
Secure Multi-Party Computation with Identifiable Abort

Yuval Ishai∗

Computer Science Department
Technion

yuvali@cs.technion.ac.il

Rafail Ostrovsky†

Computer Science Department
UCLA

rafail@cs.ucla.edu

Vassilis Zikas‡

Computer Science Department
ETH Zurich

vzikas@inf.ethz.ch

Abstract

Protocols for secure multi-party computation (MPC) that resist a dishonest majority are
susceptible to “denial of service” attacks, allowing even a single malicious party to force the
protocol to abort. In this work, we initiate a systematic study of the more robust notion of
security with identifiable abort, which leverages the effect of an abort by forcing, upon abort, at
least one malicious party to reveal its identity.

We present the first information-theoretic MPC protocol which is secure with identifiable
abort (in short ID-MPC) using a correlated randomness setup. This complements a negative
result of Ishai et al. (TCC 2012) which rules out information-theoretic ID-MPC in the OT-hybrid
model, thereby showing that pairwise correlated randomness is insufficient for information-
theoretic ID-MPC.

In the standard model (i.e., without a correlated randomness setup), we present the first
computationally secure ID-MPC protocol making black-box use of a standard cryptographic
primitive, namely an (adaptively secure) oblivious transfer (OT) protocol. This provides a
more efficient alternative to existing ID-MPC protocols, such as the GMW protocol, that make
a non-black-box use of the underlying primitives.

As a theoretically interesting side note, our black-box ID-MPC provides an example for a
natural cryptographic task that can be realized using a black-box access to an OT protocol but
cannot be realized unconditionally using an ideal OT oracle.

Keywords: Multi-Party Computation, Feasibility, Efficiency

∗Supported by the European Union’s Tenth Framework Programme (FP10/2010-2016) under grant agreement no.
259426 ERC-CaC, ISF grant 1361/10, and BSF grant 2012378.
†Work supported in part by NSF grants 09165174, 1065276, 1118126 and 1136174, US-Israel BSF grant 2008411,

OKAWA Foundation Research Award, IBM Faculty Research Award, Xerox Faculty Research Award, B. John Garrick
Foundation Award, Teradata Research Award, and Lockheed-Martin Corporation Research Award. This material is
based upon work supported by the Defense Advanced Research Projects Agency through the U.S. Office of Naval
Research under Contract N00014 -11 -1-0392. The views expressed are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
‡Portions of this work were done while the author was at UCLA. Work supported in part by the Swiss National

Science Foundation (SNF) Ambizione grant PZ00P2 142549.

1 Introduction

Recent advances in secure multiparty computation have led to protocols that compute large circuits
in a matter of seconds. Most of these protocols, however, are restricted to provide security against
semi-honest adversaries, or alternatively assume an honest majority. A notable exception is the
SPDZ line of work [3, 16, 14, 15, 34] which tolerates a majority of malicious parties. SPDZ is
optimized for the pre-processing model and demonstrates a remarkably fast on-line phase, largely
due to the fact that it uses information-theoretic techniques and, thus, avoids costly cryptographic
operations. Unfortunately, all these efficient MPC protocols for the case of a dishonest majority
are susceptible to the following denial-of-service (DoS) attack: even a single malicious party can
force an abort without any consequences (i.e., without even being accused of cheating). Although
classical impossibility results for MPC prove that abort-free computation is impossible against
dishonest majorities, vulnerability to DoS attacks is an issue that should be accounted for in any
practical application.

Summary of known results. The seminal works on MPC [47, 21, 2, 9, 42] establish tight feasibil-
ity bounds on the tolerable number of corruptions for perfect, statistical (aka information-theoretic
or unconditional), and computational (aka cryptographic) security. For semi-honest adversaries,
unconditionally secure protocols exist if there is an honest majority, or if the parties have access to
a complete functionality oracle or other types of setup. An arguably minimal setup is giving the
parties (appropriately) correlated random strings before the inputs are known. We refer to this as
the correlated randomness model.

When there is no honest majority and the adversary is malicious, full security that includes
fairness cannot be achieved [12]. Instead, one usually settles for the relaxed notion of security
with abort: Either the protocol succeeds, in which case every party receives its output, or the
protocol aborts, in which case all honest parties learn that the protocol aborted. (Because of
the lack of fairness, the adversary can learn its outputs even when the protocol aborts.) The
GMW protocol [21, 19] realizes this notion of security under standard cryptographic assumptions.
Interestingly, this protocol also satisfies the following useful identifiability property: upon abort
every party learns the identity of some corrupted party. This property is in the focus of our work.

To the best of our knowledge, all protocols achieving this notion of security (e.g., [21, 7])
are based on the same paradigm of using public zero-knowledge proofs to detect deviation from
the protocol. While elegant and conceptually simple, this approach leads to inefficient protocols
that make a non-black-box use of the underlying cryptographic primitives.1 The situation is even
worse in the information-theoretic setting, where an impossibility result from [31] (see also [44,
Section 3.7]) proves that information-theoretic MPC with identifiable abort is impossible even
in the OT-hybrid model, i.e., where parties can make ideal calls to an oblivious transfer (OT)
functionality [41].

Our Contributions. We initiate a systematic study of this more robust and desirable notion
of secure MPC with identifiable abort (ID-MPC). An ID-MPC protocol leverages the effect of an
abort by forcing, upon abort, at least one malicious party to reveal its identity. This feature
discourages cheaters from aborting, and in many applications allows for full recovery by excluding

1 Alternatively, protocols such as the CDN protocol [13] make a use of ad-hoc zero-knowledge proofs based
on specific number theoretic intractability assumptions. The disadvantage of these protocols is that they require
public-key operations for each gate of the circuit being evaluated, and cannot get around this by using optimization
techniques such as efficient OT extension [28].

2

the identified cheater and restarting the protocol. We provide formal security definitions both in the
setting of Universal Composition (UC) [5] and in the stand-alone setting [21, 19, 4]. Furthermore, we
study feasibility and efficiency of ID-MPC in both the information-theoretic and the computational
security models.

For the information-theoretic model, we present a general compiler that transforms any MPC
protocol which uses correlated randomness to achieve security against semi-honest adversaries into a
similar protocol which is secure with identifiable abort against malicious adversaries. As a corollary,
we get the first information-theoretic ID-MPC protocol in the correlated randomness model. This
protocol complements an impossibility result from [31], which rules out information-theoretic ID-
MPC in the OT-hybrid model. Indeed, the insufficiency of OT implies that pairwise correlated
randomness is not sufficient for information-theoretic ID-MPC, but leaves open the question of
whether or not n-wise correlations are, which is answered affirmatively here.

In the computational security model, we present an ID-MPC protocol for realizing sampling
functionalities, namely ones that sample and distribute correlated random strings, which only makes
a black-box use of an (adaptively secure) OT protocol and ideal calls to a commitment functionality.2

Using this protocol for realizing the setup required by the information-theoretic protocol yields the
first ID-MPC protocol which makes a black-box use of standard cryptographic primitives. This
holds both in the UC framework [5], assuming standard UC-setups, and in the plain stand-alone
model [21, 19, 4]. Combined with the above-mentioned impossibility result from [31], this provides
an interesting example for a natural cryptographic task that can be realized using a black-box access
to an OT protocol but cannot be unconditionally realized using an ideal OT oracle.

Our results demonstrate that ID-MPC is not only the most desirable notion from a practical
point of view, but it also has the potential to be efficiently implemented. To this end, one can
instantiate our construction with efficient OT protocols from the literature [39, 11, 36, 17].3 Fur-
thermore, pre-computing the randomness in an off-line phase yields a protocol in the pre-processing
model which, similarly to SPDZ-style protocols, has an information-theoretic online phase. Investi-
gating how our methodology can be fine-tuned towards practice remains an interesting direction for
future work. Finally, our protocols can be used to improve the efficiency of a number of protocols in
the fairness-related literature, e.g., [29, 18, 26, 37, 48, 22, 1], as these works implicitly use ID-MPC
(typically instantiated by GMW) to realize a sampling functionality.

Comparison to Existing Work. Our information-theoretic protocol can be seen as a new fea-
sibility result, since the current literature contains no (efficient or inefficient) information-theoretic
ID-MPC protocol from correlated randomness. Similarly, our computational protocol can also be
seen as a “second-order” feasibility result, since this is the first ID-MPC protocol making black-box
use of a standard cryptographic primitive. Notwithstanding, much of the motivation for considering
black-box constructions in cryptography is derived from the goal of practical efficiency, and indeed
the most practical protocols today (whether Yao-based or GMW-based) are black-box protocols
that do not need to know the “code” of the underlying cryptographic primitives.

2 The ideal commitments can be replaced by a black-box use of a commitment protocol, or alternatively realized
by making a black-box use of OT [27, 38]. The OT protocol can be secure against either semi-honest or malicious
adversaries, as these two flavors are equivalent under black-box reductions [24, 10].

3Our analysis requires the underlying OT to be adaptively secure. Proving the same statement for a static OT
protocol is a theoretically interesting open problem. From a practical point of view, however, many instances of
adaptively secure OT can be efficiently implemented from few such instances in the (programmable) random oracle
model [28, 36].

3

2 The Model

We prove our security statements in the universal composition (UC) framework of Canetti [5]. In
a nutshell, a protocol π (securely) UC realizes a functionality F if for any adversary A attacking
π there exists an ideal adversary, the simulator S, that makes an ideal evaluation of F indistin-
guishable from a protocol execution with A in the eyes any environment Z. When Z, A, and
S are polynomially bounded we say that the protocol realizes F (with computational security);
otherwise, when Z, A, and S are unbounded, we say that the protocol unconditionally realizes F
(with information-theoretic security). For self containment we have included the basics of the UC
model in Appendix A.1.

For simplicity we restrict our description to computation of non-reactive functionalities, also
known as secure function evaluation (SFE). (The general case can be reduced to this case by using
a suitable form of secret sharing [31] for maintaining the secret state of the reactive functionality.)
Moreover, we describe our protocols as synchronous protocols, i.e., round-based protocols where
messages sent in some round are delivered by the beginning of the next round; such protocols can
be executed in UC as demonstrated in [33, 35]. The advantage of such a “synchronous” description
is dual: first, it yields simpler descriptions of functionalities and protocols; indeed, because the
parties are aware of the round in which each message should be sent/received, we can avoid always
explicitly writing all the message/protocol IDs in the descriptions. Second, it is compatible with
the protocol description in the stand-alone model of computation [20, 4], which allows us to directly
translate our results into that model.

