbled Circuits or Fully Homomorphic Encryption. The first feasibility solu-
tion for this problem was provided by Yao [Yao82]. However Yao’s approach requires that the program be
first converted to a circuit — the size of which will need to grow at least with the size of the input. Hence for
each program that Alice wants the cloud to compute, it will need to send a message that grows with the size
of the database. A potential attempt to mitigate this is to use Fully Homomorphic Encryption, first provided
by Gentry [Gen09]. While this reduces the size of Alice’s message, the cloud still needs to touch the entire
encrypted database. Consequently the work of the cloud still grows with the size of the database. These
solutions can be prohibitive for various applications, e.g. for binary search the size of the database can be
exponentially larger than execution path of the insecure solution. We note that additionally even in settings
where the size of the database is small, generic transformations from RAM programs with running time T
result in a circuit of size O(T 3 log T ) [CR73, PF79], which can be prohibitively inefficient.

Garbled RAMs. Motivated by the above considerations, Lu and Ostrovsky [LO13b] introduced the notion
of garbled random-access machines (garbled RAMs) as a method to garble RAM programs directly. Garbled
RAMs can be seen as a RAM analogue of Yao’s garbled circuits, such that the size of the garbled program,
the time it takes to create and evaluate it is proportional only to the running time on the RAM pogram (up
to poly-logarithmic factors), rather than the size of its circuit representation.

In more detail, we will use the notation PD(x) to denote the execution of some RAM program P on
input x with initial memory D. A garbled RAM scheme should provide a mechanism to garble the data D
into garbled data D̃, the program P into garbled program P̃ and the input x into garbled input x̃ such that
given D̃, P̃ and x̃ allows for computing PD(x) and nothing more. Furthermore, up to only poly-logarithmic
factors in the running time of the RAM PD(x) and the size of D, we require that the size of garbled data
D̃ is proportional only to the size of data D, the size of the garbled input x̃ is proportional only to that of
x and the size and the evaluation time of the garbled program P̃ is proportional only to the running time of
the RAM PD(x).

Both the original Lu and Ostrovsky [LO13b] construction and its follow up [GHRW14a, LO14, GHL+14]
need to make strong computational assumptions for achieving the above described efficiency goals. In par-
ticular, the security of the original Lu-Ostrovsky relies on a somewhat complex “circular” assumption in-
volving Yao garbled circuits and PRFs and the Gentry et al. [GHRW14a] construction uses identity-based
encryption (IBE). Lu and Ostrovsky [LO14] describe an alternative construction based just on one-way
functions but that does not meet the above mentioned efficiency goals. Specifically for this solution, the size
of the garbled program grows by an additional factor of |D|ε for a constant ε > 0, which can be prohibitive
for the envisioned applications. These works leave open the following problem.

Can we base security of poly-logarithmically efficient garbled RAMs just on the existence of
one-way functions?
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1.1 Our Results
In this paper we provide the first construction of an efficient garbled RAM that can be based on one-way
functions alone, thus making it a suitable replacement for Yao’s garbled circuits with the added benefits of
being in the RAM model. We state this as our main theorem:

Main Theorem (Informal). Assuming one-way functions, there exists a secure garbled RAM scheme,
where the size of the garbled database is |D| · poly(κ), size of the garbled input is |x| · poly(κ) and the size
of the garbled program and its evaluation time is T · poly(log T, log |D|, κ) where T is the running time of
program P . Here κ is the security parameter.

Our contribution also includes an interesting strengthening of the garbled RAM definition where gar-
bling the database is decoupled from the garbling of the program, and only tied together by the garbling
of the input. Our constructions do achieve this stronger definition. We believe this will be of independent
interest in various outsourcing computation applications. We provide a motivating example application to
the pre-processing model below.

Persistent Garbled Database. Just as in previous works, our construction allows for execution of multiple
programs on the garbled memory, such that the running time of the client and the server per program is
proportional to the RAM runtime of that program. Furthermore the garbled database is persistent in the
sense that the modifications made to it by the execution of garbled programs are maintained across different
program executions. At the same time an attacker can not execute programs out of order, replay old garbled
databases to new programs, or modifying the underlying contents of the garbled database beyond what is
dictated by the GRAM evaluation algorithm.

Preprocessing Model. A nice feature of our solution is that the online work of a client can be further
reduced when preprocessing is allowed. In more detail, consider a setting where in a preprocessing phase
the client provides the cloud, not just a garbled database but also a set of garbled programs that she might
want to execute in the future. Subsequently during the online phase she can dynamically decide the execution
order of her previously garbled programs, and execute them on inputs of her choice. A nice feature of this
solution is that the clients online overhead for executing a program reduces just to the size of the private
inputs (with a poly(κ) overhead), completely independent of the size of the data and the running time of
the programs. Technical this becomes possible because of the decoupling of data garbling from program
garbling.

Input-specific running time. If one is willing to disclose the exact running time of a specific execution,
then the running time of a garbled RAM computation can be made input specific which could be much
faster than the worst-case running time. This was first explicitly explored by Goldwasser et al. [GKP+13]
in the context of secure TM computation. This applies to a wide range of algorithms that have a gap
between “typical”-case and worst-case time complexity, including randomized algorithms which could have
exponential worst-case running time (Las Vegas), or heuristic algorithms that perform well in practice.

In our setting, the client can garble a sequence of generic CPU steps and provide them to the cloud.
Later on, the client just needs to provide a short garbled input, which allows the cloud to do the computation
in input specific running time. Interestingly this only consumes garbled CPU steps proportional to the input
specific running time and the left over CPU steps can be used for executing the next program. In other
words the clients overall work will be proportional only to the sum of the input-specific running times of the
programs it executes with the server.

Output Privacy and Verifiability. We note that if in an application output privacy is desired then we can
always make the garbled program perform an extra step of encrypting or authenticating the intended output
before actually outputting it.
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Secure RAM Computation. Much like how garbled circuits can be applied to secure circuit computation,
so can garbled RAM be used for secure RAM computation. This allows us to perform one-round secure
RAM computation in the OT-hybrid model.Our construction permits the secure computation of multiple
RAM programs on a persistent database, although we do not allow the inputs to be chosen adaptively by
an attacker (a weakness that is present in, and inherited from garbled circuits). Furthermore, we inherit
many of the optimizations found in garbled circuits, for example, garbled input in our construction can be
compressed from |x| · poly(κ) to |x|+ poly(κ) via [AIKW13].

2 Our Techniques
The starting point for our work is the garbled RAM construction of Lu and Ostrovsky [LO13b]. Though
the security of this construction is based on a strong and somewhat complex “circular” assumptions involv-
ing Yao garbled circuits and PRFs, it serves as a good starting point in explaining the ideas behind our
construction based on one-way functions.

Starting point — Lu-Ostrovsky construction. The Lu-Ostrovsky construction views the program P ,
to be garbled, as a sequence of T CPU steps. Each of these CPU steps is represented as a circuit. Each
CPU step reads or writes one bit of the RAM, which stores some dataset D. In order to keep this intuitive
description simple, we will restrict ourselves to RAM programs that only read from memory and also to
the weaker security requirement of unprotected memory access (UMA) in which we do not try to hide the
database being stored or the memory locations being accessed (only the program and input is hidden). As
noted in previous works [LO13b, GHL+14] this weaker security guarantee can be amplified to full security
by using oblivious RAM. Garbling the RAM program itself involves just garbling the T CPU step circuits,
using a circuit garbling scheme, e.g. Yao [Yao82]. The novelty is the added functionality of the ability to
read bits from arbitrary memory locations without knowing them in advance or using interaction.

For each memory location i, containing value bi the value Fs(i, bi) is stored in the “garbled” memory,
where s is a secret PRF key. Let’s consider that a CPU step that wants to read memory location i that needs
to be fed into the next CPU step. Note that both these circuits will be independently garbled using Yao’s
garbled circuit technique. Let label0 and label1 be the garbled input wire labels corresponding to the wire
for the read bit of the second circuit. In order to enable evaluation of the second garbled circuit, we need
to be able to reveal exactly one of these two labels, corresponding to bi, to the evaluator. Note that the first
garbled circuit needs to do this without knowing i and bi at the time of garbling. The idea for enabling the
read is for the first garbled circuit to produce a translation gadget: the first garbled circuit outputs encryptions
of labels label0 and label1 under keys Fs(i, 0) and Fs(i, 1) respectively. Since the evaluator holding the
garbled memory only has one of the two values Fs(i, 0) or Fs(i, 1) at his disposal, he can only obtain either
label0 or label1. This enables the evaluator to feed the proper bit into the next CPU step and continue the
evaluation. Again we note here that since the location i that needs to be read is generated dynamically at
runtime, we need the CPU step to be able to generate PRF values Fs(i, 0) and Fs(i, 1) dynamically, and in
order to enable this computation we need to hardwire the secret key s in each of these CPU step circuits that
are being garbled.

Circularity Assumption. As noted in [GHRW14a], in arguing security of the above scheme we need to
rely of the security of Yao’s garbled circuit, which in turn needs that only one label for each of its input wires
is given out. Finally this needs to rely on the pseudorandomness property of the outputs of F . However the
problem is that the key of the PRF s, is embedded inside the garbled circuits. Because of this circularity, the
security of this construction requires a somewhat complicated assumption.

Gentry et al. [GHL+14] propose two solutions to this problem. At a high level, the common idea in the
two solutions is to not embed the same PRF key in each CPU step. Instead they consider a sequence of keys
of decreasing power that are hardcoded in the CPU steps. Abstractly this sequence of hardcoded keys is
such that, a key hardcoded in a circuit can be used to decrypt the input labels for future garbled circuits but
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not the current and past ones, breaking the circularity. Unfortunately, these solutions either require stronger
assumptions, namely IBE [BF01], or more overhead that do not meet our poly-logarithmic efficiency goals.

There appears to be a fundamental barrier in all previous schemes: to read a value from a memory
location, we need to have a key hardcoded in the garbled circuits that produces two values for any memory
location, one of which is in the garbled memory. At the same time we need to claim that the value not in
memory is indistinguishable for random in order to use Yao’s security for the next garbled circuit. Given that
we do not want to assume circularity the need to successively weaker keys seems unavoidable. The main
technical question is how can we overcome this dependency without necessarily having to weaken keys?

Our Idea. Our main idea is to replace the process of key revocation, with the idea of key evolution. Data
garbling in previous constructions was done using one master key that encrypted everything, and weakenings
of which were hardcoded inside different garbled circuits, in an attempt to break circularity. Our strategy
will be to have multiple keys, more explicitly a key tree, and anytime a key is used in a way that might effect
the security of the later garbled circuits, then we immediately discard it and replace it with a fresh new key.
Of course as a key is removed from the system we need to ensure that no value is encrypted under that key,
as those values would become unusable once this key is discarded. Therefore if any value is encrypted under
the key being discarder then that value must be first recovered and encrypted under the new key. In order to
give a better intuition of this key evolution process we will start by describing how we garble the memory
and then explain how this key evolution helps break circularity.

Here is how our memory is garbled: we sample a tree of fresh random keys si,j ∈ {0, 1}κ where
i ∈ {0, . . . d − 1} and j ∈ {0, . . . 2i − 1} where d = log(m/κ) and m is the size of the database D.
The garbled memory itself consists of encryptions of the data under the leaf keys from the key tree and
the encryption of each key in the key tree under its parent key. We refer the reader to look at Figure 1 for
a graphical representation of the same. Note that given the root key s0,0, starting from the root, one can
navigate the tree and reach any leaf key sd−1,j with d − 1 decryptions, which can be then used to read the
desired bit from memory. On the other hand, withholding the root key, renders the entire tree hidden.

As already pointed, having access to the root key enables reading any bit from memory, and this process
involves reading a sequence of d − 1 keys from memory. Our idea of key evolution is that in the process
of reading a bit from memory we will expunge all the keys along the path from the root to the leaf and
replace them with freshly sampled keys. Note that since each key only encrypts two other keys or 2κ bits
of memory, it is easy to read those values and output additionally an encryption of these values under the
updated key. In other words, as a circuit navigates the tree, it will update all the nodes visited along the path
using fresh keys. The additional subtlety here is that, whenever we replace a node with fresh key, then both
its children nodes need to be re-encrypted under the fresh key. We believe that this is a novel approach on
tree-based constructions in cryptography, e.g. it differs drastically from statistical ORAM [Ajt10, DMN11,
SvDS+13, CP13], Merkle trees [Mer87], GGM PRF [GGM84] and broadcast encryption [FN93] and we
expect this to have other applications in cryptography.

Now we explain how this key evolution process solves the circularity problem. We note that at any point
in time, any key that is ever used to read any other key or data from memory has already been expunged.
This allows us to claim the invariant that at point of time the evolved key tree only consists of pristine keys,
that have never been used to read anything from memory. This gives the guarantee that future time steps
have essentially nothing to do with the keys that were actively used in previous time steps.1

Finally note that the key evolution only changes the keys in the system but the size of the garbled
memory itself does not change. Hence our solution only requires poly(κ) overhead to store the garbed tree
and poly(κ, logm) additional overhead in the running time of the CPU circuit, required to navigate the tree
achieving the desired efficiency goals.

1Since this invariant is maintained across all timesteps, we achieve an interesting property that our solution does not need any
mechanism to remember when a location was last accessed simplifying our construction significantly with respect to previous ones.
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We note that in the proof various additional subtleties arise. In the life time of a key it might be read
and re-encrypted multiple times, depending on the execution path of the program. The invariant above only
claims that the key itself was not used to read anything from memory or in other words PRF values were
not computed using this key. In the proof before we can rely on the security of PRF for this key we need to
replace all the encryptions of this key with encryptions of random strings. We prove that this can indeed be
done as all those encryptions are under keys that have already been expunged and so on.

Writing. Unlike previous GRAM schemes, where writing was more involved, our construction achieves
writes in a very simple manner. Recall that reading in our scheme already involved re-encrypting the read
data under its new parent. Writing just involves encrypting the value to be written instead of doing the
re-encryption.

Decoupling of data garbling and program garbling. A very nice feature of our construction, that enables
for various novel applications, is that the only connection between the garbled memory and the garbled
program is in terms of the root key which can be fed into the garbled program rather than being hardcoded
in it. This means that we can garble the program independent of the data.

2.1 Roadmap
We now lay out a roadmap for the remainder of the paper. In Section 3, we give necessary background
and definitions for the RAM model, garbled circuits, and garbled RAM. In Section 4 we give the main con-
struction of our result, and prove the security in Section 5. We survey other related work in Appendix A.
We review oblivious RAM in Appendix B. In Appendix C we give a warmup construction of fully se-
cure single-program GRAM from UMA-secure single-program GRAM (such a proof was previously given
in [GHL+14], but given our slightly stronger definitions, we re-prove the result under these stronger con-
ditions). In Appendix D we show how to obtain fully secure multi-program GRAM from UMA-secure
multi-program GRAM.

3 Background
In this section we fix notation for RAM computation and provide formal definitions for Garbled Circuits
and Garbled RAM Programs. Parts of this section have been taken verbatim from [GHL+14].

3.1 RAM Model
Notation for RAM Computation. We start by fixing the notation for describing standard RAM com-
putation. For a program P with memory of size m we denote the initial contents of the memory data by
D ∈ {0, 1}m. Additionally, the program gets a “short” input x ∈ {0, 1}n, which we alternatively think of
as the initial state of the program. We use the notation PD(x) to denote the execution of program P with
initial memory contents D and input x. The program can P read from and and write to various locations in
memory D throughout its execution.2

We will also consider the case where several different programs are executed sequentially and the mem-
ory persists between executions. We denote this process as (y1, . . . , y`) = (P1(x1), . . . , P`(x`))

D to indi-
cate that first PD1 (x1) is executed, resulting in some memory contents D1 and output y1, then PD1

2 (x2) is
executed resulting in some memory contents D2 and output y2 etc. As an example, imagine that D is a huge
database and the programs Pi are database queries that can read and possibly write to the database and are
parameterized by some values xi.

CPU-Step Circuit. Consider a RAM program who execution involves at most T CPU steps. We represent
a RAM program P via a sequence of T small CPU-Step Circuit where each of them executes a single CPU

2In general, the distinction between what to include in the program P , the memory data D and the short input x can be somewhat
arbitrary. However as motivated by our applications we will typically be interested in a setting where that data D is large while the
size of the program |P | and input length n is small.
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step. In this work we will denote one CPU step by:

CPCPU(state, z
read) = (state′, L, zwrite).

This circuit takes as input the current CPU state state and a block zread. Looking ahead this block will be
read from the memory location that was requested for a memory location requested for in the previous CPU
step. The CPU step outputs an updated state state′, the next location to read L ∈ [m], and a block zwrite to
write into the location that was previously read. The sequence of locations and read/write values collectively
form what is known as the access pattern, namely MemAccess = {(Lτ , zread,τ , zwrite,τ ) : τ = 1, . . . , t}.

Note that in the description above without loss of generality we have made some simplifying assump-
tions. First, we assume that the output zwrite is written into the same location zread was read from. Note
that this is sufficient to both read from and write to arbitrary memory locations. Secondly we note that we
assume that each CPU-step circuit always reads from and write some location in memory. This is easy to
implement via a dummy read and write step. Finally, we assume that the instructions of the program itself
is hardwired into the CPU-step circuits, and the program can first load itself into memory before execution.
In cases where the size of the program vastly differs from its running time, one can suitably partition the
program into two pieces.

Representing RAM computation by CPU-Step Circuits. The computation PD(x) starts with the initial
state set as state0 = x and initial read location L0 = 0 as a dummy read operation. In each step τ ∈
{0, . . . T − 1}, the computation proceeds by first reading memory location Lτ , that is by setting bread,τ :=
D[Lτ ] if τ ∈ {1, . . . T−1} and as 0 if τ = 0. Next it executes the CPU-Step CircuitCPCPU(state

τ , bread,τ ) =
(stateτ+1, Lτ+1, bwrite,τ+1). Finally we write to the location Lτ by settingD[Lτ ] := bwrite,τ+1. If τ = T−1
then we set state to be the output of the program P and ignore the value Lτ+1. Note here that we have
without loss of generality assumed that in one step the CPU-Step the same location in memory is read from
and written to. This has been done for the sake of simplifying exposition.

3.2 Garbled Circuits
Garbled circuits was first constructed by Yao [Yao82] (see Lindell and Pinkas [LP09] and Bellare et al. [BHR12]
for a detailed proof and further discussion). A circuit garbling scheme is a tuple of PPT algorithms (GCircuit,Eval).
Very roughly GCircuit is the circuit garbling procedure and Eval the corresponding evaluation procedure.
Looking ahead, each individual wire w of the circuit will be associated with two labels, namely labw0 , lab

w
1 .

Finally, since one can apply a generic transformation (see, e.g. [AIK10]) to blind the output, we allow output
wires to also have arbitrary labels associated with them. Indeed, we can classify the output values into two
categories — plain outputs and labeled outputs. The difference in the two categories stems from how they
will be treated when garbled during garbling and evaluation. The plain output values do not require labels
provided for them and evaluate to cleartext values. On the other hand labeled output values will require
that additional output labels be provided to GCircuit at the time of garbling, and Eval will only return these
output labels and not the underlying cleartext. We also define a well-formedness test for labels which we
call Test.

•
(
C̃, {(w, b, labwb )}w∈inp(C),b∈{0,1}

)
← GCircuit

(
1κ, C, {(w, b, labwb )}w∈out(C),b∈{0,1}

)
: GCircuit takes

as input a security parameter κ, a circuitC, and a set of labels labwb for all the output wiresw ∈ out(C)
and b ∈ {0, 1}. We denote the set of input and output wires by inp(C) and out(C) respectively. This
procedure outputs a garbled circuit C̃ and a set of labels labwb for each input wire w ∈ inp(C) and
b ∈ {0, 1}.

• 0/1← Test(lab) tests whether a label is well-formed.
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•
(
{(w, ow)}w∈out(C)

)
= Eval(C̃, {(w, labwxw)}w∈inp(C)): Given a garbled circuit C̃ and a sequence of

input labels {(w, labwxw)}w∈inp(C), Eval outputs a sequence of outputs {(w, o)}w∈out(C), where each
ow is either yw or labwyw depending on whether the output is being given in the clear or as a label only.

Correctness. For correctness, we require that for any circuit C and input x ∈ {0, 1}n (here n is the input
length to C) we have that that:

Pr
[(
{(w, yw, labwyw)}w∈out(C)

)
= Eval(C̃, {(w, labwxw)}w∈inp(C))

]
= 1

where
(
C̃, {(w, b, labwb )}w∈inp(C),b∈{0,1}

)
← GCircuit

(
1κ, C, {(w, b, labwb )}w∈out(C),b∈{0,1}

)
and y = C(x).

We require that the testing algorithm works correctly: Test(lab) = 1 if (·, ·, lab) ∈ {(w, b, labwb )}w∈inp(C),b∈{0,1},

where
(
C̃, {(w, b, labwb )}w∈inp(C),b∈{0,1}

)
← GCircuit

(
1κ, C, {(w, b, labwb )}w∈out(C),b∈{0,1}

)
, and Pr[Test(r) =

1] is negligible when r is uniform. This can be implemented, for example, by enforcing all labels have a
O(k)-size padding of 0 bits.

Security. For security, we require that there is a PPT simulator Sim such that for any C, x, and labels(
{(w, b, labwb )}w∈out(C),b∈{0,1}

)
, we have that:(

C̃, {(w, labwxw)}w∈inp(C)

)
comp
≈ Sim

(
1κ, {(w, b, labwyw)}w∈out(C)

)
where

(
C̃, {(w, b, labwb )}w∈inp(C),b∈{0,1}

)
← GCircuit

(
1κ, C, {(wlabwb )}w∈out(C),b∈{0,1}

)
and y = C(x).

3.3 Garbled RAM
Next we consider an extension of garbled circuits to the setting of RAM programs. In this setting the
memory dataD is garbled once and then many different garbled programs can be executed sequentially with
the memory changes persisting from one execution to the next. We will start by presenting our definitions
for the case when only one program is garbled and then present the definitions for the case when multiple
programs are garbled in the Appendix. Another simplifying assumption we make is that in our definition
here, we focus on a weaker variant (that also appeared in [GHL+14]) known as Unprotected Memory Access
(UMA) , and we define full security in the Appendix and show how UMA-secure Garbled RAM can be
compiled with Oblivious RAM to achieve full security.

Syntax. A UMA-secure single-program garbled RAM scheme consists of four procedures: (GData,GProg,
GInput, GEval) with the following syntax:

• (D̃, s) ← GData(1κ, D): Given a security parameter 1κ and memory D ∈ {0, 1}m as input GData
outputs the garbled memory D̃.

• (P̃ , sin)← GProg(1κ, 1logm, 1t, P ) : Takes the description of a RAM program P with memory-size
m as input. It then outputs a garbled program P̃ and an input-garbling-key sin.

• x̃ ← GInput(1κ, x, sin, s): Takes as input x ∈ {0, 1}n and and an input-garbling-key sin, a garbled
“tree root” key s and outputs a garbled-input x̃.