Our protocols assume n parties from the set P = {p1, . . . , pn}. We prove our results for a
non-adaptive adversary who actively corrupts parties at the beginning of the protocol execution,
but our results can be extended to the adaptive case.4 Our results are with respect to an (often
implicit) security parameter k, where we use the standard definition of negligible and overwhelming
from [19].

Correlated Randomness as a Sampling Functionality. Our protocols are in the correlated
randomness model, i.e., they assume that the parties initially, before receiving their inputs, receive
appropriately correlated random strings. In particular, the parties jointly hold a vector ~R =
(R1, . . . , Rn) ∈ ({0, 1}∗)n, where pi holds Ri, drawn from a given efficiently samplable distribution
D. This is, as usual, captured by giving the parties initial access to an ideal functionality FDCorr,
known as a sampling functionality, which, upon receiving a default input from any party, samples
~R from D and distributes it to the parties. Hence, a protocol in the correlated randomness model
is formally an FDCorr-hybrid protocol. Formally, a sampling functionality FDCorr is parameterized by
an efficiently computable sampling distribution D and the (ID’s of the parties in) the player set P.

FDCorr(P)

Upon receiving message (CorrRand) from any party or the adversary, set ~R = (R1, . . . , Rn) ← D and
for each pi ∈ P send Ri to pi (or to the adversary if pi is corrupted).

4In fact, some of our protocols use optimizations tailored to proving adaptive security.

4

Information-Theoretic Signatures Our protocols use information-theoretic (i.t.) signa-
tures [45, 43, 46] to commit a party to messages it sends. Roughly speaking, these are information-
theoretic analogues to standard digital signatures, i.e., they allow some party pi, the signer, to send
a message m to a party pj , the receiver, along with a string σ that we refer to as the signature, such
that the receiver can at a later point publicly open σ and prove to every party that the message m
was indeed sent from pi. Note that in order to achieve i.t. security the verification key cannot be
publicly known. Rather, in i.t. signatures, the signer has a signing key sk and every party pi ∈ P
holds a different private verification key vki corresponding to sk.

In our protocols different (independent) signing keys are used for each signature. In this case, i.t.
signatures provide the following guarantees with overwhelming probability (against an unbounded
adversary): (completeness) A signature with the correct singing key will be accepted by any honest
verifier in P; (unforgeability) the adversary cannot come up with a signature that will be accepted
by some (honest) verifier without knowing the signing key; (consistency) an adversarial signer
cannot come up with a signature that will be accepted by some honest verifier and rejected by
another.

For self-containment, we recall the formal security definition and construction of i.t. signatures
in Appendix A.1.

3 Security with Identifiable Abort

We put forward the notion of secure multi-party computation with identifiable abort, also referred
to as Identifiable MPC (ID-MPC) which allows the computation to fail (abort), but ensures that
when this happens every party is informed about it, and they also agree on the index i of some
corrupted party pi ∈ P (we say then that the parties abort with pi). More concretely, for an
arbitrary functionality F, we define [F]ID⊥ to be the corresponding functionality with identifiable
abort, which behaves as F with the following modification: upon receiving from the simulator a
special command (abort, pi), where pi ∈ P is a corrupted party (if pi is not corrupted then [F]ID⊥
ignores the message), [F]ID⊥ sets the output of all (honest) parties to (abort, pi).

Definition 1. Let F be a functionality and [F]ID⊥ be the corresponding functionality with identifi-
able abort. We say that a protocol π securely realizes F with identifiable abort if π securely realizes
the functionality [F]ID⊥ .

The UC composition theorem extends in a straightforward manner to security with identifiable
abort. To formally state such a theorem we first specify the class of protocols for which it is natural
to replace hybrid functionalities by protocols (subroutines) that realize them with identifiable abort.
Informally, these protocols have the property that as soon as one of their hybrids aborts with the
identity of some (corrupted) party pi, the calling protocol also aborts with pi. Formally, let G be
a functionality and π be a G-hybrid protocol. We say that π is abort respecting if upon receiving
(abort, pi) from G for some i ∈ [n], every honest party in π outputs (abort, pi) and halts.

Theorem 2. Let F and G be ideal functionalities and let π be an G-hybrid abort respecting protocol
which securely realizes F with identifiable abort.5 Let also ρ be protocol which securely realizes G
with identifiable abort, and denote by πρ the protocol derived from π by replacing ideal calls to G by
invocations of protocols ρ. Then πρ securely realizes F with identifiable abort.

5As in [5], G might be a collection of ideal functionalities.

5

The proof follows along the lines of the UC composition theorem [5].

4 Unconditional ID-MPC from Correlated Randomness

In this section we describe our unconditionally secure identifiable MPC protocol in the correlated
randomness model. In fact, our result is more general, as we provide a compiler that transforms
any given unconditionally secure protocol in the semi-honest correlated randomness model into an
unconditionally secure ID-MPC protocol in the (malicious) correlated randomness model. Although
the correlated randomness provided by the setup in the malicious protocol is different than the semi-
honest, the latter can be obtained from the former by an efficient transformation. Informally, our
statement can be phrased as follows:

Let πsh be an FDCorr-hybrid protocol (for an efficiently computable distribution D), which
unconditionally UC realizes a functionality F in the presence of a semi-honest adver-
sary. Then there exists a compiler turning πsh into an FD′Corr-hybrid protocol (for an
appropriate efficiently computable distribution D ′), which unconditionally UC realizes
F with identifiable abort (in the malicious model).

Overview of the Compiler. We start by providing a high-level overview of our compiler. As
is typical, the semi-honest protocol πsh which we compile works over standard point-to-point (in-
secure) channels. Furthermore, without loss of generality (see Section 4.3) we assume that πsh is
deterministic.

Let ~Rsh = (Rsh
1 , . . . , R

sh
n) denote the setup used by the semi-honest protocol πsh (i.e., each pi

holds string Rsh
i). The setup for the compiled protocol distributes ~Rsh to the parties, and commits

every party to its received string. Subsequently, the parties proceed by, first, committing to their
inputs and, then, executing their πsh-instructions in a publicly verifiable manner: whenever, pi
would send a message m in πsh, in the compiled protocol pi broadcasts m and publicly proves, in
zero-knowledge, that the broadcasted message is consistent with his committed input and setup
string Rsh

i . For the above approach to work for unbounded adversaries and allow for identifiability,
we need the commitment scheme and the associated zero-knowledge proofs to be unconditionally
secure and failures to be publicly detectable. We construct such primitives relying on appropriately
correlated randomness in Sections 4.1 and 4.2, respectively.

4.1 Commitments with Identifiable Abort

In this section we provide a protocol which unconditionally UC realizes the standard (one-to-many)
multi-party commitment functionality Fcom with identifiable abort. Fcom allows party pi ∈ P, the
committer, to commit to a message m and later on publicly open m while guaranteeing the following
properties: (hiding) no party in P \ {pi} receives any information on m during the commit phase;
(binding) at the end of the commit phase a message m′ is fixed (where m′ = m if the committer is
honest), such that only m′ might be accepted in the reveal phase (and m′ is always accepted when
the committer is honest). The one-to-many commitment functionality is described in the following:

6

Fcom(P)

Commit Phase: Upon receiving message (msg id, commit, i,m) from party pi ∈ P (or the adversary if
pi is corrupted) where m ∈ {0, 1}∗ and msg id is a valid message ID, record the tuple (msg id, pi,m)
and send the message (msg id, receipt, pi) to every party in P (and to the adversary). Every future
commit message with the same ID msg id is ignored.

Reveal Phase: Upon receiving a message (msg id, reveal) from party pi ∈ P, if a message
(msg id, commit, i,m) was previously recorded, then send the message (msg id, reveal,m) to all
parties in P (and to the adversary); otherwise ignore the message.

Our protocol Πcom which i.t. securely realizes Fcom with identifiable abort assumes the following
correlated-randomness setup: for pi to commit to a value m ∈ {0, 1}∗, pi needs to hold a uniformly
random string r ∈ {0, 1}|m| along with an information-theoretic signature σ on r, where every party
in P holds his corresponding verification key (but no party, not even pi, gets to learn the signing
key). Formally, the sampling functionality Fcom

Corr used for our commitment scheme is as follows:

Fcom
Corr (P)

Upon receiving message (CorrRand, pi, `), where ` = poly(k), from party pi (or the adversary if pi is
corrupted), do the following

1. Choose r ∈R {0, 1}` uniformly at random.

2. Set (sk, ~vk) := Gen(1`, n, 1) and compute σ := Sign(r, sk).

3. Send Ri = (r, σ, vki) to pi and for each pj ∈ [n] \ {i} send Rj = vkj to pj .

Given the above setup, pi can commit to m by broadcasting y = m⊕ r. To, later on, open the
commitment y, pi broadcasts r along with the signature σ, where every party verifies the signature
and outputs m = y ⊕ r if it is valid, otherwise aborts with pi (i.e., outputs (abort, pi)).

Protocol Πcom (P)

Setup: The protocol works in the Fcom
Corr (P)-hybrid world, i.e., in order for pi ∈ P to commit to an

`-bit string, he sends (CorrRand, pi, `) to Fcom
Corr (P); every party pj ∈ P denotes the message received

from Fcom
Corr (P) by Rj , where Ri = (r, σ, vki) and for each pj ∈ [n] \ {i}, Rj = vkj to pj .

a

Commit Phase Upon receiving input (msg id, commit, i,m) from Z, pi computes y = m ⊕ r and
broadcasts y. If pi broadcasts an invalid message then every party aborts with pi; otherwise, every
party pj ∈ P adopts y as the commitment (and outputs (msg id, receipt, pi)).

Reveal Phase To open the commitment y on m, pi broadcasts (msg id, reveal,m, y, σ), where σ de-
notes the signature on r which pi received from the setup. Every party pj ∈ P verifies (using the
verification key vkj ∈ Rj) that Ver(m ⊕ y, σ, vkj) = 1; if this is not the case then pj aborts with
pi, otherwise pj outputs (msg id, reveal,m).

aRecall that messages sent to/received from the setup functionality have unique message IDs; hence, even
when used to commit to multiple messages, the parties can tell which setup-string corresponds to which com-
mitment.

The hiding property of Πcom follows from the fact that r is uniformly random. Moreover, the un-
forgeability of the signature scheme ensures that the commitment is binding and publicly verifiable.

7

Finally, the completeness of the scheme ensures that the protocol aborts only when the committer
pi is corrupted. Additionally, same as all UC commitments, the above scheme is extractable, i.e.,
the simulator of a corrupted committer can learn, already in the commit phase, which message
will be opened so that he can input it to the functionality, and equivocal, i.e., the simulator of a
corrupted receiver can open a commitment to any message of his choice.6 Taking a glimpse at the
proof, both properties follow from the fact that the simulator controls the setup. Indeed, knowing
r allows the simulator to extract m from the broadcasted message, whereas knowing the signing
key sk allows him to generate a valid signature/opening to any message.

Theorem 3. The protocol Πcom unconditionally UC realizes the functionality Fcom with identifiable
abort.

Proof. We need to show that Πcom securely realizes the functionality [Fcom]ID⊥ . We consider two
cases: (1) The committer pi is corrupted, and (2) the committer pi is honest. In both cases the
simulator uses the adversary (in a black-box straight-line manner) and gets to emulate towards
him the setup Fcom

Corr . In particular, S starts off by computing (R1, . . . , Rn) as Fcom
Corr would, i.e.,

Ri = (r, σ, vki) and for j ∈ [n] \ {i} : Rj = vkj . S hands A the values Rj corresponding to
corrupted parties pj . Subsequently,

In Case 1 (i.e., if pi is corrupted), S waits to receive form A the broadcasted message y, extracts
m := y− r and hands (msg id, commit, i,m) to the functionality [Fcom]ID⊥ . To emulate the opening
of y, the simulator waits to receive from A the opening message (msg id, reveal,m, y′, σ). If y′ 6= y
or σ does not verify with all the (simulated) keys vkj of honest parties pj , then the simulator sends
(abort, pi) to [Fcom]ID⊥ ; otherwise the simulator sends (msg id, reveal) to [Fcom]ID⊥ . It is straight-
forward to verify that unless the adversary forges a signature (which, by the unforgeability property
of the signature scheme, happens with negligible probability) the simulated transcript (and the
honest parties’ output) is distributed identically to the real transcript. Indeed, S chooses the setup
from the same distribution as Fcom

Corr hence the message y is distributed identically as y = m + r
in both cases. Furthermore, in the opening phase only m might be opened, since if the adversary
attempts to open a fake value he will be caught with overwhelming probability unless he succeeds
in forging a corresponding signature.

In Case 2 (i.e., pi is honest). In the commit-phase, i.e., as soon as S receives (msg id, receipt, pi)
from [Fcom]ID⊥ , S emulates towards A a broadcast of a uniformly random string y ∈ {0, 1}`. In
the opening phase, S receives (msg id, reveal,m) from [Fcom]ID⊥ , computes r′ := y ⊕m along with
a signature σ′ := Sign(r′, sk) and emulates towards the adversary pi broadcasting the message
(msg id, reveal,m, y, σ′). Clearly, as y is chosen uniformly at random and σ′ is generated given
the actual (simulated) signature key the simulated view is distributed identically to the view of a
protocol execution.

4.2 Setup-Commit-Then-Proof

Next we present a protocol which allows the parties receiving random strings (drawn from some
joint distribution D) to publicly prove, in zero-knowledge, that they use these strings in a protocol.
Our protocol implements the Setup-Commit-then-Prove functionality Fscp which can be viewed as
a modification of the Commit-then-Prove functionality from [7] restricting the committed witnesses

6In [31] a primitive called unanimously identifiable commitments (UIC) was introduced for this purpose, but the
definition of UIC does not guarantee all the properties we need for UC secure commitments.

8

to be distributed by the setup instead of being chosen by the provers. More concretely Fscp (see
below) works in two phases: in a first phase, it provides a string/witness Ri to each pi ∈ P, where
~R = (R1, . . . , Rn) is drawn from D; in a second phase, Fscp allows every party pi to prove q-many
NP statements of the typeR(x,Ri) = 1 for the same publicly known NP relationRi and the witness
Ri received from the setup, but for potentially different (public) strings x. A detailed description
of Fscp follows.

Fscp(P,D, ~R = (R1, . . . ,Rn), q)

The functionality is parametrized by P, the distribution D, a vector ~R of NP relations, and a bound
q = poly(k) on the number of proofs allowed per party.

Setup-Commit Phase: Upon receiving message (reqWitness) from any party pi ∈ P (or the adversary
if pi is corrupted) sample (R1, . . . , Rn) ← D and for each i ∈ [n] send message (witness, Ri) to pi
(or to the adversary if pi is corrupted).

Prove Phase: Upon receiving a message (ZK-prover, x) where x ∈ {0, 1}poly(k) from any party
pi ∈ P, if Ri(x,Ri) = 1, and pi did not already send q-many (ZK-prover, ·)-messages, then send
(verified, x, pi) to all parties in P and to the adversary; otherwise send them (not-verified, pi).

In the remainder of this section we describe a protocol which unconditionally securely realizes the
setup-commit-then-proof functionality Fscp in the correlated randomness model. To this direction,
we first show how to realize the sigle-use version of Fscp, denoted as F1scp, and then use the UC
composition with joint state theorem (JUC) [8] to derive a protocol for Fscp. The functionality
F1scp works exactly as Fscp with the restriction that it allows a specific prover p ∈ P to do a single
(instead of q-many) proofs for a witness w of a given NP relation R.

F1scp(P,D,R, p)
The functionality is parametrized by P, the distribution D, an NP relation R, and (the id of) the
prover p ∈ P.

Setup-Commit Phase: Upon receiving message (reqWitness) from party p ∈ P (or the simulator if p
is corrupted), sample w ← D, record (w, p) and send message (witness, w) to p (or the adversary if
p is corrupted).

Prove Phase: Upon receiving a message (ZK-prover, x) where x ∈ {0, 1}poly(k) from prover p ∈ P if
R(x,w) = 1 and pi did not already send a (ZK-prover, ·)-message then send (verified, x, p) to all
parties in P and to the adversary; otherwise send them (not-verified, p).

Our protocol for realizing the functionality F1scp with identifiable abort uses the idea of “MPC
in the head” [25, 30, 32]. In particular, let FD denote the (n + 1)-party (reactive) functionality
among the players in P and a special player pD, the dealer, which works as follows: In a first
phase, FD receives a message w ∈ {0, 1}poly(k) from pD and forwards w to p ∈ P. In a second
phase, p sends x to FD, which computes b := R(x,w) and outputs (b, x) to every pj ∈ P \ {pD}.
Clearly, any protocol in the plain model which unconditionally realizes FD with an honest dealer
pD, where pD does not participate in the second phase, can be turned into a protocol which securely
realizes F1scp(P,D,R, p) in the correlated randomness model. Indeed, one needs to simply have
the corresponding sampling functionality play the role of pD (where w is drawn from D). In the
following we show how to design such a protocol using the idea of player-simulation [25].

Let Π(n+1,m),t be a protocol which perfectly securely (and robustly) realizes FD in the client-
server model [25, 30, 32], among the clients P ∪{pD} and an additional m servers. Such a protocol

9

exists assuming t < m/3 servers are corrupted [2]. For simplicity, assume that Π(n+1,m),t has the
following properties, which are consistent to how protocols from the literature, e.g., [2], would realize
functionality FD in the client-server setting: (i) for computing the first phase of FD, Π(n+1,m),t has
pD share his input w among the m servers with a secret sharing scheme that is perfectly t-private
(the shares of any t servers leak no information on w) and perfectly t-robust (the sharing can be
reconstructed even when up to t cheaters modify their shares), and, also pD hands all the shares to
p (ii) pD does not participate in the second phase of Π(n+1,m),t (this is wlog as pD is a client with
no input or output in this second phase), and (iii) the output (R(x,w), x) is publicly announced
(i.e., is in the view of every server at the end of the protocol).

Assuming pD is honest, a protocol Πn+1 for unconditionally realizing FD with identifiable abort
(among only the players in P∪{pD}) can be built based on the above protocol Π(n+1,m),t as follows:
for the first phase, pD generates shares of a t-robust and t-private sharing of w as he would do in
Π(n+1,m),t and sends them to p. In addition to sending the shares, pD commits p to each share
by sending him an i.t. signature on it and distributing the corresponding verification keys to the
players in P. For the second phase, p emulates in his head the second phase of the execution of
Π(n+1,m),t among m virtual servers p̂1, . . . , p̂m where each server has private input his share, as
received from pD in the first phase, and a public input x (the same for all clients); p publicly
commits to the view of each server. Finally, the parties in P \ {p} challenge p to open a random
subset J ⊆ [m] of size t of the committed views and announce the corresponding input-signatures
which p received from pD. If the opened views are inconsistent with an accepting execution of
Π(n+1,m),t on input x and the committed shares—i.e., some output is 0, or some opening fails, or
some signature does not verify for the corresponding (opened) private input, or for some pair of
views the incoming messages do not match the outgoing messages—then the parties abort with p.

The security of the protocol Πn+1 is argued similarly to [30, Theorem 4.1]: on the one hand,
when p is honest then we can use the simulator for Π(n+1,m),t to simulate the views of the parties in
J . The perfect t-security of Π(n+1,m),t and the t-privacy of the sharing ensures that this simulation
is indistinguishable from the real execution. On the other hand, when p is corrupted, then we only
need to worry about correctness. Roughly, correctness is argued as follows: if there are at most
t < m/3 incorrect views, then the t-robustness of Π(n+1,m),t and of the sharing ensures that the
output in any of the other views will be correct; by a standard counting argument we can show that
the probability that some of these views is opened is overwhelming when m = O(k). Otherwise,
(i.e., if there are more than t-incorrect views) then with high probability a pair of such views will
be opened and the inconsistency will be exposed.

To derive, from Πn+1, a protocol for F1scp(P,D,R, p) in the correlated randomness model, we
have the sampling functionality, F1scp

Corr play the role of the dealer pD. In addition to the committed
shares, F1scp

Corr generates the necessary setup enabling the prover p ∈ P to commit to the m (virtual)
servers’ views in the second phase of the protocol Πn+1. Furthermore, to simplify the description,
we also have F1scp

Corr create a “coin-tossing setup” which players in P can use to sample the random
subset J ∈ [m] of views to be opened: F1scp

Corr hands to each pj ∈ P a random string cj and
commits pj to it; the coin sequence c for choosing J is then computed by every pj opening cj and
taking c = ⊕nj=1cj . The corresponding sampling functionality, denoted as F1scp

Corr , is described in

the following. For sake of modularity we describe the functionality F1scp
Corr in two pieces: First, we

describe a sampling functionality Fzk
Corr which, for a witness w (given as a parameter), generates

the necessary setup for the proof (i.e., the second) phase. The functionality F1scp
Corr , then, simply

10

Fzk
Corr(P, w,m, t,R)

The functionality is parameterized by P, a string w ∈ {0, 1}poly(k), an NP relation R, and the numbers
m = O(k) and t with t < m/3 as in protocol Π(n+1,m),t.