• y = GEvalD̃(P̃ , x̃): Takes a garbled program P̃ , garbled input x̃ and garbled memory data D̃ and
output a value y. We model GEval itself as a RAM program that can read and write to arbitrary
locations of its memory initially containing D̃.

Efficiency. We require the run-time of GProg and GEval to be t · poly(κ) · polylog(m), which also serves
as the bound on the size of the garbled program P̃ . Moreover, we require that the run-time of GData should
be m · polylog(m) · poly(κ), which also serves as an upper bound on the size of D̃. Finally the running time
of GInput is required to be n · poly(κ).
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Correctness. For correctness, we require that for any program P , initial memory data D ∈ {0, 1}m and
input x we have that:

Pr[GEvalD̃(P̃ , x̃) = PD(x)] = 1

where (D̃, s)← GData(1κ, D), (P̃ , sin)← GProg(1κ, 1logm, 1t, P ), x̃← GInput(1κ, x, sin, s).

Security with Unprotected Memory Access (UMA). For security, we require that there exists a PPT
simulator Sim such that for any program P , initial memory data D ∈ {0, 1}m and input x, which induces
access pattern MemAccess we have that:

(D̃, P̃ , x̃)
comp
≈ Sim(1κ, 1m, 1t, y,D,MemAccess)

where
(D̃, s) ← GData(1κ, D), (P̃ , sin) ← GProg(1κ, 1logm, 1t, P ) and x̃ ← GInput(1κ, x, sin, s), and

y = PD(x).

4 The Construction
In this section we describe our construction for garbled RAM formally, namely the procedures (GData,
GProg, GInput, GEval). We use the notation [n] to denote the set {0, . . . , n− 1}. Throughout the construc-
tion, we let F : {0, 1}∗ → {0, 1}κ be a PRF with seed length κ. For any string x we reserve the use of
subscript to denote its bit locations. For example for a string x, we use xi to denote the ith bit of x where
i ∈ [|x|] with the 0th bit being the highest order bit.

r0,0

r1,0

r2,0

...

rd−1,0

...

r2,1

...
...

rd−1,bj/2c

r1,1

r2,2

...
...

r2,3

...
...

rd−1,2
d−1−1

D0 . . . Dκ−1 Djκ . . . Djκ+κ−1 D(2d−1)κ . . . D(2d−1)κ+κ−1

r̂1,1,k = Fr0,0(right, k, r1,1k )r̂1,0,k = Fr0,0(left, k, r1,0k )

D̂0,k = Frd−1,0(left, k,Dk) . . .

For even j, D̂j,k = Frd−1,j/2(left, k,Djκ+k)

For odd j, D̂j,k = Frd−1,bj/2c(right, k,Djκ+k)

D̂2d−1,k = F
rd−1,2d−1−1 (right, k,D(2d−1−1)κ+k)

Figure 1: Visualization of Memory Garbling.

4.1 Data Garbling: (D̃, s)← GData(1κ, D)

We start by providing an informal description of the data garbling procedure. The formal description is pro-
vided in Figure 2. To explain the memory garbling procedure better we provide its graphical representation
in Figure 1. In Figure 1 the memory D of size m = m′ · κ, where m′ = 2d, is represented in the blue
rectangular boxes. In order to garble D, we sample PRF keys ri,j ← {0, 1}κ, where i ∈ [d] and j ∈ [2i].
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In the figure these keys are shown on in the black circles. Note that at the lowest key the tree consists of
2d−1 keys. These keys are what are used to encrypt the data. In particular for any even j ∈ [2d], a total
of 2κ bits of D, namely Djκ . . . Djκ+2κ−1 are encrypted using the key rd−1,j/2. The first κ of these are
encrypted with a tag left and the next κ ones are encrypted with the tag right. For example in Figure 1 we
show the encryption of first κ bits of D, the last κ bits of D and jκ to jκ + κ − 1 bits of D, under keys
rd−1,0, rd−1,2

d−1−1 and rd−1,bj/2c respectively. These encryptions are colored in pink.

The GData(1κ, D) procedure proceeds as follows.

1. Sample {ri,j}i∈[d],j∈[2i] ← {0, 1}κ.

2. Without loss of generality we assume that m = 2d · κ where d is a positive integer and set m′ = 2d.
For j ∈ [m′] and k ∈ [κ], if j mod 2 = 0 set D̂j,k = Frd−1,j/2(left, k,Djκ+k) else set D̂j,k =

Frd−1,bj/2c(right, k,Djκ+k), where Djκ+k denotes the jκ+ kth bit of D.

3. ∀i ∈ {1, . . . d − 1}, j ∈ [2i], k ∈ [κ], if j mod 2 = 0 then compute r̂i,j,k = Fri−1,bj/2c(left, k, ri,jk )

else compute r̂i,j,k = Fri−1,bj/2c(right, k, ri,jk ), where ri,jk denotes the kth bit of ri,j .

4. Output D̃ = ({r̂i,j,k}i∈[d]\{0},j∈[2i],k∈[κ], {D̂j,k}j∈[2d],k∈[κ]) and s = r0,0.

Figure 2: Formal description of GData.

We also generate encryptions of each key in the tree under its parent. Specifically, each bit of the key ri,j

is encrypted under the key ri−1,bj/2c. For example in Figure 1 we provide encryptions of r1,0 and r1,1 under
r0,0 in yellow color. The garbled memory provided consists of the generated encryptions of the provided
keys and the memory.

4.2 Program Garbling: (P̃ , sin)← GProg(1κ, 1logm, 1t, P )

We start by defining three sub-circuits and some notation that will be needed in describing the garbling itself.

Our Sub-Circuits. We use the notation Ctype[param] to describe a circuit Ctype that has hardwired pa-
rameters param, where type ∈ {nav, step, final} the three types of circuits we will define. These circuits
will be referred to as the navigation circuit, the step circuit and the final circuit respectively.

write

Written to
garbled memory

Values read from
garbled memory

Newly read x and
y fed into the
next circuit

aux aux′

Fed directly into
the next circuit
(garbled version
outputs labels only)

x and y
read

translate

param

type

Figure 3: Visualization of Ctype[param].
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Input-output behavior of these circuits. Each one of these three circuits takes as input (x, y, aux), where
x, y ∈ {0, 1}κ and aux = (state, L) where state ∈ {0, 1}∗ and L ∈ {0, 1}d. Looking ahead, x, y denote the
2κ bits just read from garbled memory, state represents the input state of the CPU computation including
location L that describes the block of data memory we are currently interested in reading.

1. Navigation Circuit Cnav[r, r′, i, lab]: This circuit has hardwired in it PRF keys r and r′, value i ∈ [d]
and labels lab = {lableft,k,b, labright,k,b}k∈[k],b∈{0,1}. On input x, y ∈ {0, 1}κ, aux = (state, L) ∈
{0, 1}∗ × {0, 1}d the circuit output is generated as follows.

(a) If Li = 0 then set key = x, newL = r′, newR = y else set key = y, newL = x, newR = r′

and set write := (L, {Fr(left, k, newLk), Fr(right, k, newRk)}k∈[κ]),

translate :=

{
Fkey(left, k, 0)⊕ lableft,k,0, Fkey(right, k, 0)⊕ labright,k,0,

Fkey(left, k, 1)⊕ lableft,k,1, Fkey(right, k, 1)⊕ labright,k,1.

}
k∈[κ]

(b) Randomly permute the rows of translate and output (write, translate, aux).

2. Step Circuit Cstep[r, s, lab]: This circuit has hardwired in it PRF keys r and s and labels lab =
{lableft,k,b, labright,k,b }k∈[k],b∈{0,1}. On input x, y ∈ {0, 1}κ, aux = (state, L) ∈ {0, 1}∗ × {0, 1}d
the circuit output is generated as follows.

(a) Set newL = x, newR = y. If Ld−1 = 0 then set read = x else read = y. Compute
(state′, L′, z) := CPCPU(state, read). If Ld−1 = 0 then overwrite newL = z else overwrite
newR = z.

(b) Compute write := (L′, {Fr(left, k, newLk), Fr(right, k, newRk)}k∈[κ]),

translate :=

{
Fs(left, k, 0)⊕ lableft,k,0, Fs(right, k, 0)⊕ labright,k,0,

Fs(left, k, 1)⊕ lableft,k,1, Fs(right, k, 1)⊕ labright,k,1.

}
k∈[κ]

(c) Randomly permute the rows of translate and output (write, translate, aux′) where aux′ :=
(state′, L′).

3. Final Circuit Cfinal[r]: This circuit is similar to the circuit Cstep[r, s] but with part of its functionality
trimmed. This circuit has hardwired in it PRF keys r. On input x, y ∈ {0, 1}κ, aux = (state, L) ∈
{0, 1}∗ × {0, 1}d the circuit output is generated as follows.

(a) Set newL = x, newR = y. If Ld−1 = 0 then set read = x else read = y. Compute
(state′, L′, z) := CPCPU(state, read). If Ld−1 = 0 then overwrite newL = z else overwrite
newR = z. Compute write := (L′, {Fr(left, k, newLk), Fr(right, k, newRk)}k∈[κ]).

(b) Output (write, aux′) where aux′ := (state′, L′).

Figure 4: Formal description of subcircuits for GProg.

The output of Cnav and Cstep consists of (write, translate, aux′). Roughly the output write will consist
of information that will enable writing something into memory, translate will consist of values that enable
reading from memory and finally aux′ just describes the output CPU-state including locationL that describes
the block of data memory we are currently interested in reading. The output of the final circuit Cfinal is just
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(write, aux). Note that the final circuit is essentially same as the step circuit except the functionality that
generates translate has been trimmed. This is depicted in Figure 3.

Communication between different circuits. Looking ahead, our garbling of a RAM program will consist
of garbling of multiple copies of these three circuits instantiated with different parameters hardwired into
them. Furthermore we will need this garbling to be such that these garbled circuits can “talk to each other.”
This communication will be enabled in two ways: 1) We directly pass the output of one circuit into the input
of another. This can be achieved by having the first garbled circuit produce as output the labels needed for
the inputs of the next garbled circuit. 2) The garbled memory is involved, where in particular, one garbled
circuit will output a translation table which will encode pairs of labels for input wires of the second circuit
it wants to communicate with. Given this translation table depending on bits stored in the garbled memory
the evaluator will be able to obtain exactly 1-out-of-2 of the labels. This will be tantamount to reading
from the underlying memory. The translation information corresponds precisely to the translate output
of the navigation and the step circuits. More specifically, let lab = {lableft,k,b, labright,k,b}k∈[κ],b∈{0,1} be
the labels for input wires of a circuit with which the circuit at hand is trying to communicate. Since the
translation table translate generated by the circuit at hand needs to depend on the labels lab, we will need
to hard-code these labels in the circuit being garbled.

We detail the subcircuits in Figure 4. The process of garbling multiple instances of these circuits and
their process of communication will be explained later.

The actual garbling. We now provide an informal description of our RAM garbling procedure. A formal
description of GProg is provided in Figure 6.

As mentioned earlier, garbling a RAM program will involve garbling multiple instances of circuits
described earlier. Specifically if the running time of the program P being garbled is t and the size of the
database is m = m′ · κ, then the garbled RAM program will consist of t · logm′ garbled circuits which we
can intuitively group into logm′ garbled circuits for each time step of the program. In particular for each
time step we will consider a sequence of logm′−1 instances of Cnav followed by one instance of Cstep. For
the last time step we just replace the last Cstep circuit with Cfinal. Recall that the only difference between
Cstep and Cfinal is that unlike Cstep, Cfinal does not output any translate information translate.