Upon receiving message (CorrRand, pi) from any pi ∈ P (or the adversary if p is corrupted) do the
following:

Commit pi to a sharing of w: Compute a perfectly t-robust and t-private sharing 〈w〉 =

(〈w〉1, . . . , 〈w〉m) of w, and for each ` ∈ [m] do the following: Set (sk`, ~vk
`
) := Gen(1|〈w〉

`|, n, 1)
and compute σ(〈w〉`) = Sign(〈w〉`, sk`); send (〈w〉`, σ(〈w〉`), vk`i) to pi, and for each j ∈ [n] \ {i}
send vk`j to pj
“Coin-tossing setup” For every party pj ∈ P:

1. Chose cj ∈R {0, 1}t log(m).

2. Set (sk, ~vk) := Gen(1|cj |, n, 1) and compute σ(cj) = Sign(cj , sk); send (cj , σ(cj), vkj) to pj ,
and for each ` ∈ [n] \ {j} send vk` to p`

Setup for committing to a Π(n+1,m),t execution: For every ` ∈ [m] emulate a call to Fcom
Corr (P) with

input (CorrRand, p,V`), where V` is the size of the `th server’s view in an execution of Π(n+1,m),t

for computing FD.

samples the witness w from D and (internally) calls Fzk
Corr with parameter w.

F1scp
Corr (P,D,m, t,R)

The functionality is parameterized by P, an efficiently sampleable distribution D, an NP relation R,
and the numbers m = O(k) and t with t < m/3 as in protocol Π(n+1,m),t.
Upon receiving message (CorrRand, p) from party p ∈ P (or the adversary if p is corrupted) do the
following:

1. Sample w from distribution D.

2. Emulate an invocation of Fzk
Corr(P, w,m, t,R) on input (CorrRand, p) and distribute all the gener-

ated outputs.

In the following we give a detailed description of the protocol Π1scp for implementing F1scp,
where we denote by 〈w〉 = (〈w〉1, . . . , 〈w〉m) a perfectly t-private and t-robust secret sharing of a
given value w among players in some P̂ = (p̂1, . . . , p̂m) (e.g., the sharing from [2] which is based
on bivariate polynomials), where 〈w〉i denotes the ith share of 〈w〉, i.e., the state of the (virtual)
server p̂i after the sharing is done.

Theorem 4. Let Π(n+1,m),t be a protocol as described above among n + 1 clients and m = O(k)
servers which perfectly securely (and robustly) realizes the functionality FD in the presence of
t < m/3 corrupted servers. The (F1scp

Corr (P,D,m, t,R)-hybrid) protocol Π1scp(P,D,R,m, t, p) un-
conditionally securely realizes the functionality F1scp(P,D,R, p) with identifiable abort.

Proof. To prove the statement we need to show that protocol Π1scp(P,D,R,m, t, p) information-
theoretically securely realizes the functionality [F1scp(P,D,R, p)]ID⊥ . We prove the statement in the
Fcom-hybrid world, i.e., where all commitment are done by calls to the functionality Fcom. Because
our commitments are unconditionally secure and all the signatures used for the commitments are

11

Protocol Π1scp(P,D,m, t,R, p)
Setup-Commit Phase: To obtain the appropriate setup, i.e., upon receiving input (reqWitness),
prover p sends (CorrRand, p) to the sampling functionality F1scp

Corr (P,D,m, t,R), which distributes the
following random strings and signatures (where every pj ∈ P receives the corresponding verification
keys):

The prover p receives a sharing 〈w〉 = (〈w〉1, . . . , 〈w〉m) of w along with corresponding signatures
σ(〈w〉1), . . . , σ(〈w〉m) and (privately) outputs (witness, w).

Every pi ∈ P receives the challenge-string ci along with a corresponding signature σ(ci).

The prover also receives random strings v1, . . . , vm along with corresponding signatures
σ(v1), . . . , σ(vm) to use for committing to the server’s views in Π(n+1,m),t.

Prove Phase: Upon p receiving input (ZK-prover, x) the following steps are executed:

1. IfR(x,w) = 0 then p broadcasts (not-verified, p) and every party halts with output (not-verified, p).
Otherwise, p broadcasts (R, x).

2. p emulates in its head the second phase of protocol Π(n+1,m),t where each server p̂j ∈ P̂ =
{p̂1, . . . , p̂m} has private input 〈w〉j and public input x.

3. For each p̂j ∈ P̂, p commits, by invocation of protocol Πcom(P), to the view Viewj ∈ {0, 1}Vj of
p̂j in the above emulated execution using vj from his setup.

4. For each pi ∈ P: pi announces the random string ci and the corresponding signature σ(ci) and
every pj ∈ P verifies, using his corresponding verification keys, validity of the signatures and
aborts with pi in case the check fails.

5. The parties compute c =
∑n
i=1 ci and use it as random coins to sample a random t-size set

J ⊆ [m].

6. For each j ∈ J : p opens the commitment to Viewj and announces the signature σ(〈w〉j). If any
of the openings fails or any of the announced signatures is not valid for the input-share appearing
in the corresponding view, then the protocol aborts with pi.

7. Otherwise, the parties check that the announced views are consistent with an execution of protocol
Π(n+1,m),t with the announced inputs in which the (global) output is 1, i.e., they check that in
all the announced views the output equals 1 and all signatures are valid, and that for all pairs
(j, k) ∈ J 2: the incoming messages in p̂j ’s view match the outgoing messages in p̂k’s view. If any
of these checks fails then the protocol aborts with pi, otherwise, every party outputs (verified, x, p).

generated by use of fresh independent keys (i.e., different invocations of Πcom do not share a state),
the security of the protocol Π1scp follows then directly by applying the UC composition theorem.

We consider two cases: (1) Prover p is honest, and (2) Prover p is corrupted. In both cases, the
simulator S invokes the adversary A and relays communication between A and Z. We point out
that in both cases, by inspection of the protocol one can verify that the protocol might only abort
with the identity of a corrupted party pi; this follows from the unforgeability of digital signatures7

and the commitment scheme, as the protocol aborts only when some party pi attempts to cheat by
opening an inconsistent commitment, opening an inconsistent signature, or if pi is the prover, by
trying to prove a false statement.

In Case 1, the simulator works as follows:

In the setup-commit phase, S samples a witness w′ from the distribution D and emulates an
invocation of Fzk

Corr(P, w′,m, t,R) for prover p, while storing the corresponding values. Observe,
that by emulating the setup, the simulator already computes all the selection strings c1, . . . , cm

7We do not need the consistency here as the parties do not get to see the signing keys.

12

which will be used in the simulation before any of the proof starts; thereby, S knows, before even
starting to simulate the prove phase, the set J ⊆ [m] of (virtual) clients whose views will to be
opened during the simulation of the proof-phase and can prepare for them. Completing the setup-
commit phase, S hands to A his setup-values. Clearly, the view of the adversary in this simulation
(i.e., his setup messages) is distributed identically to the corresponding view in a real-protocol
execution.

In the beginning of the prove phase, S receives his output from the functionality [F1scp]ID⊥ . If the
output is (not-verified, p) then S emulates p broadcasting (not-verified, p) towards A, and instructs
[F1scp]ID⊥ to deliver the output to the honest parties. Otherwise, i.e., if the output is (verified, x, p)
then S emulates towards A the protocol execution as follows: S uses the simulator SΠ(n+1,m),t

for
Π(n+1,m),t corrupting the players with indexes in J (which is guaranteed to exist by the security of
Π(n+1,m),t) on inputs the shares generated in the emulation of the setup Fzk

Corr. For each j ∈ J , S
emulates a commitment to the view Viewj of p̂j as generated by SΠ(n+1,m),t

; for all j ∈ [m] \ J , S
emulates commitments to random views Viewj (of appropriate size) towards A (note that as we
are in the Fcom-hybrid world, A only expects a (receipt)-message in this step of the simulation).
Subsequently, for each honest pj ∈ P, S emulates towards A announcement of the choice-strings
cj and the corresponding signatures; symmetrically, S receives from A the selection strings cj for
corrupted pj ’s along with the corresponding openings. If for some of the choice-strings cj which
A announced the signature verification fails (i.e., it does not verify for the key of some pi ∈ P),
then S sends (abort, pi) to [F1scp]ID⊥ . Otherwise, S emulates towards A opening of the views Viewj

for j ∈ J and instructs the functionality [F1scp]ID⊥ to deliver its output (i.e., (verified, x, p)) to all
parties.

The soundness of the simulation is argued similarly to the proof of the zero-knowledge property
from [30, Theorem 3.1]. In particular, it is easy to verify that the simulation might only abort with
pj when the adversary tries to announce a choice-string cj 6= cj in which case, the unforgeability
of the signature scheme ensures that (with overwhelming probability) the real protocol would also
have aborted with pj . When all announcements succeed, the announced set J will be the one the
simulator has prepared the views for. The fact that these views are statistically indistinguishable
from the protocol execution follows, as in [30, Theorem 4.1], from the fact that SΠ(n+1,m),t

is a
perfect simulator for Π(n+1,m),t and the fact that the outputs of the (virtual) parties whose views
are opened are t shares of a t-private secret sharing and, therefore, are independent of the shared
value.

In Case 2 (i.e, the case of a corrupted prover) the argument is similar to the soundness argument
from [30, Theorem 4.1]:

In the setup-commit phase, S sends (reqWitness) to [F1scp]ID⊥ and receives the witness w. Subse-
quently, S emulates an invocations of Fzk

Corr(P, w,m, t,R) with prover p and stores the corresponding
values. Recall, that, as in Case 1, by emulating the setup, the simulator already computes all the
selection strings c1, . . . , cn before the proof phase starts and therefore knows the set J of virtual
players whose views are to be opened. Finally, S hands to A the sharing 〈w〉, as computed by the
emulation of Fzk

Corr, along with all his (A’s) other messages from the emulation. Clearly, the above
simulation of this phase is perfect.

For the prove phase S emulates towards A the honest parties/verifiers in the protocol execu-
tion as follows: In Step 3, if the corrupted prover p broadcasts (not-verified, p) then S inputs
(ZK-prover, x′) for some x′ with R(x′, w) = 0 which result in every party in the ideal setting out-

13

putting (not-verified, p) as they would do in the protocol. Otherwise, as in Case 1, S emulates
the opening of the challenge commitments for honest parties and receives from A his openings;
if for any corrupted pi ∈ P the opening aborts then the simulator sends to [F1scp]ID⊥ the message
(abort, pi). Otherwise, S receives from A the openings of the committed views for the virtual parties
in J (again, if some pi fails to open S sends (abort, pi) to [F1scp]ID⊥ as the honest parties would in
the protocol). Subsequently, S checks, as the honest parties would that the announced views are
consistent (with each-other and with the sharing of w which S gave A in the setup-commit phase).
If the check fails S sends (abort, p) to [F1scp]ID⊥ , otherwise, S sends (ZK-prover, , x) to [F1scp]ID⊥ and
allows it to deliver the outputs to honest parties. Since the simulator follows exactly the protocol
of honest parties (who, recall, have no input), S is a good simulation as long as correctness of the
outputs is guaranteed. Because the relation R and the public input x is necessarily part of all
virtual parties in Π(n+1,m),t, the only way that the adversary can cheat is by committing to views
which are inconsistent with an honest execution of Π(n+1,m),t for the witness w. In the remainder
of the proof we argue that such an adversary will be caught with overwhelming probability.

The argument is similar to the proof of soundness from [30, Theorem 3.1]; the only difference is that
we need to ensure that the prover uses the the witness w which he was committed to in the setup
phase;8 however, for self-containment we include here the complete argument. In particular, we
show that if the (adversarial) prover tries to cheat, i.e., uses w′ 6= w or uses x suchR(x,w) = 0, then
he is caught with overwhelming probability. To this direction, consider the following inconsistency
graph G defined on the m committed views View1, . . . ,Viewm: The graph G has m vertices
corresponding to the m views and there is an edge (i, j) in G if any of the following conditions is
satisfied:

The (private) input (i.e., the witness share) in any of the views Viewi or Viewj is not the
share 〈w〉i or 〈w〉j of w which the prover was committed to in the setup-distribution phase.

The views Viewi and Viewj are inconsistent with respect to Π(n+1,m),t,R, x and (〈w〉i, 〈w〉j),
that is incoming messages from p̂j in the view Viewi are different from outgoing messages to
p̂i (implicit) in the view Viewj .

We consider the same cases for the graph G as in [30, Theorem 4.1]:

Case 2A: G has a vertex cover set B of size at most t. We argue that in this case the only way
the adversary can cheat is by choosing x such that R(x,w) = 0 in which case the output in all
views Viewj with j 6∈ B must be 0. To this direction, consider an execution of Π(n+1,m),t where the
adversary corrupts the players in B and makes them misbehave so that the view of players pj with
j 6∈ B is Viewj . Since B is a vertex cover, every pair of views (Viewi,Viewj) with i, j ∈ [m] \B
are not connected in the graph G and therefore , by definition, they are consistent and they both
include the right shares of 〈w〉. The perfect t-robustness of 〈w〉 ensures that in this case the actual
witness w is used in the evaluation of R(x,w). Hence, the only way to cheat is for the prover to
have given x such that R(x,w) = 0. But, in this case the perfect t-robustness of Π(n+1,m),t ensures
that the corruption of parties in B cannot influence the correctness of the output of the honest
players (i.e., players with indexes in [m] \ B) which must be 0. Hence, to catch the adversary A
cheating in this case it suffices to open one player p̂j ’s view with j ∈ [m] \ B; by the choice of the
parameters, the probability that this does not happen is at most (t/m)t = 2−Ω(t) = 2−Ω(k), i.e.,
negligible.

8Note that in [30] there is no such requirement as the prover is free to chose the witness as long as it satisfies the
relation R.

14

Case 2B: min -VC(G) > t (where, as in [30], min -VC(G) denotes the size of a minimum vertex-
cover of G). We argue that in such a graph, opening a random constant fraction of the vertices,
hits an edge with overwhelming probability. Indeed, as argued in [30], such a graph G must have
a matching of size > t/2. Now it is clear that if the random challenge (note that the challenge is
chosen from the setups and is therefore always uniformly random) picks to open both vertices in
at least one edge of G then the protocol will abort with p. Now similar to [30], the probability that
the random selection misses all edges in G is smaller than the probability that it misses all edges
of the matching which is again 2−Ω(t) = 2−Ω(k).

The multiple-proof extension of F1scp In order to realize functionality Fscp we need to

extend F1scp to distribute a vector ~R = (R1, . . . , Rn) of witnesses, one for each party, (instead of
only one witness) sampled from some efficient distribution D, and allow every pi ∈ P to prove up
to q statements of the type R(Ri, x) for potentially different public inputs x. The corresponding
sampling functionality, denoted as Fscp

Corr, (see below) is derived as follows: it first samples ~R and
subsequently it emulates, for each pi ∈ P, q independent invocations of Fzk

Corr(P, Ri,m, t,Ri) on
input (CorrRand, pi) with m = O(k) and t = dm/3e − 1.

F scp
Corr(P,D, ~R = (R1, . . . ,Rn), q)

The functionality is parameterized but an efficiently sampleable distribution D with range
({0, 1}poly(k))n out of which the witnesses will be drawn, a vector of NP relations (R1, . . . ,Rn)
and an upper bound q = poly(k) on the number of statements that each party will be allowed to prove.

Upon receiving message (CorrRand) from any party p ∈ P (or the adversary), if such a message was
already received ignore it, else do the following:

1. Sample (R1, . . . , Rn) from distribution D
2. For each pi ∈ P and each ` = 1, . . . , q emulate an invocations of Fzk

Corr(P, Ri,m, t,Ri, pi) on input
(CorrRand, pi) with parameters m = k and t = dm/3e − 1 (without distributing the outputs).

3. Distribute all the outputs generated by invoking Fzk
Corr in the previous step.

Given such a sampling functionality the protocol Πscp for unconditionally securely realizing Fscp

with identifiable abort is straight-forward: The parties receive the random strings R1, . . . , Rn along
with q proof setups for each party. Then, for each invocation of the prove phase, party pi executes
the prove phase of protocol Π1scp using the corresponding proof setup.9

9Recall that we implicitly assume that all messages generated from the setup have unique identifiers so that the
parties know which ones to use for which proof.

15

Protocol Πscp(P,D, ~R, q)
Setup-Commit Phase: To obtain the appropriate setup, upon receiving message (reqWitness) any

party p ∈ P (e.g., p1) sends (CorrRand) to the sampling functionality F scp
Corr(P,D, ~R = (R1, . . . ,Rn), q),

which samples ~R = (R1, . . . , Rn) from D and distributes the following random strings and signatures
(where every pj ∈ P receives the corresponding verification keys):

Every pi ∈ P receives q-many sharing 〈Ri〉1, . . . , 〈Ri〉q of Ri along with corresponding signatures
(and privately outputs (witness, Ri)).

For every (pi, pj) ∈ P2, pi receives q challenge-strings c1i,j , . . . , c
q
i,j along with a corresponding

signature σ(ci), to be used in the q proofs with prover pj , along with corresponding signatures.

Every pi receives q vectors of random strings ~vi,1, . . . , ~vi,q, where for ` ∈ [q] : ~vi,` = (vi,`,1, . . . , vi,`,m)
is to be used in the `th proof, along with corresponding signatures.

Prove Phase: Upon p receiving input (ZK-prover, x), if q-many inputs of the type (ZK-prover, ·) were
already received, then pi broadcasts (not-verified, p) and every party halts with output (not-verified, p).
Otherwise, i.e., if ` < q inputs (ZK-prover, ·) were received, pi initiates the prove phase of protocol Π1scp

where the parties use the `th setup.a

aObserve that in each execution of Π1scp (i.e., for every input (ZK-prover, x)) the prover starts off by
broadcasting a message, which allows the parties to keep track of the number of inputs.

Theorem 5. Protocol Πscp(P,D,R, q) unconditionally securely realizes the functionality
Fscp(P,D,R, q) with identifiable abort.

The proof follows from the security of Π1scp by a direct application of the universal composition
with joint state (JUC) theorem [8].

4.3 The “Semi-honest to Malicious with Abort” Compiler

We are now ready to describe our main compiler, denoted as C(·) which compiles any given protocol
πsh secure in the semi-honest model using (only) correlated randomness into a protocol C(πsh) which
is secure with abort in the (malicious) correlated randomness model.10

We make the following simplifying assumptions on the semi-honest protocol πsh which are
without loss of generality, since all existing semi-honest protocols in the correlated randomness
model can be trivially turned to satisfy them:

We assume that πsh has a known (polynomial) upper bound Rndπsh on the number of rounds,
where in each round every party sends a single message.

We assume that πsh is deterministic. Any πsh can be turned into such by having the setup
include for each pi ∈ P a uniformly random and independent string ri that pi uses as his coins.

Finally, we assume that πsh starts off by having every party send to all parties a one-time pad
encryption of his input xi using as key the first |xi| bits from ri (those bits are not reused).
Clearly, this modification does not affect the security of πsh as the simulator can easily simulate
this step by broadcasting a random string. Looking ahead in the proof, this will allow the
simulator to extract the corrupted parties’ inputs.

The compiler C(πsh) uses the protocol Πscp as follows: Denote by Rsh = (Rsh
1 , . . . , R

sh
n) the

setup used by πsh and by Dsh the corresponding distribution. Let also Rπsh,i denote the relation

10Note that C(πsh) uses broadcast which can be trivially realized by a protocol assuming appropriate correlated
randomness, e.g., [40].

16

corresponding to pi’s next message function. More concretely, if hπsh,i ∈ {0, 1}∗ denotes the history
of messages seen by pi and m is a message, then Rπsh,i((hπsh,i,m), Ri) = 1 if m is the next message
of pi in an execution with history hπsh,i and setup Ri, otherwise Rπsh,i((hπsh,i,m), Ri) = 0. The

compiled protocol C(πsh) starts by executing the setup-commit phase of protocol Πscp(P,Dsh, ~R =
(Rπsh,1, . . . ,Rπsh,n), Rndπsh). Subsequently, every pi ∈ P executes his πsh instructions, where in
each round instead of sending its message m over the point-to-point channel, pi broadcasts m and
proves, using the proof phase of protocol Πscp, that Rπsh,i((hπsh,i,m), Ri) = 1. If Πscp aborts with
some pi then our compiler also aborts with pi. Otherwise, the security of Πscp ensures that every pi
followed πsh for the given setup; therefore, security of our compiler follows from the security of πsh.
Note that the corresponding sampling functionality for C(πsh) is computable in time polynomial
in the running time of the sampling functionality FDsh

Corr for protocol πsh.

Protocol C(πsh)

Setup: The protocol works in the Fscp(P,Dsh, ~R = (Rπsh,1, . . . ,Rπsh,n), Rndπsh
)-hybrid world, where

P is the player set, Dsh is the distribution out of which the setup for protocol πsh is drawn, Rπsh,i

is the next-message relation defined above, and Rndπsh
is (an upper bound on) the number of rounds

in πsh. The parties maintain a public list hπsh
(initially empty) which, at any point, includes all the

messages broadcasted in the computation.