Now that we have explained the overall structure, we will next describe the role of each of these circuits.
It is helpful to keep in mind how the garbled memory is constructed using a tree of keys (cf. Fig 2). In short,
the plain version simply consists of a tree of randomly sampled PRF keys for each non-leaf node, and a κ bit
data block from database D for each leaf. The encrypted version of this plain version, which constitutes the
actual garbled memory, consists of an encryption of each PRF key under its parent, with the root removed.
More specifically, a non-root PRF key (or a database block) r is encrypted as {Fs(left/right, k, rk)}k∈[κ],
where left/right indicates if the node is a left or right child, s is the PRF key of its parent, and rk is the kth

bit of the PRF key (or the database block).
For each step τ ∈ [t] of the computation, the step circuit Cstep requires a κ-bit block of data from

memory at location L. However this is encrypted under a key from level d− 1. This key is itself encrypted
under another key from level d − 2 and so on. Hence in order to read the desired memory location, we
need to navigate in the memory from level 0 to level d− 1 reading one key at a time and finally recovering
the desired data block. This is exactly what will be achieved by a sequence of logm′ circuits. As we will
see next the last of these circuits also performs the computation corresponding to the time step and help
kick-start the next computation step. This depicted informally in Figure 5.

More concretely the ith circuit for i ∈ [d] takes as input two sibling PRF keys and uses one among them
to decrypt and obtain PRF keys corresponding to its two children, depending on what data block we actually
want to read. For example, the 0th circuit takes as input the PRF keys for the two children of the root. It
decrypts the two children of one of these two nodes, depending on what data block from memory is to be
read. All the other circuits behave analogously. The last circuit will have the root PRF key embedded in it
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vd−1, v0,

lab
τ+1,0,read

Figure 5: Visualization of one time step of the RAM Program.

and this would enable it to read the two children of the root needed for the next logm′ sequence of garbled
circuits needed for the next time step. Additionally for security, each step will also replace each key along
the path that has been used to decrypt anything else with a fresh key. The reason for this is that for security
we maintain the variant that any PRF key in the system is used at most once for reading anything. So any
time a PRF key is used to decrypt its two children then then that PRF key is immediately updated to fresh
key.More details on why this is needed will be elaborated on in the proof.

A bit more precisely, we consider the semantics of Cnav[r, r′, i, lab](x, y, aux) which will output (write,
translate, aux). Here r′ is a freshly chosen PRF key that will replace either the plain value of the one of
the two PRF keys it gets as input, depending on the path we do end up taking, which in turn depends on
the memory block we are interested in reading. The PRF key r is the PRF key that replaced the PRF key
of the parent of the two nodes in consideration. Since the key of the parent has been updated we need to to
re-encrypt the input PRF keys under r. At a high level, in reading some data location L we replace all the
keys, along the path in the tree from the root to the leaf, with fresh PRF keys. For consistency this requires
that the children of all these nodes corresponding to which keys have have updated be re-encrypted under
these fresh keys. Interestingly this includes the siblings that haven’t even been used. We stress that even
though a priori we do not not know which values in key tree will be replaced with fresh values; we do know
that the values they will be replaced with (they are freshly chosen) and these values are what are hardwired
into the circuits.

Finally, we describe the other two circuits Cstep and Cfinal in terms of how they differ from Cnav a bit
more. These circuits can be considered as virtual navigate circuits at level d−1: the input consist of two leaf
nodes which correspond to actual memory that can be read from, and it helps in enabling “wrap around.”
In other words a mechanism that enables reading the PRF keys stored in the two children of the root node.
Also, unlike Cnav which replaces each key used to read other keys with a fresh key, this circuit executes the
underlying CPU step and writes back the block bwrite. Finally, in order to obtain the translation table, these
circuits will be hardwired with the value of the root node. Note that Cfinal is same as Cstep except that it
does not need to provide any “wrap around.”

Now that we have roughly described the overall structure and the role of each individual circuit in the
garbling process we will next describe a bit more precisely how the garbled circuits communicate. This
is actually very simple. Each circuit C̃τ,i passes on its output aux directly as input to the circuit C̃τ,i+1 if
i < d− 1 or to the circuit C̃i+1,0 otherwise. Similarly the circuit C̃τ,i provides translation information that
enables evaluator of these garbled circuits to read a bit from memory.

Toward capturing this, we use the following notation. We denote the set of all input labels of circuit C̃τ,i

by lab
τ,i

. Then, within this set we distinguish two kind of labels: namely lab
τ,i

= [lab
τ,i,read

, lab
τ,i,aux

],
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where lab
τ,i,read

denotes the input labels corresponding to the input values x and y — the values just read
from memory and lab

τ,i,aux
denotes the input labels corresponding to the input aux. Generating the garbled

circuit C̃τ,i+1 requires additionally the information lab
τ,i+1

if i < d− 1 and lab
τ+1,0

otherwise.
We note that since the generation of C̃τ,i+1 depends on labels lab

τ,i+1
or lab

τ+1,0
, therefore we need to

gable these circuits in the opposite order, i.e. garbling the last circuit first. As a result, during garbling we
will know ahead of time what the input labels for the next garbled circuit will be.

The GProg(1κ, 1logm, 1t, P ) procedure proceeds as follows. All garbled sub-circuits will output write and
translate in the clear, so we omit assigning wire labels to them when invoking GCircuit. Given a garbled
circuit C̃τ,i, we parse its input labels as lab

τ,i
= [lab

τ,i,read
, lab

τ,i,aux
] where read corresponds to the inputs

x and y.

1. Sample u1 . . . ut ← {0, 1}κ.

2. For each τ ∈ {t− 1, . . . 0} proceed as follows:

(a) Sample v1, v2 . . . vd−1 ← {0, 1}κ and set v0 = uτ+1.

(b) If τ = t − 1 then generate (C̃t−1,d−1, lab
t−1,d−1

) ← GCircuit
(
1κ, Cfinal[vd−1]

)
, otherwise

(C̃τ,d−1, lab
τ,i
)← GCircuit

(
1κ, Cstep

[
vd−1, v0, lab

τ+1,0,read
]
, lab

τ+1,0,aux
)

.

(c) For i ∈ {d− 2, . . . , 0}.

i. Compute (C̃τ,i, lab
τ,i
)← GCircuit

(
1κ, Cnav

[
vi, vi+1, i, lab

τ,i+1,read
]
, lab

τ,i+1,aux
)

.

3. Output P̃ = {C̃τ,i}τ∈[t],i∈[d], sin =
(

lab
0,0,aux

, lab
0,0,read

)
. We make note of the final root key ut.

Figure 6: Formal description of GProg.

4.3 Input Garbling: x̃← GInput(1κ, x, sin, s)

Informally, the GInput algorithm uses x and s as selection bits for the labels provided by sin and outputs x̃,
which is just the selected labels. A formal description of GProg is provided in Figure 7.

The algorithm GInput(1κ, x, sin, s) proceeds as follows. Here sin = (lab
aux
, lab

read
).

1. Parse lab
read

as {lableft,k,b, labright,k,b}k ∈ [κ], b ∈ {0, 1} and compute

translate :=

{
Fs(left, k, 0)⊕ lableft,k,0, Fs(right, k, 0)⊕ labright,k,0,

Fs(left, k, 1)⊕ lableft,k,1, Fs(right, k, 1)⊕ labright,k,1.

}
k∈[κ]

2. Output (translate, l̂ab
aux,state=x,L=0

), where l̂ab
aux,state=x,L=0

selects the wire labels for aux =

(state, L) as l̂ab
aux,state=x,L=0

= {labaux,i,xi}i∈inp(state), {labaux,i,0}i∈inp(L), where these are se-
lected from the full set of labels lab

aux
= {labaux,i,b}i∈inp(aux)=inp(state,L),b∈{0,1}.

Figure 7: Formal description of GInput.
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4.4 Garbled Evaluation: y ← GEvalD̃(P̃ , x̃)

The GEval procedure gets as input the garbled database D̃ is ({r̂i,j,k}i∈[d−1]\{0},j∈[2i],k∈[κ], {D̂j,k}j∈[2d],k∈[κ]),
the garbled program P̃ = {C̃τ,i}τ∈[t],i∈[d] and the garbled input x̃ = (translatex, l̂ab

aux,x
). Intuitively the

GEval is very simple. It proceeds by executing the sequence of garbled programs in the prescribed order.
The labels needed to evaluate the first garbled circuit are provided as part of the garbled input and each
evaluation of a garbled circuit reveals the labels needed for the next circuit. Evaluation of each garbled cir-
cuit also generates additional values for writing into memory and translation tables for reading values from
memory. These are also carried out in the natural manner. Next we provide the formal description GEval.
We will define a function DeTranslate(translate, {r̂ left,k, r̂ right,k}k∈[κ], C̃) that unblinds the labels one at a
time. The function DeTranslate interprets

translate =

{
αleft,k,0,αright,k,0

αleft,k,1,αright,k,1

}

and outputs labels {β left,k, βright,k}k∈[κ] computed as follows: For each input wire xi corresponding to x,
for b ∈ {0, 1} if Test(C̃, (xi, b, αleft,k,b ⊕ r̂ left,k)) = 1 then set β left,k = αleft,k,b ⊕ r̂ left,k. Similarly, for
each input wire yi corresponding to y, for b ∈ {0, 1} if Test(C̃, (yi, b, αright,k,b ⊕ r̂ right,k)) = 1 then set
βright,k = αright,k,b ⊕ r̂ right,k. A formal description of GProg is provided in Figure 8.

The algorithm GEvalD̃(P̃ , x̃) proceeds as follows.

1. Initialize L = 0, translate := translatex and l̂ab := l̂ab
aux,x

.

2. For τ ∈ [t],i ∈ [d− 1] do:

(a) Let l be the number obtained by considering the i higher order bits of L, setting it to 0 if i = 0.

(b) Execute (write′, translate′, l̂ab
′
) := Eval(C̃τ,i, (DeTranslate(translate, {r̂i+1,2l,k,

r̂i+1,2l+1,k }k∈[κ]), l̂ab)).

(c) Parse write′ as (L′, {αleft,k, αright,k}k∈[κ]) and for every k ∈ [κ] if i < d− 1 update ri+1,2l,k :=

αleft,k and ri+1,2l+1,k := αright,k else update D̃2l,k := αleft,k and D̃2l+1,k := αright,k.

(d) Update L = L′, translate := translate′ and l̂ab := l̂ab
′
.

Figure 8: Formal description of GEval.

5 Security Proof
In this section we prove the UMA-security of the garbled RAM (GData, GProg, GInput, GEval) shown in
Sec. 4.

Theorem 5.1 (UMA-security). Given any OWF and a secure garbling scheme (which can be built from the
OWF), our construction is a UMA (unprotected memory access) secure garbled RAM scheme.

An extension of this theorem provided in Lemma D.1 along with Theorem D.2 allows us to immediately
obtain the following corollary.

Corollary 5.2. Assume one-way functions exist, then a fully secure multi-program GRAM scheme exists
(defined in Appendix D).
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Proof Sketch: We now sketch a proof of Theorem 5.1 to give intuition, and then we provide the full proof.
We construct a simulator Sim that produces simulated garbled circuits starting from the last circuit.

It proceeds by generating a random-looking output for each C̃τ,i by setting translate to be a random key
XORed with the corresponding input labels of C̃τ,i+1 (since we are working backwards, these labels have
already been generated), and similarly using random values for write. The main idea is that we perform
bookkeeping to keep track of these random values, so that when we simulate the garbled database, we set D̃
to be uniformly random subject to matching the bookkeeping: since the UMA-simulator gets the full access
pattern, it knows exactly which locations in memory it should set entries so that they match what was used
to mask the translation table.