1. The parties execute the setup-commit phase of protocol Πscp and receives their setup string
including the witnesses Rsh

1 , . . . , R
sh
n .

2. Let Rndπsh
be the number of rounds of protocol πsh. Upon receiving inputs (x1, . . . , xn) (where

pi receives input xi) the parties execute the following steps (sequentially) for : ρ = 1, . . . , Rndπsh
:

1. Every pi ∈ P computes his ρ-round message mρ,i for πsh on input xi and setup string Ri,
and broadcasts it. If some party pi broadcasts an inconsistent message abort with pi.

2. Every pi ∈ P proves that m is indeed his next πsh-message by invoking the second phase of
protocol Πscp with public input (hπsh

,m) and private input Rsh
i . If Πscp aborts with pj or

outputs (not-verified, pj) for some pj ∈ P then C(πsh) aborts with pj .

3. Otherwise every party includes the broadcasted messages mρ,1, . . . ,mρ,n to the history hπsh
.

Output: Every party outputs his output as computed by πsh and halts.

Theorem 6. Let πsh be a protocol as above which unconditionally UC realizes a functionality F in
the presence of a semi-honest adversary in the FDsh

Corr-hybrid (correlated randomness) model. Then
the compiled protocol C(πsh) unconditionally UC realizes the functionality F with identifiable abort
in the presence of a malicious adversary in the Fscp

Corr-hybrid (correlated randomness) model.

Proof (sketch). We prove the C(πsh) statistically UC securely realizes the functionality [F]ID⊥ . For
simplicity, we do the proof assuming C(πsh) is a [Fscp]ID⊥ -hybrid protocol, where invocation of Πscp

is replaced by calls to [Fscp]ID⊥ . The proof follows then by applying the composition theorem.
Simulation is as follows: the simulator S uses the adversary A in a black-box manner (and

forwards all messages sent between A and Z). S also uses the simulator Ssh for the protocol
πsh(which is assumed to exists by the security of πsh), where S plays towards Ssh the role of an
adversary in πsh. Initially, S receives the setup R = (R1, . . . , Rn) from Ssh (i.e., the simulated
setup for πsh), and hands to A the message (witness, Ri) for each corrupted pi. In the first round,
the simulator simulates towards the adversary broadcasting of one-time pad encryptions of random

17

inputs11 for honest parties with keys taken from R and receives from A one-time-pad encryptions
of the corrupted players inputs. Note that, as the simulator knows all the Ri’s that the adversary
is supposed to use (and therefore the random keys he is supposed to use for encrypting), he can
extract the adversary’s inputs x̂i’s (for corrupted pi’s) by decrypting the broadcasted message.

From that point on, the simulator uses the simulator Ssh for computing the messages of honest
parties in each round. More precisely, S maintains (as the parties in C(πsh) would) an (initially
empty) list of messages hπsh . In each round ρ:

For each honest pi: S sends A the ρ-round message mρ,i of pi as generated by Ssh along with a
message (verified, (hπsh ,mρ,i), pi) as [Fscp]ID⊥ would in a proof with the honest pi (note that and
honest pi would never try to prove a false message).

For each corrupted pi, S receives from A his ρ-round broadcasted message mρ,i along with the
message (ZK-prover, x) for the functionality [Fscp]ID⊥ . If x 6= (hπsh ,mρ,i) then S sends (abort, pi)
to its functionality [F]ID⊥ and halts. Otherwise, S includes the messages mρ,i broadcasted by A
in this round to hπsh and hands them to Ssh (as the messages that Ssh expects to see from its
adversary).

At the end of the simulation, if no abort occurred S hand to [F]ID⊥ the extracted inputs x̂i (and
instructs [F]ID⊥ to deliver its outputs).

It is straight-forward to verify that the above is a good simulator: indeed, the use of [Fscp]ID⊥ ensures
that the adversary might either faithfully execute the protocol πsh (on the inputs encrypted in the
first step) or force an abort with some corrupted party. When the adversary does faithfully execute
protocol πsh then the simulated transcript consists of the messages as sent by Ssh along with
confirmation of this fact (corresponding to outputs of [Fscp]ID⊥); hence, in this case the statistically
closeness of the simulated and the real transcripts follows from the fact that Ssh is a good simulator
from πsh (which is statistically secure)

Note that any (semi-honest) OT-hybrid protocol can be cast as a protocol in the correlated
randomness model by precomputing the OT. Hence, by instantiating πsh with any semi-honest OT
hybrid protocol. e.g., [20], we obtain the following corollary.

Corollary 7. There exists a protocol which unconditionally UC realizes any well-formed [7] multi-
party functionality with identifiable abort.

The question of feasibility of unconditional security with identifiable abort from correlated
randomness has been open even in the simpler standalone model [21, 19, 4] (for self-containment
we have included a formal description in Appendix B). As a corollary of Theorem 6 one can derive
a positive statement also for that model.

Corollary 8 (Stand-alone security with identifiable abort). There exists a protocol which uncondi-
tionally securely evaluates any given function f with identifiable abort in the stand alone correlated
randomness model.

11Recall that we assume that πsh starts by having every party broadcast its input one-time pad encrypted with
randomness drawn from the setup.

18

5 SFE Using Black-box OT

In this section, we provide a generic MPC protocol which is (computationally) secure with identifi-
able abort making black-box use of an (adaptively) secure UC protocol for one-out-of two oblivious
transfer FOT (see [39] for a formal description) in the Common Reference String (CRS) model.

The high-level idea of our construction is the following: as we have already provided an uncon-
ditional implementation of ID-MPC based (only) on correlated randomness, it suffices to provide a
protocol Πcsp

Corr with the above properties for implementing the corresponding sampling functional-
ity Fscp

Corr. Indeed, given such a protocol Πcsp
Corr, we can first use it to compute the setup needed for

C(πsh) (for any appropriate semi-honest protocol πsh, e.g., the one from [21]) and then use πsh to
evaluate any given functionality; if either the setup generation or C(πsh) aborts with some pi then
the construction also aborts with pi.

In the remainder of this section we describe Πcsp
Corr. In fact, we provide a protocol ΠDCorr which

allows to implement any sampling functionality FDCorr for a given efficiently computable distribution
D. The key idea behind our construction in the following: as the functionality FDCorr receives no
(private) inputs from the parties, we can have every party commit to its random tape, and then
attempt to realize FDCorr by a protocol which is secure with (non-identifiable) abort; if the evaluation
aborts then the parties open the commitments to their random tapes and use these tapes to detect
which party cheated. Note that, as the parties have no private inputs, announcing their views does
not violate privacy of the computation.

For the above idea to work we need to ensure that deviation from the honest protocol can be
consistently detected by every party (upon opening the committed random coins). Therefore, we
define the following P-verifiability property. For any given execution of a protocol Π, we say that
a party pi correctly executed Π with respect to (xi, ri) (up to round ρ) in the CRS model if pi sent
all his messages as instructed by Π on this input xi, random coins ri and the common reference
string C. Let Π be a protocol in the CRS model which starts by having every party commit to its
random tape. Π is P-verifiable if there exists a deterministic polynomial algorithm D, called the
detector, with the following property: given the CRS, the inputs of the parties, their committed
randomness, and the view of any honest pj , D outputs the identity of a party pi ∈ P who did not
correctly execute Π (if such a party exists). Formally:

Definition 9 (P-verifiability). Let Π be a multi-party protocol in the CRS model which starts by
having every party publicly commit to its randomness. We say that Π is P-verifiable if there exists
a deterministic polynomial algorithm D, called the detector, which on input the CRS, an n-vector
~U = ((x1, r1), . . . , (xn, rn)) of input/randomness-pairs, where ri is the pi’s initially committed
random string, and the view of any honest p ∈ P in any given round of an execution of Π, D
outputs a value i ∈ {0, 1, . . . , n} (the same for all p ∈ P) satisfying the following properties: if
there exists at least one party in P that did not correctly execute Π with respect to (xi, ri) and the
CRS up to that round, then i is the index of such a party, otherwise, i.e., if no such party exists,
i = 0.

As our protocols makes black-box use of a UC secure one-out-of-two-OT (in short, 12OT)
protocol in the CRS model, for it to be P-verifiable the underlying 12OT protocol needs to also be
P-verifiable. Therefore, in the following, first, we show how to obtain from any given OT protocol
ΠOT a P-verifiable OT protocol ΠVOT (making black-box use of ΠOT), and, subsequently, we show
how to use ΠVOT to transform an OT-hybrid SFE protocol into a P-verifiable SFE protocol in the
CRS model. Finally, at the end of the current section, we show how to use our P-verifiable SFE

19

protocol to implement any sampling functionality FDCorr with identifiable abort making black-box
use of ΠOT.

P-Verifiable OT Let ΠOT be a (two-party) protocol which adaptively UC securely realizes FOT,
among parties p1 and p2 in the CRS model (e.g., [11, 39]). For i ∈ {1, 2} denote by f iΠOT

the next
message function of pi defined as follows: let Viewi be the view of party pi at the beginning of
round ρ in an execution of ΠOT;

12 then f iΠOT
(Viewi) = m is the message which pi sends in round

ρ of protocol ΠOT, given that his current view is Viewi (if ρ is the last round, then, by default,
m = (out, y), where y is pi’s output). Observe that fΠOT

is a deterministic function. Without loss
of generality, assume that protocol ΠOT has a known number of rounds RndΠOT , where in each round
only one of the parties p1 and p2 sends a message (from {0, 1}k). Let, also, FPOT denote the multi-
party extension of FOT, in which parties other than p1 and p2 provide a default input and receive
a default output, i.e., FPOT corresponds to the function fPot((x0, x1), b, λ, . . . , λ) = (⊥, xb,⊥,⊥). We
describe a multi-party P-verifiable protocol ΠVOT which securely realizes the functionalityFPOT.

The protocol ΠVOT works as follows: Initially, every party commits to its random tape. Subse-
quently, the parties execute their ΠOT instructions with the following modification: whenever, for
i, j ∈ {1, 2}, pi is to send a message m ∈ {0, 1}k to pj , he chooses the first k unused bits from his
random tape (denote by K the string resulting by concatenating these bits), broadcast a one-time
pad encryption c = m⊕K of m with key K, and privately opens the corresponding commitments
towards pj . If the opening fails then pj publicly complains and pi replies by broadcasting K; pj
recovers m by decrypting c. Clearly, the above modification does not affect the security of ΠOT

(as all keys are chosen using fresh and independent randomness), therefore ΠVOT securely realizes
FPOT. Additionally, the above protocol is P-verifiable: indeed, because the entire transcript is
broadcasted, the view of any party contains all information needed to check whether or not the
transcript is consistent with any given set of inputs and committed randomness. For simplicity, in
the following we state the security in the {CRS, F̂com}-hybrid model i.e., where, in addition to the
CRS the protocol can make ideal calls to a (one-to-many) commitment functionality F̂com which
behaves exactly as Fcom but allows both public and private opening of the committed value (see
Appendix C for a detailed description of F̂com). 13

The formal description of protocol ΠVOT follows. For clarity we assume without loss of generality
that each party pi ∈ P has two distinct and independent random tapes ri,1 and ri,2, where ri,1
is used as the random tape for ΠOT and ri,2 is used only in ΠVOT for encrypting the broadcasted
messages. We denote by K ∈ri,2 {0, 1}` the operation of taking K to be the first ` unused bits of
ri,2.

12Recall that Viewi consists of the inputs and randomness of pi along with all messages received up to the current
round.

13We can use any of the CRS-based commitment protocols [6, 7] to instantiate F̂com.

20

Protocol ΠVOT (P, p1, p2, (x1,0, x1,1), b)

Inputs and randomness: p1 has input x1 = (x1,0, x1,1) ∈ {0, 1}2 and p2 has input x2 = b ∈ {0, 1}
(every pi ∈ P \ {1, 2} has no input, i.e., xi = λ). Each party pi ∈ P has two random coins sequences,
denoted by ri,1 and ri,2. Initially, for each pi ∈ P : ViewΠOT

i := (xi, ri,1).

1. Each party pi ∈ {p1, p2} commits to its random tapes ri,1 and ri,2.

2. For each round ρ of ΠOT the following steps are executed sequentially by each pi ∈ {p1, p2} :

2.1. pi computes m := f iΠOT
(ViewΠOT

i).

2.2. pi picks K ∈ri,2 {0, 1}k and opens the commitments to the bits of K privately towards p3−i
who denotes the opened values as K(3−i).

2.3. p3−i broadcast a complain bit b, where b = 1 if p3−i received no message in the previous
step (i.e., the opening failed) and b = 1 otherwise.

2.4. If p3−i broadcasted b = 1, then pi broadcasts K; p3−i adopts the broadcasted value as the
value for K(3−i) (K(3−i) = 0` if an invalid value is broadcasted).

2.5. pi broadcasts c := m⊕K.

2.6. p3−i computes m(3−i) := c ⊕ K(3−i) and adds it to his ΠOT view, i.e., sets ViewΠOT

3−i :=

(ViewΠOT

3−i,m
(3−i)).

3. In the last round of ΠOT, each pi ∈ {p1, p2} computes (out, yi) := f iΠOT
(ViewΠOT

i) and outputs yi.
Every pj ∈ P \ {p1, p2} outputs ⊥.

The following lemma states the security of protocol ΠVOT; we point out that all security state-
ments in the lemma are with respect to an adaptive adversary.

Lemma 10. Assuming ΠOT UC securely realizes the two-party 12OT functionality FOT in the
CRS model, the protocol ΠVOT (defined above) satisfies the following properties: (security) ΠVOT

UC securely realizes the multi-party extension FPOT of FOT (defined above) in the {CRS, F̂com}-
hybrid model; (P-verifiability) ΠVOT is P-verifiable. Furthermore, ΠVOT makes black-box use of (the
next-message function of) ΠOT.

Proof. The fact that ΠVOT makes black-box use of (the next-message function of) ΠOT follows by
inspection of the protocol. We next argue the security and the P-verifiability property, separately:

(security) The correctness of the outputs follows trivially from the security of ΠOT. We next provide
a simulator for any given adversary A (we denote by H and M the sets of honest and corrupted
parties, respectively):

As usually, S gets to emulate the CRS and the functionality F̂com towards A. Similarly to the
parties, S chooses for the players p1 and p2 random tapes r1,2 and r2,2, respectively, from which
the one-time pad keys will be drawn. For any of the parties in P \ {p1, p2}, the simulation of these
parties is trivial as they send no message during the protocol. In particular, if A requests to corrupt
any of those parties, S chooses independent random tapes r1 and r2 and hands them to A. For
emulating p1 and p2, S uses the simulator SOT which is guaranteed to exists by the security of ΠOT

as follows (any messages intended to FOT are sent by S to FPOT): As long as none of the players p1

and p2 is corrupted, S chooses for each round ρ in which pi is to send a message a new ciphertext
ci,ρ ∈ri,2 {0, 1}k, sends ci,ρ to A and plays with SOT the ρ-th round of the protocol (with both
p1 and p2 honest). If at some round A requests to corrupt one of the parties in {p1, p2} for the
first time (wlog assume that this party is p1), then S corrupts p1 receives his input and emulates a
corruption request to SOT (for p1) and receives from him randomness r1,1. S hands r1,1 and r1,2 as

21

p1’s randomness to A. For the remaining rounds of the simulation, while only p1 is corrupted, S uses
tape r2,2 for p2’s one-time pad keys, and in each round ρ uses SOT to obtain p2’s ρ-round message
m2,ρ, samples a key K2,ρ ∈r2,2 {0, 1}k and emulates towards A a broadcast of c2,ρ = m2,ρ⊕K2,ρ. If
the adversary requests to corrupt also p2 (say in round ρ2 of te simulation) then S corrupts p2 and
emulates a corruption request to SOT (for p2)14 and receives from him randomness r2,1 (note that
the (adaptive) UC security of ΠOT ensures that this randomness is consistent with the messages
that the corrupted p1 has seen so far and the randomness r1,1)). S hands r2,1 and r2,2 to A as the
random tapes of p2 and from there on simply forwards A’s messages to Z.

The fact that S is a good simulator for ΠVOT follows from the soundness of SOT’s simulation for
ΠOT and is argued as follows: The distribution of the messages seen by A is indistinguishable from
one-time pad encryptions (and corresponding keys) of messages that adversary AΠOT attacking ΠOT

would receive in a simulation of ΠOT with SOT. Hence, if A can distinguish between the ΠVOT view
and the view produced by S, then he can be used by a ΠOT adversary to distinguish between a view
of the execution of ΠOT and a simulated view from SOT contradicting the security of ΠOT.

(P-verifiability) The P-verifiability follows by inspection of the protocol and the fact that our
sequential way of sampling the keys from r1,2 and r2,2 ensures that the random coins of p1 and p2

uniquely define which messages should be input to the (deterministic) next message function fΠOT

of ΠOT. Indeed, let U = ((x1, ~r1), (x2, ~r2), . . . , (xn, ~rn)), where for each j ∈ [n]: ~rj = (rj,1, rj,2) is
the vector of pj ’s committed ramdon tapes. The algorithm D works as follows: It emulates, round
by round, an execution of ΠVOT where p1 and p2 have inputs/randomness (x1, ~r1) and (x2, ~r2),
respectively, and compares the result with the broadcasted values. Because the second tape of pi
uniquely defines the (plain-text) messages m (via the one-time pad decryption with keys from it)
D can recover all underlying ΠOT messages and compare them to an execution of ΠOT with these
inputs and the first random tapes. As soon as D finds a round in which, according to the given view
from the protocol execution) some pi did not send the same message as the simulated execution, D
outputs i and halts. Otherwise D outputs 0. Clearly, as all the messages are broadcasted (either
in plaintext or encrypted) and ~U uniquely defines all the messages that should be broadcasted and
the encryption keys, if some party pj does not correctly follow its ΠVOT instructions with respect

to ~U , D will output i = j.

In the following, we refer to ΠVOT as the P-verifiable OT protocol corresponding to ΠOT.

P-verifiable MPC with (non-identifiable) abort The next step is to add verifiability to a
given adaptively UC secure OT-hybrid MPC protocol ΠFOT . Wlog, we assume that ΠFOT only
makes calls to FOT and to a broadcast channel. (Indeed, FOT can be used to also implement secure
bilateral communication as follows: to send message x, the sender inputs (x, x) and the receiver
input b = 1.)

Denote by ΠΠVOT the version of ΠFOT which starts off by having every party publicly commit
to its random tape and has all calls to FOT replaced by invocations of protocol ΠVOT instantiated
with fresh/independent randomness. More precisely, ΠΠVOT is derived from ΠFOT as follows:

Initially every party commits to its random tape using one-to-many commitments.

All calls to FOT (including the ones used as above to implement bilateral communication) are
replaced by invocations of protocol ΠVOT. (The random coins do not need to be committed
again; the above commitments are used in the invocations of ΠVOT.)

14Note that FOT is deterministic hence S can trivially emulate its internal state when corrupting p1 and p2.

22

For each party pi a specific part of pi’s random tape is associated with each invocation of ΠVOT.
This part is used only in this invocation and nowhere else in the protocol.

The following lemma states the achieved security, where as in Lemma 10 all security statements
are with respect to an adaptive adversary. The proof follows from the security of ΠFOT and the
security/P-verifiability of ΠVOT.

Lemma 11. Let F be a UC functionality and ΠFOT be a protocol which unconditionally UC securely
realizes F in the FOT-hybrid model with (non-identifiable) abort, and for a protocol ΠOT which UC
securely realizes FOT in the CRS model, let ΠVOT be the corresponding P-verifiable protocol (as
in Lemma 10). Then protocol ΠΠVOT, defined above, satisfies the following properties: (security)
ΠΠVOT UC securely realizes F with (non-identifiable) abort in the {CRS, F̂com}-hybrid model; (P-
verifiability) Protocol ΠΠVOT is P-verifiable. Furthermore, ΠΠVOT makes black-box use of (the next-
message function of) ΠOT.

Proof (sketch). The fact that ΠVOT makes black-box use of ΠOT follows from the fact that ΠFOT is
information-theoretically secure in the FOT-hybrid world and the fact that ΠVOT makes black-box
use of ΠOT. We next argue the security and the P-verifiability property, separately:

(security) The security of ΠΠVOT is argued as follows: Let ΠF
P
OT be the protocol which results by

replacing, in ΠFOT , calls to FOT by calls to FPOT (where in each such call every party other than
the OT sender and receiver hands FPOT a default input λ). Then it is straight-forward to verify

that ΠF
P
OT unconditionally UC securely emulates ΠFOT . Given this fact, the security of ΠΠVOT in

the {CRS, F̂com}-hybrid model follows by the security of ΠVOT for FPOT in the {CRS, F̂com}-hybrid
model by applying the JUC theorem [8].