Then in order to argue that the simulated output is indistinguishable from the real distribution, we define
a sequence of hybrids H0,0, H0,1, . . . ,H0,d−1, H1,0, . . . ,Ht−1,d−1 that replaces circuits from the first cir-
cuit onward, where in Hτ,i, the circuits C̃τ

′,i′ have been simulated for all (τ ′, i′) < (τ, i) lexicographically.
Moving toHτ,i fromHτ,i−1 (and analogously toHτ,0fromHτ−1,d−1), we carefully define subhybridsHτ,i

prf ,

Hτ,i
enc, and Hτ,i

circuit, where we first argue that the PRF outputs can be replaced, followed by replacing the la-
bels that won’t be decrypted in translate, followed by simulating the circuit now that the dependencies on
the unopened labels have been removed.
Proof:

Simulator. Under UMA-security, Sim gets the inputs 1κ, 1m, 1t, y,D and MemAccess = {(Lτ , zread,τ ,
zwrite,τ ) : τ = 1, . . . , t} , where program P executes t CPU steps and outputs y, the initial memory contents
are D ∈ {0, 1}m and MemAccess describes the entire memory access throughout all t CPU steps executed.

Overview. The simulator Sim computes the garbled circuits from the last circuit. It uses the knowledge
MemAccess to compute the output of each garbled circuit and the nodes that will be visited at each step.

Sim computes every C̃τ,i by first computing its output: translate,write, state. The table translate con-
sists of random keys xored with the input labels of C̃τ,i+1 (which are available when computing C̃τ,i as
C̃τ,i+1 has been already computed). Such keys are kept in a global file F as they represent the nodes of the
memory in a previous step: they will be either used as the output write of some circuit C̃τ

′,i−1 for some
τ ′ < τ , or if no other circuit has visited this node before, they will be part of the garbled data given in input
at the beginning.

Notation. Recall that lab
τ,i

= [lab
τ,i,read

, lab
τ,i,aux

] and that for a circuit C̃i,j , lab
read

= {lableft,k,b,
labright,k,b}k∈[κ],b∈{0,1}. In the description of the simulator, we abuse the notation and we use lab

τ,i
for the

keys obtained from the simulator of the garbled circuits. The set set lab
τ,i

generated by CircSim will contain
only one key per wire.

We use notation r̂i+1,2l,k{τ} the garbled value r̂j+1,2l,k at step τ . The simulator uses auxiliary proce-
dures GenerateWrite shown if Fig. 10 and GenerateTranslate shown in Fig. 9.

Procedure Simulator: Sim(1κ, 1m, 1t, y,D,MemAccess = {Lτ , zread,τ , zwrite,τ}τ=1,...,t)

1. Initialize a file F to store the nodes of the garbled memory visited during the simulated execution.

2. Compute Garbled Circuits.

For each step τ ∈ {t− 1, . . . , 0} do.

• If τ = t− 1. (C̃t−1,d−1, lab
t−1,d−1

)← CircSim
(
1κ, Cfinal,write, aux

)
where aux = (y, Lt−1); write = (GenerateWrite(t− 1, d− 1, Lt−1), zwrite,t−1).
Else, (C̃τ,d−1, lab

τ,d−1
)← CircSim

(
1κ, Cstep,write, translate, lab

τ+1,0,aux
)

where
write = GenerateWrite(τ, d− 1, Lτ ) and
translate = GenerateTranslate (τ + 1, 0, Lτ+1, lab

τ+1,0,read
)
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• For i ∈ {d− 2, . . . , 0}. (C̃τ,i, lab
τ,i
)← CircSim

(
1κ, Cnav,write, translate, lab

τ,i+1,aux
)

,
where write = GenerateWrite(τ, i, Lτ ) and
translate = GenerateTranslate

(
τ, i+ 1, Lτ , lab

τ,i+1,read
)

.

Output: C̃τ,i for all τ ∈ [t], i ∈ [d].

3. Compute Garbled Inputs. Output x̃ = (translate, lab
0,0,aux

), where

translate = GenerateTranslate
(
0, 1, 0d, lab

0,0,read
)

.

4. Compute Garbled Memory. ∀i ∈ {1, . . . d}, j ∈ [2i], k ∈ [κ]. Check if in F for the smallest p > τ
such that key r̂i,j,k{p} has been set. If so, set r̂i,j,k = r̂i,j,k{p} else set r̂i,j,k ← {0, 1}κ.

Finally, set {D̂j,k = r̂d,j,k}j∈[2d],k∈[κ].

Output D̃ = ({r̂i,j,k}i∈[d]\{0},j∈[2i],k∈[κ], {D̂j,k}j∈[2d],k∈[κ])

Procedure: GenerateTranslate(step τ , level i, index L, input label lableft,k, labright,k)

1. Let l be the number obtained by considering the i higher order bits of L, setting it to 0 if i = 0.

2. Pick random rleft,1, . . . , rleft,k ← {0, 1}κ and rright,1, . . . , rright,k{0, 1}κ with k ∈ [κ].

3. Set r̂i+1,2l,k{τ} = rleft,k and r̂i+1,2l+1,k{τ} = rright,k and store them in the global file F .

4. Output

translate :=

{
rleft,k ⊕ lableft,k, rleft,k ⊕ labright,k

randleft,k, randright,k.

}
k∈[κ]

where randright,k and randleft,k are randomly chosen. The rows of translate are randomly permuted.

Figure 9: Procedure GenerateTranslate.

Procedure: GenerateWrite(step τ , level i, index L)

1. Let l be the number obtained by considering the i higher order bits of L.

2. Look up in F for the smallest timestamp p > τ for which nodes r̂i+1,2l,k{p} and r̂i+1,2l+1,k{p}
with k ∈ [κ] have been already computed. If such p exists set αleft,k := ri+1,2l,k{p} and αright,k :=
ri+1,2l+1,k{p}. (such p exists if in a later step p a translate table was computed to read nodes (i+1, 2l)
and (i+ 1, 2l + 1). Else, set αleft,k ← {0, 1}κ and αright,k ← {0, 1}κ with k ∈ [κ].

3. Output (L, {αleft,k, αright,k}k∈[κ]).

Figure 10: Procedure GenerateWrite.

Lifetime of a PRF key. Now we analyze the lifetime of any PRF key used in the system. For convenience
we recall some key facts about the circuits in our construction and set up some notation that will be handy
in understanding the next lemma.
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In the garbled memory a node at level i, is computed under some PRF key v and encodes two keys
vleft, vright, which are the keys used to compute the left and right child respectively. We say that the PRF key
v is used, while the PRF keys vleft, vright are encoded.

During the computation, say at step τ , circuit C̃τ,i reads the two keys encoded in a node at level i, say
vleft, vright; uses one of the keys, say vleft, to compute translate and updates the node at level i using a fresh
key v′. To update a node means to re-encode the keys v′′, vright using the fresh PRF key v′ (in our example
we are replacing vleft). The PRF key v′′ is replacing vleft and is encoded for the first time in the memory,
therefore we say the PRF key v′′ was born. Instead, key vleft, that is used to computed translate table, at this
point is not encoded in the parent anymore and it will be replaced with another key by next circuit C̃τ,i+1.
Therefore, we say that once a key is used to compute translate table, the key is dead as it has disappeared
from the system.

Key vright instead is re-encoded in the parent node and will be possibly read again in the future.
With this notation in hand we are able to formalize the following Lemma.

Lemma 5.3 (Life of a PRF key). Part 1. Any PRF key v is used for evaluation in at most two circuits. Part
2. At the time when v dies, v is encoded only in nodes computed with keys that are dead already.

Part 1. In any step of computation τ , any PRF key v hardwired in circuit C̃τ,i is used for PRF evaluation
in at most two places:

1. Inside circuit C̃τ,i to compute the output write, which is the updated version of nodes at level i.

2. Inside circuit C̃τ
′,i−1 for some step τ ′ > τ to compute the translate table to read a node at level i.

Circuit C̃τ
′,i−1 reads in input v, x and uses v to compute the translate table to read the node computed

under key v (specifically, the one that was given in output by C̃τ,i). Also, circuit C̃τ
′,i−1 recomputes

the parent node, i.e., the node at level i− 1, so that it does not encode v.

This is the last time in which the key v is used. The next circuit C̃τ,i will not be aware of v and it will
recompute the node at level i with a fresh new key. This prove Part 1 of the lemma.

Part 2. Between time τ and time τ ′ the key v could have been read, and re-encoded multiple times in the
parent node (following the previous example, the parent node lies at level i− 1).

We know that every time the parent node has been visited (and thus v has been read) it has been readily
recomputed under a fresh key. In particular, when C̃τ

′,i−1 reads in input v, x and it knows that v is gonna be
used next, it re-computes the parent node at level i − 1 so that it does not encode v anymore. Therefore, at
step (τ ′, i − 1), the only nodes encoding the key v are the ones that were computed under dead keys. This
proves Part 2 of the Lemma.

Indistinguishability of the simulation. We prove indistinguishability of the simulation through a se-
quence of hybrids. Starting from the first circuit, i.e., C̃0,0, in each hybrid we replace a garbled circuit with
a simulated circuit. Along the way we replace the nodes visited by the simulated circuits with random nodes.

We say that a pair of nodes (i, j) and (i, j + 1) is visited at step τ if circuit C̃τ,i−1 outputs a translate
table that uses the memory values r̂i,j,k and r̂i,j+1,k with k ∈ [κ]. We say that a node is random if all the
PRF evaluations are replaced with fresh random values.

The rationale behind the hybrids is the following. Let Hτ,i−1 be the experiment where all circuits up
to C̃τ,i−1 have been successfully replaced with simulated circuits and the nodes visited by these circuits
have been replaced with random nodes. In hybrid Hτ,i we aim to replace circuit C̃τ,i with a simulated one,
and claim that the distribution of this experiment is computationally indistinguishable to the distribution of
experiment Hτ,i−1 by invoking the security of the garbling scheme.

In order to be able to use the security of the garbling scheme we need to argue that the adversary gets
only one label for each input wire of circuit C̃τ,i. Recall that C̃τ,i is evaluated using two sets of input labels:
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lab
τ,i,aux

and lab
τ,i,read

. Set lab
τ,i,aux

is passed directly from circuit C̃τ,i−1, and contains already one label
only for each wire. Due to the security of C̃τ,i−1 (which we already replaced with a simulated circuit),
the adversary cannot learn the other label. Instead, lab

τ,i,read
are passed via translate, and both labels are

encrypted in translate using a key derived from the PRF used to compute nodes (i, j), (i, j + 1) (for some
node j).

The core of the argument is to show that we can replace translate with a table that encrypts only one
label per input wire, by first replacing the PRF keys with randomly generated keys and then replacing one
of the input labels with random values. Then we can finally replace circuit C̃τ,i with a simulated circuit and
rely on the security of the garbling scheme. Next, we describe the core hybrid formally.

Hybrid Hτ,i. Let Hτ,i−1 with τ = {0, . . . , t − 1} and i = {1, . . . , d − 1}, be the experiment where all
circuits till circuit C̃τ,i−1 have been successfully replaced with simulated circuits. The case where we move
between Hτ,0 and Hτ−1,d−1 is analogous. In hybrid Hτ,i we aim to replace circuit C̃τ,i with a simulated
one.

Recall that the input labels lab
τ,i,read

used to evaluate circuit C̃τ,i are encrypted in the table translate
which is given in output by circuit C̃τ,i−1, and are decrypted using the keys stored in node r̂i,j,k, r̂i,j+1,k,
for some node j. Note that this node was either never visited, in that case the PRF key used to encrypt this
node has never been used in any previous circuit, or it was visited in some step τ ′ < τ . In such a case the
value r̂i,j,k, r̂i,j+1,k is in the output write of circuit C̃τ

′,i which at this point has been already replaced with
simulated circuit. Recall that the outputs of circuit C̃τ,i−1 are:

1. translate table:

translate :=

{
Fri−1,bj/2c(left, k, 0)⊕ lableft,k,0, Fri−1,j/2(right, k, 0)⊕ labright,k,0,

Fri−1,bj/2c(left, k, 1)⊕ lableft,k,1, Fri−1,j/2(right, k, 1)⊕ labright,k,1.

}
k∈[κ]

where lab
τ,i,read

=
(

lableft,k,b, labright,k,0
)

with b = 0, 1. Note that ri−1,bj/2c dies at this step.

2. new node: write = (L, r̂i−1,j,k, r̂i−1,j+1,k}k∈[κ]).
(Note that this node might be used in a later step τ ′′ > τ (if any), to decrypt the translate table
computed by a circuit C̃τ

′′,i−1, which has not been replaced at this point. Therefore in this hybrid we
will not replace write yet: we will replace it in hybrid Hτ ′′,i.)

Sub-hybrid Hτ,i
prf . Let v = ri−1,bj/2c be the PRF key used to compute translate given in output C̃τ,i−1. In

this hybrid we want to replace the PRF evaluation computed with the dead key v, with random strings.

Due to Lemma 5.3 we know that any PRF is used for evaluations only within two circuits C̃τ
′,i−1 and

C̃τ,i that, by hypothesis assumption, have been already replaced with simulated circuits. Therefore
at this point we can safely replace their outputs with values computed with random strings instead of
PRF evaluations. However, v was also encoded in previous parents nodes throughout the computation.
Fortunately, part 2 of Lemma 5.3 ensures that the PRF key v that we are replacing is only encoded in
nodes computed with PRF keys that are already dead at step τ . By hypothesis assumption all nodes
computed with dead keys have been already replaced with random nodes (to see why, recall that a
key is dead if it has been used to compute translate table in some circuit C̃τ

′′,i with τ ′′ < τ . Because
all circuits up to C̃τ

′,i−1 have been replaced with simulated circuits, it holds that also all the nodes
visited by such circuits have been replaced with random nodes).

Therefore at time τ we are guaranteed that the PRF key v is encoded nowhere in the system except in
the output of circuits C̃τ

′,i−1 and C̃τ,i.

Thus, in this hybrid we need to replace the key v in the following two places only:
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1. the translate table given in output by C̃τ,i−1, with the new table computed with random values.

translate :=

{
rleft,k,0 ⊕ lableft,k,0, rright,k,0 ⊕ labright,k,0

rleft,k,1 ⊕ lableft,k,1, rright,k,1 ⊕ labright,k,1.

}
k∈[κ]

2. the node write given in output in a previous step τ ′ < τ by circuit C̃τ
′,i with write = (L, {αleft,k,

αright,k }k∈[κ]) where αleft,k and αright,k are chosen so to allow to decrypt the correct input labels;

namely, αleft,k = rleft,k,ri,jk and αright,k = rright,k,ri,j+1
k . Note this is necessary because in this

sub-hybrid circuit C̃τ,i is still a real circuit and it is needs to read the correct values for the PRF
keys ri,j , ri,j+1

Analysis. Assume that there is a distinguisher between the distribution of hybrid Hτ,i−1 and Hτ,i.
Then we can construct an distinguisher D for the PRF. D has access to an oracle O and has to
distinguish whether it is a PRF or a truly random function.

In order to do that, on input (x, y, P,D, 1m, 1t, 1κ)D computes that garbled memory and the garbled
program, and then replaces the visited nodes and the garbled circuits up to circuit C̃τ,i−1 with random
nodes and simulated garbled circuits. Then, when computing translate given in output by C̃τ,i−1,
it queries the oracle O on input (left, k, b) and (right, k, b) and obtains keys rleft,k,b and rleft,k,b for
b = 0, 1 and k ∈ [κ]. Then it replaces the output write of circuit C̃τ

′,i with keys rleft,k,ri,jk and
rright,k,ri,j+1

k (i.e., the keys in the nodes should allow to decrypt the correct labels for circuit C̃τ,i).

Now, ifO is a PRF, then the view generated byD is distributed identically to hybridHτ,i−1, if instead
O is it a random oracle then the view generated by D is distributed as hybrid Hτ,i. Consequently, due
to the security property of the PRF, we conclude that the two hybrids are indistinguishable.

Sub-hybrid Hτ,i
enc. In this sub-hybrid we replace the labels that are not decrypted with random labels.

Namely, we compute the translate table given in output by C̃τ,i−1 with the following:

translate :=

{
rleft,k ⊕ lableft,k, rleft,k ⊕ labright,k

randleft,k, randright,k.

}
k∈[κ]

where the two raws are given in random order. Because the keys used to encrypt the labels are
random strings, and because for each raw the adversary has only access to one of the keys, the other
label is information theoretically hidden. The translate table given in output this hybrid is identically
distributed to the one given in output in the hybrid Hτ,i

prf .

Sub-hybrid Hτ,i
circuit. In this sub-hybrid we replace circuit C̃τ,i with a simulated one. Due to the security of

the underlying garbled scheme, Hτ,i
circuit is computationally indistinguishable from sub-hybrid Hτ,i

enc.

Now note that Hτ,i
enc = Hτ,i. Therefore Hτ,i is indistinguishable from Hτ,i−1. This completes the

proof.
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A Other Related Work
In this section we highlight some of the closely related works.

Interactive Solutions. The first interactive RAM solution proposed for this problem was known as Obliv-
ious RAM and was introduced by Goldreich and Ostrovsky [Gol87, Ost90, Ost92, GO96]. Oblivious RAM
(ORAM) allowed the client to interactively perform secure CPU steps with the cloud so that the cloud learns
nothing about the data or access pattern. Further works with best-known overhead include those of Kushile-
vitz et al. [KLO12] (with constant client memory), Goodrich and Mitzenmacher [GM11] (with poly client
memory), and Stefanov et al. [SvDS+13] (with larger block sizes).

The work of Ostrovsky-Shoup [OS97] introduced a secure compiler for RAM programs (via ORAM)
for general secure RAM computation. The idea behind this was to for the two or more parties to securely
emulate the ORAM client which was modeled as a CPU circuit using secure circuit computation techniques.
Gordon et al. [GKK+12] demonstrated an efficient realization and implemented this compiler, using the ex-
ample of secure binary search. The best theoretical overhead for secure RAM computation comes from a
compilation using a two-server ORAM devised by Lu and Ostrovsky [LO13a], and the fastest implementa-
tion is due to [WHC+14].

A tantalizing approach would be to combine the techniques of FHE with ORAM in order to remove
interaction. Indeed, combining FHE with interactive RAM computation to reduce communication or rounds
has been explored in works such as [GGH+13c]. However, as mentioned above, the evaluator would run
(under FHE) the ORAM-compiled CPU circuit and get an encrypted location as output. Unless this location
is decrypted via interaction, this location could only be used as an encrypted selector against the entire
encrypted database (or some portion of it if some pre-specified data structures are used). But since this is
done at every CPU step, the evaluation time would be prohibitively large for general applications.

Garbling Beyond Boolean Circuits. We consider models that were explored beyond Boolean circuits
when garbling. Many real-world computations fall into the category of arithmetic computations, so a natural
solution to these sitautions would be to use arithmetic circuits instead. The first arithmetic circuit garbling
scheme was introduced by Applebaum et al. [AIK11], motivated by the problem of garbling circuits of this
variant.

Goldwasser et al. [GKP+13] created a reusable, non-interactive method for encrypted computation on
TM programs. This can be viewed as an extending reusabled garbled circuits which critically bypasses
the downsides of the circuit model. We want to explore non-interactive garbling-style solutions for RAM
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programs (which has additional merits on top of TMs, such as in the case of binary search), with ideally an
overhead that is only polylogarithmic in n.

Garbled RAM was first introduced by Lu and Ostrovsky [LO13b] in which they constructed a GRAM
scheme with poly-log overhead from any one-way function, but required a circularity assumption for their
proof. This assumption was subsequently removed at a cost by the work of Gentry et al. [GHL+14,
GHRW14a, LO14] which presented two solutions: one which achieves poly-log overhead but assumes
the existence of identity-based encryption, and the other which assumes only one-way functions but only
achieves |D|ε overhead where |D| is the size of the database. Recently, the work of Gentry et al. [GHRW14b]
constructed two new GRAM schemes that could be applied to outsourcing computation. The first scheme
assumes indistinguishability obfuscation [GGH+13b] based on multilinear maps [GGH13a], one-way func-
tions, and simulation-sound non-interactive zero knowledge, and is reusable but does not support a persistent
database across multiple programs (as the previous schemes did) so a fresh database would need to be gar-
bled each time as part of input. Their second scheme is reusable, supports a persistent database across
multiple programs, and is compact (where the garbled programs are independent of the program running
time), but is based on stronger reasonably-conjectured assumptions.

RAM Obfuscation. Recently, works have considered the notion of obfuscating RAM programs [GHRW14b,
CHJV14, BGT14, LP14]. Just as circuit obfuscation requires stronger assumptions than garbled circuits,
these new results achieve RAM obfuscation, but also require stronger assumptions than just one-way func-
tions. We highlight that our GRAM construction has the distinction that it can run multiple programs,
garbled independently from the database, on a persistent database where only in garbling the inputs is the
order determined. RAM obfuscation on the other hand typically do not satisfy these properties, though they
have the benefit of being reusable and can be ran on arbitrary inputs.

B Oblivious RAM
We review Oblivious RAM (ORAM), which was first introduced by Goldreich and Ostrovsky [Gol87, Ost90,
Ost92, GO96]. This can be thought of as a compiler that encodes the memory and program into a special
format that does not reveal the access pattern or data contents during an execution. We use the notation
of ORAM from [GHL+14] and refer the reader to [Ost92] for a detailed account of ORAM. Since we are
aiming for multi-program security, we slightly extend the definition of Oblivious RAM to ensure we can go
from program to program. As before, we assume there is some security parameter κ and all other sizes are
at most some polynomial in this parameter.

Syntax. A Oblivious RAM scheme consists of two procedures (OData,OProg) with syntax:

• (D∗, s∗)← OData(1κ, D): Given a security parameter κ and memory D ∈ {0, 1}m as input, OData
outputs the encoded memory D∗ and encoding key s∗.

• P ∗ ← OProg(1κ, 1logm, 1t, P ): Given a security parameter κ, a memory size m, and a program P
that runs in time t, OProg outputs an oblivious program P ∗ that can accessD∗ as RAM and takes two
inputs x and s∗.

Efficiency. We require that the run-time of OData should be m · polylog(m) · poly(κ), and the run-time
of OProg should be t · poly(κ) · polylog(m). Finally, the oblivious program P ∗ itself should run in time
t′ = t · poly(κ) · polylog(m). Both the new memory size m′ = |D∗| and the running time t′ should be
efficiently computable from m, t, and κ.

Correctness. Let P1, . . . , P` be programs running in polynomial times t1, . . . , t` on memoryD of sizem.
Let x1, . . . , x` be the inputs and κ be a security parameter. Then we require that:

Pr[(P ∗1 (x1, s
∗), . . . , P ∗` (x`, s

∗))D
∗
= (P1(x1), . . . , P`(x`))

D] = 1
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where (D∗, s∗) ← OData(1κ, D), P ∗i ← OProg(1κ, 1logm, 1t, Pi) and (P ∗1 (x1, s
∗), . . . , P ∗` (x`, s

∗))D
∗

indicates running the ORAM programs on D∗ sequentially.

Security. For security, we require that there exists a PPT simulator Sim such that for any sequence of
programs P1, . . . , P`, initial memory data D ∈ {0, 1}m, and inputs x1, . . . , x` we have that:

(D∗,MemAccess)
comp
≈ Sim(1κ, 1m, {1ti , yi}`i=1)

where (y1, . . . , y`) = (P1(x1), . . . , P`(x`))
D, (D∗, s∗) ← OData(1κ, D), and MemAccess corresponds

to the access pattern of the CPU-step circuits during the sequential execution of the oblivious programs
(P ∗1 (x1, s

∗), . . . , P ∗` (x`, s
∗))D

∗
.

C Full Single-Program Security
Constructing full GRAM from UMA-secure GRAM was previously proven in [GHL+14]. Given our
slightly stronger definition where GProg is decoupled from GData, we re-prove the result under these
stronger conditions for the sake of completeness.

Before moving to multi-program security, we first define what a fully secure single-program GRAM
should satisfy. The only difference is in the security definition (as defined in Section 3), namely that the
simulator no longer has access to D or MemAccess.

Security. For security, we require that there exists a PPT simulator Sim such that for any program P
running in time t, initial memory data D ∈ {0, 1}m and input x we have that:

(D̃, P̃ , x̃)
comp
≈ Sim(1κ, 1m, 1t, y).

We prove the following theorem.

Theorem C.1. Assume there exists a UMA-secure single-program GRAM scheme and an ORAM scheme
(both of which could be efficiently constructed from OWFs). Then there exists a fully secure single-program
GRAM scheme. Moreover, we give a black-box construction of one given a UMA-secure GRAM and ORAM
scheme.

Proof. We first give the construction of the scheme itself and then provide a construction of an appropriate
simulator to prove security. Let (GData, GProg, GInput, GEval) be a UMA-secure single-program GRAM
and let (OData,OProg) be an ORAM scheme. We construct a new single-program GRAM scheme (ĜData,
ĜProg, ĜInput, ĜEval) as follows:

• ĜData(1κ, D): Execute (D∗, s∗) ← OData(1κ, D) followed by (D̃, s) ← GData(1κ, D∗). Output
D̂ = D̃ and ŝ = (s, s∗).

• ĜProg(1κ, 1logm, 1t, P ): ExecuteP ∗ ← OProg(1κ, 1logm, 1t, P ) followed by (P̃ , sin)← GProg(1κ,

1logm
′
, 1t
′
, P ∗). Output P̂ = P̃ , ŝin = sin (note that this contains the garbled wire labels for s∗ since

P ∗ takes two inputs). Also note that we use m′ and t′ since ORAM will increase the running time and
memory size by some poly-logarithmic overhead.

• ĜInput(1κ, x, ŝin, ŝ): Parse ŝ = (s, s∗) and set x+ = (x, s∗) which is valid input for P ∗. Execute
x̃← GInput(1κ, x+, ŝin, s), and output x̂ = x̃.

• ĜEval
D̂
(P̂ , x̂): Execute y ← GEvalD̂(P̂ , x̂) and output y.

We show that the construction above given by (ĜData, ĜProg, ĜInput, ĜEval) is a fully secure single-
program GRAM scheme.

25



Correctness. Our goal is to demonstrate that

Pr[ĜEval
D̂
(P̂ , x̂) = PD(x)] = 1

where (D̂, ŝ)← ĜData(1κ, D), (P̂ , ŝin)← ĜProg(1κ, 1logm, 1t, P ), x̂← ĜInput(1κ, x, ŝin, ŝ).

By definition, ĜEval
D̂
(P̂ , x̂) = GEvalD̃(P̃ , x̃). By the correctness of the UMA-secure GRAM scheme,

we have that GEvalD̃(P̃ , x̃) = P ∗D
∗
(x, s∗). Finally, by the correctness of the ORAM scheme, P ∗D

∗
(x, s∗) =

PD(x).

Security. For any program P , database D, and input x, let REALD,P,x define the following distribution:

REALD,P,x = {(D̂, P̂ , x̂) :(D̂, ŝ)← ĜData(1κ, D),

(P̂ , ŝin)← ĜProg(1κ, 1logm, 1t, P ),

x̂← GInput(1κ, x, ŝin, ŝ)}

Our goal is to construct a simulator Sim such that for all D,P, x and y = PD(x), REALD,P,x
comp
≈

Sim(1κ, 1m, 1t, y). We let OSim be the ORAM simulator, and USim be the simulator for the UMA-secure
GRAM scheme. The procedure Sim(1κ, 1m, 1t, y) proceeds as follows.

1. Compute (D∗,MemAccess)← OSim(1κ, 1m, 1t, y).

2. Compute (D̃, P̃ , x̃)← USim(1κ, 1m
′
, 1t
′
, y,D∗,MemAccess).

3. Output (D̂, P̂ , x̂) = (D̃, P̃ , x̃).

We now prove the output of the simulator is computationally indistinguishable from the real distribution.
For any D,P, x, we define a series of hybrid distributions Hyb0,Hyb1,Hyb2 with Hyb0 = REALD,P,x,
and Hyb2 = Sim(1κ, 1m, 1t, y), and argue that for i = 0, 1 we have Hybi

comp
≈ Hybi+1.

• Hyb0: This is the real distribution REALD,P,x.

• Hyb1: Use the correctly generated (D∗, s∗) from ĜData andP ∗ from ĜProg and executeP ∗D
∗
(x, s∗)

to obtain y and a sequence of memory accesses MemAccess. Run (D̃, P̃ , x̃)← USim(1κ, 1m
′
, 1t
′
, y,D∗,

MemAccess) and output (D̂, P̂ , x̂) = (D̃, P̃ , x̃). Formally,

Hyb1 = {(D̂, P̂ , x̂) :(D∗, s∗)← OData(1κ, D), P ∗ ← OProg(1κ, 1logm, 1t, P ),

y ← P ∗D
∗
(x, s∗) and induces MemAccess,

(D̃, P̃ , x̃)← USim(1κ, 1m
′
, 1t
′
, y,D∗,MemAccess),

(D̂, P̂ , x̂) = (D̃, P̃ , x̃)}.

• Hyb2: This is the simulated distribution Sim(1κ, 1m, 1t, y).

We now show that adjacent hybrid distributions are computationally indistinguishable.

Hyb0

comp
≈ Hyb1 : Let A be a PPT distinguisher between these two distributions for some D,P, x.

We construct an algorithm B that breaks the UMA-security of the underlying GRAM scheme that pro-
ceeds as follows. First, B runs (D∗, s∗) ← OData(1κ, D), P ∗ ← OProg(1κ, 1logm, 1t, P ) and declares
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P ∗, D∗, x+ = (x, s∗) as the challenge program, database, and input for the UMA-security GRAM game.
The UMA-security challenger then outputs (D̃′, P̃ ′, x̃′) and B must output a guess whether it is real or sim-
ulated. In order to do so, B sets (D̂′, P̂ ′, x̂′) = (D̃′, P̃ ′, x̃′) and forwards this as the challenge to A. B then
outputs the same guess as A.

Observe that if the UMA challenger outputs the real values, then (D̂′, P̂ ′, x̂′) is distributed identically
as if it were generated from Hyb0, and if the UMA challenger outputs simulated values, (D̂′, P̂ ′, x̂′) is dis-
tributed identically as if it were generated from Hyb1. Therefore,A distinguishes with the same probability
as B, which is negligible by the UMA-security of the underlying GRAM scheme.

Hyb1

comp
≈ Hyb2 : Let A be a PPT distinguisher between these two distributions for some D,P, x.

We construct an algorithm B that breaks the security of the underlying ORAM scheme that proceeds as
follows. First, B announces D,P, x as the challenge program, database, and input for the ORAM security
game. The ORAM challenger then outputs (D∗′,MemAccess′) which is either real or simulated. Then,
B computes y = PD(x) and runs (D̃′, P̃ ′, x̃′) ← USim(1κ, 1m

′
, 1t
′
, y,D∗′,MemAccess′). Next, B sets

(D̂′, P̂ ′, x̂′) = (D̃′, P̃ ′, x̃′) and forwards this to A. B then outputs the same guess as A.
Observe that if the ORAM challenger outputs the real values, then (D̂′, P̂ ′, x̂′) is distributed identically

as if it were generated from Hyb1, and if the ORAM challenger outputs simulated values, then (D̂′, P̂ ′, x̂′)
is distributed identically as if it were generated from Hyb2. Therefore, A distinguishes with the same
probability as B, which is negligible by the security of the underlying ORAM scheme.

D Full Multi-program Security
For multiple programs, we give a more formal treatment of constructing full GRAM from UMA-secure
GRAM than was provided in [GHL+14]. In particular, our definition allows for the garbling of the programs
independently of each other, and so for completeness we formally state and prove that this is still compatible
with the existing ORAM compliation technique.

We define what a secure multi-program GRAM is, and as a warmup construct a UMA-secure one and
show how to extend it to full security. The syntax remains largely the same as in the single-program GRAM
case, except now we have two additional keys: w and sout which we highlight with red in the syntax
definition. The w key is output by the GData algorithm and is generated once and the same one is used for
each GInput, whereas sout is an evolving key that is initially equal to s and is updated by GProg. Note that
GData and GProg are still decoupled and programs are garbled independently of each other, and only tied
together by the use of GInput. The GInput procecure takes the most recent sout as its analogous s in the
single-program case, which enforces the ordering, and it also takes the fixed w from GData. Later, w shall
play the role of the ORAM key which remains constant throughout multiple programs, though in our UMA
construction we leave it null.

Syntax. A (UMA) secure multi-program GRAM scheme consists of four procedures: (GData, GProg,
GInput, GEval) with the following syntax:

• (D̃, s, w)← GData(1κ, D): Given a security parameter 1κ and memoryD ∈ {0, 1}m as input GData
outputs the garbled memory D̃. The auxiliary key w is used for garbling multiple programs.

• (P̃ , sin, sout)← GProg(1κ, 1logm, 1t, P ) : Takes the description of a RAM program P with memory-
size m as input. It then outputs a garbled program P̃ and an input-garbling-key sin. The role of sout

is to enable garbling multiple programs.

• x̃← GInput(1κ, x, sin, s, w): Takes as input x ∈ {0, 1}n and and an input-garbling-key sin, a garbled
database key s, an auxiliary key w, and outputs a garbled-input x̃.
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• y = GEvalD̃(P̃ , x̃): Takes a garbled program P̃ , garbled input x̃ and garbled memory data D̃ and
output a value y. We model GEval itself as a RAM program that can read and write to arbitrary
locations of its memory initially containing D̃.

Efficiency. We require the run-time of GProg and GEval to be t · poly(κ) · polylog(m), which also serves
as the bound on the size of the garbled program P̃ . Moreover, we require that the run-time of GData should
be m · polylog(m) · poly(κ), which also serves as an upper bound on the size of D̃. Finally the running time
of GInput is required to be n · poly(κ).

To define the correctness and security requirements of garbled RAMs, we set forth the following no-
tation. Let P1, . . . , P` be any sequence of programs with polynomially-bounded run-times t1, . . . , t`. Let
D ∈ {0, 1}m be any initial memory data, let x1, . . . , x` be inputs and (y1, . . . , y`) = (P1(x1), . . . , P`(x`))

D

be the outputs given by the sequential execution of the programs on D. This plain execution also induces
access pattern MemAccess.

In order to tie together the sequence of programs and their inputs, we let (D̃0, s
out
0 = s, w)← GData(1κ, D),

and for i = 1 . . . `, (P̃i, sini , s
out
i ) ← GProg(1κ, 1logm, 1ti , Pi), x̃i ← GInput(1κ, xi, s

in
i , s

out
i−1, w). Finally,

for i = 1 . . . `, we consider the outputs obtained by sequential execution: y′i = GEvalD̃i−1(P̃i, x̃i), where
D̃i is the database after the ith execution.

Correctness. For correctness, we require that:

Pr[(y′1, . . . , y
′
`) = (y1, . . . , y`)] = 1.

(UMA) Security. For full security, we require that there exists a PPT simulator Sim such that for any
sequence of programs P1, . . . , P`, initial memory data D ∈ {0, 1}m and inputs x1, . . . , x` we have that:

(D̃, {P̃i, x̃i}`i=1)
comp
≈ Sim(1κ, 1m, {1ti , yi}`i=1).

For UMA-security, we additionally provide the simulator with (D,MemAccess).

D.1 UMA-secure Multi-Program GRAM Scheme
We describe how to augment our UMA single-program GRAM (GData, GProg, GInput, GEval) described
in Section 4 to a UMA multi-program GRAM (GData′, GProg′, GInput′, GEval′). This is described in
Figure 11.

• Data Garbling: (D̃, s, w)← GData′(1κ, D). This proceeds identically to GData and sets w = ⊥.

• Program Garbling: (P̃ , sin, sout) ← GProg′(1κ, 1logm, 1t, P ). This proceeds identically to GProg
except at the end, we set the sout to be the final root key ut.

• Input Garbling: x̃← GInput′(1κ, x, sin, s, w). This proceeds identically to GInput since w = ⊥.

• Garbled Evaluation: y ← GEval′
D̃
(P̃ , x̃). This proceeds identically to GEval. Observe that at the end

of the program, the joint distribution of the new garbled database D̃′ along with sout is identical to
that of D̃ and s.

Figure 11: A UMA-secure multi-program GRAM.

We state the following lemma.

Lemma D.1. The construction of (GData′, GProg′, GInput′, GEval′) in Figure 11 is a UMA-secure multi-
program GRAM scheme. In particular, assume one-way functions exist, and let the security parameter be
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κ. Then, for any initial RAM contents D of size m, a program P that runs on D in at most t CPU steps,
there exists a UMA-secure multi-program Garbled RAM scheme with poly(κ, logm, log t) overhead in the
storage size of the garbled memory contents and in the size of the program P and its running time.

Proof Sketch. The correctness of this scheme follows by combining the fact that the first program executes
correctly, and then after the execution of the first garbled program, the joint distribution of the resulting D̃′

and subsequent programs is identical to one in which the first program never existed and D̃′ was generated
directly from GData′ called on input D′, the plain database that would have resulted from the execution of
the first plain program.

The simulator for this construction is nearly identical to our UMA single-program GRAM simulator.
This is because of the way we connect adjacent programs together: the root key used in the final step of
one program is output by GProg as sout, which is then passed as labels into the next garbled program’s first
circuit. The passing of labels between garbled circuits across the boundary of two programs is therefore
identical to between two adjacent steps within a single program, with the only difference being that the
read location L is set to 0 and the state is set to a new input. The proof proceeds similarly to our UMA
single-program case and we skip the details here.

D.2 From UMA to Fully Secure Multi-Program GRAM
We now show how to combine ORAM with UMA-secure multi-program GRAM to obtain fully secure
multi-program GRAM. This construction and proof is analogous to our single-program case, though we
need to carefully weave together how the ORAM key s∗ interacts with the GRAM keys w and s/sout.

We prove the following theorem.

Theorem D.2. Assume there exists a UMA-secure multi-program GRAM scheme and an ORAM scheme
(both of which could be efficiently constructed from OWFs). Then there exists a fully secure multi-program
GRAM scheme. Moreover, we give a black-box construction of one given a UMA-secure multi-program
GRAM and ORAM scheme.

Proof. We construct the new GRAM scheme in a black-box manner as follows. Let (GData,GProg,GInput,
GEval) be a UMA-secure multi-program GRAM and let (OData,OProg) be an ORAM scheme. We con-
struct a new multi-program GRAM scheme (ĜData, ĜProg, ĜInput, ĜEval) as follows:

• ĜData(1κ, D): Execute (D∗, s∗) ← OData(1κ, D) followed by (D̃, s, w) ← GData(1κ, D∗). Out-
put D̂ = D̃ and ŝ = s and ŵ = (w, s∗). Note that unlike in the single-program case, we tie together
s∗ with the unchanging auxiliary key as opposed to the evolving database key.

• ĜProg(1κ, 1logm, 1t, P ): Execute P ∗ ← OProg(1κ, 1logm, 1t, P ) followed by (P̃ , sin, sout) ←
GProg(1κ, 1logm

′
, 1t
′
, P ∗) . Output P̂ = P̃ , ŝin = sin, ŝout = sout (note that this contains the

garbled wire labels for s∗ since P ∗ takes two inputs).

• ĜInput(1κ, x, ŝin, ŝ, ŵ): Parse ŝ = s, ŵ = (w, s∗) and set x+ = (x, s∗) which is valid input for P ∗.
Execute x̃← GInput(1κ, x+, ŝin, s, w), and output x̂ = x̃.

• ĜEval
D̂
(P̂ , x̂): Execute y ← GEvalD̂(P̂ , x̂) and output y.

We show that the construction above given by (ĜData, ĜProg, ĜInput, ĜEval) is a fully secure multi-
program GRAM scheme. For the remainder of the proof, we consider the following notation. Let P1, . . . , P`
be any sequence of programs with polynomially-bounded run-times t1, . . . , t`. Let D ∈ {0, 1}m be any
initial memory data, let x1, . . . , x` be inputs and (y1, . . . , y`) = (P1(x1), . . . , P`(x`))

D be the outputs
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given by the sequential execution of the programs on D. Let (D̂0, ŝout0 = ŝ, ŵ) ← ĜData(1κ, D), and for

i = 1 . . . `: (P̂i, ŝini , ŝ
out
i ) ← ĜProg(1κ, 1logm, 1ti , Pi), x̂i ← ĜInput(1κ, xi, ŝini ,

̂souti − 1, ŵ). Finally, we

consider the sequential execution of the garbled programs for i = 1 . . . `: y′i ← ĜEval
D̂i−1

(P̂i, x̂i) which
updates the garbled database to D̂i.

Correctness. Our goal is to demonstrate that

Pr[(y′1, . . . , y
′
`) = (y1, . . . , y`)] = 1.

Since ĜEval in our construction directly calls the underlying UMA-secure multi-program GRAM scheme
for evaluation, the correctness of the underlying scheme guarantees that (y′1, . . . , y

′
`) = (P ∗1 (x1, s

∗), . . . , P ∗` (x`, s
∗))D

∗
.

Then by the correctness of the ORAM scheme, (P ∗1 (x1, s
∗), . . . , P ∗` (x`, s

∗))D
∗
= (P1(x1), . . . , P`(x`))

D =
(y1, . . . , y`).

Security. For any programs P1, . . . , P`, database D, and inputs x1, . . . , x`, let

REALD,{Pi,xi} = (D̂0, P̂i, x̂i
`

i=1)

Our goal is to construct a simulator Sim such that for allD, {Pi, xi}, REALD,{Pi,xi} comp
≈ Sim(1κ, 1m, {1ti , yi}).

We let OSim be the ORAM simulator, and USim be the simulator for the UMA-secure multi-program
GRAM scheme. The procedure Sim proceeds as follows.

1. Compute (D∗,MemAccess)← Sim(1κ, 1m, {1ti , yi}`i=1).

2. Compute (D̃, {P̃i, x̃i}`i=1)← Sim(1κ, 1m
′
, {1t′i , yi}`i=1, D

∗,MemAccess), wherem′ is the size ofD∗

and t′i is the running time of the oblivious program i.

3. Output (D̂0, P̂i, x̂i
`

i=1) = (D̃, {P̃i, x̃i}`i=1).

We now prove the output of the simulator is computationally indistinguishable from the real distribu-
tion. For any D, {Pi, xi}, we define a series of hybrid distributions Hyb0,Hyb1,Hyb2 with Hyb0 =

REALD,{Pi,xi}, and Hyb2 = Sim(1κ, 1m, {1ti , yi}`i=1), and argue that for j = 0, 1 we have Hybj
comp
≈

Hybj+1.

• Hyb0: This is the real distribution REALD,{Pi,xi}.

• Hyb1: Use the correctly generated (D∗, s∗) from ĜData andP ∗i from ĜProg and execute (P ∗1 (x1, s
∗), . . .

, P ∗` (x`, s
∗))D

∗
to obtain {yi} and a sequence of memory accesses MemAccess. Run (D̃, {P̃i, x̃i}`i=1)←

USim(1κ, 1m
′
, {1t′i , yi}`i=1, D

∗,MemAccess) and output(D̂0, P̂i, x̂i
`

i=1) = (D̃, {P̃i, x̃i}`i=1).

• Hyb2: This is the simulated distribution Sim(1κ, 1m, {1ti , yi}`i=1).

We now show that adjacent hybrid distributions are computationally indistinguishable.

Hyb0

comp
≈ Hyb1 : Let A be a PPT distinguisher between these two distributions for some D, {Pi, xi}.

We construct an algorithm B that breaks the UMA-security of the underlying GRAM scheme that pro-
ceeds as follows. First, B runs (D∗, s∗) ← OData(1κ, D), P ∗i ← OProg(1κ, 1logm, 1ti , Pi) and declares
D∗, {P ∗i , x

+
i = (xi, s

∗)} as the challenge database, programs and inputs for the multi-program UMA-
security GRAM game. The UMA-security challenger then outputs (D̃′, {P̃ ′i , x̃′i}`i=1) and B must output a
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guess whether it is real or simulated. In order to do so, B sets (D̂′, {P̂ ′i , x̂′i}`i=1) = (D̃′, {P̃ ′i , x̃′i}`i=1) and
forwards this as the challenge to A. B then outputs the same guess as A.

Observe that if the UMA challenger outputs the real values, then (D̂′, {P̂ ′i , x̂′i}`i=1) is distributed iden-
tically as if it were generated from Hyb0, and if the UMA challenger outputs simulated values, then
(D̂′, {P̂ ′i , x̂′i}`i=1) is distributed identically as if it were generated from Hyb1. Therefore, A distinguishes
with the same probability as B, which is negligible by the multi-program UMA-security of the underlying
GRAM scheme.

Hyb1

comp
≈ Hyb2 : LetA be a PPT distinguisher between these two distributions for someD, {Pi, xi}. We

construct an algorithm B that breaks the security of the underlying ORAM scheme that proceeds as follows.
First, B announces D, {Pi, xi} as the challenge database, programs, and inputs for the ORAM security
game. The ORAM challenger then outputs (D∗′,MemAccess′) which is either real or simulated. Then, B
computes (y1, . . . , y`) = (P1(x1), . . . , P`(x`))

D and runs (D̃′, {P̃ ′i , x̃′i}`i=1)← USim(1κ, 1m
′
, {1t′i , yi}, D∗′,

MemAccess′). Next, B sets (D̂′, {P̂ ′i , x̂′i}`i=1) = (D̃′, {P̃ ′i , x̃′i}`i=1) and forwards this to A. B then outputs
the same guess as A.

Observe that if the ORAM challenger outputs the real values, then (D̂′, {P̂ ′i , x̂′i}`i=1) is distributed iden-
tically as if it were generated from Hyb1, and if the ORAM challenger outputs simulated values, then
(D̂′, {P̂ ′i , x̂′i}`i=1) is distributed identically as if it were generated from Hyb2. Therefore, A distinguishes
with the same probability as B, which is negligible by the security of the underlying ORAM scheme.
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