(P-Verifiability) Let ~U denote a given vector of inputs and randomness and Viewi denote the view
of any party pi. D emulates in a step-by-step manner an execution of ΠFOT using the inputs and
randomness implied by ~U (and also the CRS) and compares all the messages against Viewi. For
each invocation of ΠVOT with inputs x1, x2 from pi and b from receiver pj , D runs the corresponding
detector DΠVOT

on these inputs (and input λ for all parties in P \ {pi, pj}) and randomness as

implied by ~U .15 If in some of those invocations DΠVOT
outputs some i 6= 0 then D also output i

and halts. If D completes his step-by-step emulation of ΠΠVOT without finding any inconsistency it
outputs i = 0. Clearly, as all the messages are broadcasted, either in plaintext or encrypted, and ~U
uniquely defines all the messages that should be broadcasted and the corresponding keys, if some
party pj does not correctly follow its ΠΠVOT instructions with respect to ~U , D will output i = j (if
there is more than one such party, D will output the one that deviates first).

The Setup Compiler We next describe the protocol ΠDCorr which securely realizes any given
sampling functionality FDCorr (for an efficiently computable distribution D), while making black-box

use of a UC secure OT-protocol in the CRS model and ideal calls to F̂com. The idea is to, first, have
every party commit to its random coins and then invoke ΠΠVOT to securely realize functionality
FDCorr using these coins; if the evaluation aborts, then the parties open their committed randomness
and use the detector D to figure out which party cheated. Because the parties have no inputs,
opening their randomness does not violate privacy.

15Recall that by construction of the protocol, each invocation of ΠVOT uses a unique part of the randomness of
each party associated with it.

23

Unfortunately, the above over-simplistic protocol is not simulatable. Intuitively, the reason is
that ΠΠVOT might abort after the adversary has seen his outputs of FDCorr, in which case the simulator
needs to come up with random coins for the simulated honest parties which are consistent with the
adversary’s view. We resolve this by the following technical trick, which ensures that S needs to
invoke FDCorr only if the computation of ΠΠVOT was successful: instead of directly computing FDCorr,
we use ΠΠVOT to realize the functionality 〈FDCorr〉 which computes an authenticated (by means of i.t.
signatures) n-out-of-n secret sharing of the output of FDCorr. This sharing is then reconstructed by
having every party announce its share. The authenticity of the output sharing ensures that either
the reconstruction will succeed or a party that did not announce a properly signed share will be
caught, in which case the protocol identifies this party. The detailed description of protocol ΠDCorr
is given in the following.

Let FDCorr be a sampling functionality for the distribution D, i.e., FDCorr securely evaluates
fD(λ, . . . , λ) = R := (R1, . . . , Rn), where R ∈ ({0, 1}∗)n is drawn from the efficiently sampleable
distribution D. We first describe the functionality 〈FDCorr(P)〉 which computes an authenticated
sharing of the output of FDCorr as a public vector.

More concretely, 〈FDCorr〉 computes (R1, . . . , Rn) = fD(λ, . . . , λ) as FDCorr would, but instead of
handing a (private) output yi to each pi, the functionality does the following: it computes a vector
~y = (y1, . . . , yn), where each yi = Ri +Ki for a uniformly chosen one-time pad key Ki ∈ {0, 1}|Ri|.
Subsequently, 〈FDCorr〉 computes an authenticated n-out-of-n sharing (e.g., a sum sharing) 〈~y〉 of
~y, by choosing 〈~y〉1, . . . , 〈~y〉n uniformly at random such that

∑n
i=1〈~y〉i = ~y; each ith share 〈~y′〉i

is authenticated as follows: 〈FDCorr〉 generates a fresh key-pair (ski, (vki,1, . . . , vki,n) and computes
a corresponding signature σi := Sign(〈~y〉i, vki). The actual output of each pi ∈ P is then his
authenticated share (〈~y〉i, σi) along with his corresponding verification keys (vk1,i, . . . , vkn,i) and
the one-time pad key Ki. Observe that the signing keys are not given to any party.

〈FDCorr(P)〉

Inputs and randomness: Every pi has input xi = λ.

1. Sample (R1, . . . , Rn) from distribution D.

2. For each i ∈ [n] choose Ki ∈R {0, 1}|Ri| uniformly at random and compute ~y = (y1, . . . , yn) =
(R1 +K1, . . . , Rn +Kn).

3. Choose 〈~y〉1, . . . , 〈~y〉n ∈ {0, 1}|R1| × · · · × {0, 1}|Rn| uniformly at random such that
∑n
i=1〈~y〉i = ~y

4. For each i ∈ [n], generate a fresh key-pair (ski, (vki,1, . . . , vki,n)) for signing 〈~y〉i, and compute a
signature σi := Sign(〈~y〉i, ski).

5. Output to each pi the tuple ((〈~y〉i, σi), ((vk1,i, . . . , vkn,i),Ki).

We are now ready to describe the protocol ΠDCorr(P).

24

Protocol ΠDCorr (P)

Inputs: Every pi has input xi = λ and random coins denoted by ri.

1. Every pi ∈ P commits to his entire random-tape ri (using one-to-many commitment).

2. The parties invoke protocol ΠΠVOT to compute the functionality 〈FDCorr(P)〉 using their random
tapes (r1, . . . , rn).

3. If ΠΠVOT aborts, then the parties execute the following steps to identify a corrupted party:

3.1. Every pi ∈ P publicly opens his commitment to ri; if the opening fails, then the protocol
aborts with pi (if there is more than one such pi’s take that one with the smallest index);
otherwise denote by (r′1, . . . , r

′
n) the announces strings.

3.2. The parties apply the detector D that is guaranteed to exists from the Π-identifiability of
ΠΠVOT on input the vector ~U = ((λ, r′1), . . . , (λ, r′n)), and abort with pi, where i denotes the
output of D.

4. If ΠΠVOT did not abort, denote by ((〈~y〉i, σi), (vk1,i, . . . , vkn,i),Ki) the output of pi.

5. The parties execute the following steps to reconstruct the sharing:

5.1. Every pi ∈ P broadcast (〈~y〉i, σi); If the signature is not valid then abort with pi (if there is
more than one such pi take the one with the smallest index).

5.2. Every party reconstructs ~y = (y1, . . . , yn) by adding the announced shares and outputs
Ri := yi +Ki.

Theorem 12. Assuming ΠOT, ΠVOT, and ΠΠVOT as in Lemma 11, the protocol ΠDCorr securely realizes
FDCorr with identifiable abort in the CRS model while making black-box use of ΠOT and ideal calls to

the commitment functionality F̂com.

Proof (sketch). We start by showing correctness: On the one hand, when ΠΠVOT does not abort,
then it follows from the security of ΠΠVOT that it outputs an authenticated sharing of the output
of FDCorr. As long as the adversary announces the shares of corrupted parties with their actual
signatures, the completeness of our signature scheme ensures that the sharing will be correctly
reconstructed. Otherwise, i.e., if some corrupted pi tries to announce a signature other than σi,
the unforgeability property of the i.t. signatures ensure that with overwhelming probability all
parties will reject it and abort with pi. One the other hand, when ΠΠVOT aborts, we argue that
the output is the index of a corrupted party: If the opening of some commitment fails then this is
trivial. Otherwise, the binding property of the commitment scheme ensures that with overwhelming
probability for all r′i ∈ [n] : r′i = ri. Because honest parties follow their protocol correctly with

respect to ~U , it must be the case that D outputs either an index of a corrupted party or 0. However,
outputting 0 would imply that every pi ∈ P follows his protocol instructions correctly with respect
to ~U , in which case the security of ΠΠVOT ensures that it does not abort in Step 3. In the remainder
of the proof we describe the simulator and show the soundness of the simulation.

A simulator S for any adversary A works as follows (wlog assume that H = (p1, . . . , pm) ia the
set of honest parties): If every party is corrupted then the simulation is trivial. For the remainder
of the proof, assume that |H| > 0: For simulating the first step, S commits to random tapes
and emulates broadcasting these commitments to A; S also receives from A the commitments of
corrupted parties.

For the simulation of Step 2 (i.e., the execution of ΠΠVOT) S uses the simulator SΠΠVOT to
emulate towards A an execution of the first two steps of the protocol with honest parties p1, . . . , pm.
Moreover, S simulates 〈FDCorr〉 towards SΠΠVOT .

25

We next describe how S proceeds in each of the following two cases: (1) SΠΠVOT aborts, and
(2) SΠΠVOT does not abort.

In Case (1) S does the following: At the point of abort, S emulates a corruption request to
SΠΠVOT for all remaining parties in P (i.e., p1 . . . , pm) with input λ for all of them; as a reply, S
receives from SΠΠVOT random tapes r1, . . . , rm for all honest parties. S uses the equivocality of the
commitments generated in Step 1 and opens them towards the adversary as r1, . . . , rm; moreover,
S receives from A the openings to his own commitments, denote by rm+1, . . . , rn (if any of the
openings fails then S aborts with the corresponding party). Finally, S uses the detector D to
find the index i of a party which did not correctly execute the protocol with respect to the vector
~U = ((λ, r1,), . . . , (λ, rn)) and sends FDCorr the message (abort, pi). Note that all the messages in
ΠΠVOT are sent over the broadcast channel, and therefore the entire transcript of the protocol
appears in the interface between S and A.

In the following we argue that the distribution of the index i output by S is computationally
indistinguishable from the distribution of the index with which the real protocol aborts. For proving
this, we need to prove that the view of A in the protocol execution is indistinguishable from his
view in the simulated execution. To this direction we consider the following hybrid experiments:

H1: is the above simulation.

H2: is the same as H1 with the difference that the messages from S’s internal emulation of
〈FDCorr〉, are replaced by the actual messages in the state of 〈FDCorr〉 in the protocol execution.

H3: the real protocol execution.

We show that A (seeing his view up to the point of abort) cannot distinguish between (A) H1 and
H2, and in (B) H2 and H3. The indistinguishability of H1 and H3 follows then from the standard
(triangular inequality) property of indistinguishability. To prove (A), we observe that, as 〈FDCorr〉
has no input, the internal emulation of S is distributed identically to an actual call to 〈FDCorr〉; hence
H1 and H2 are identically distributed. Similarly, (B) follows from the fact that SΠΠVOT is a good
simulator for ΠΠVOT . Indeed, if A can distinguish between H2 and H3 then he can be used by an
adversary A′ to attack ΠΠVOT as follows: A′ runs A up to the point of abort, then corrupts all
parties, receives the random values from the simulator SΠΠVOT , hands them to A, and output his
output. Clearly, if A has a distinguishing advantage in distinguishing between H2 and H3 then so
does the above attacker, contradicting the security of ΠΠVOT .

Case (2) (ΠΠVOT does not abort): In this case the committed randomness of the parties is no longer
revealed. Furthermore, the outputs of the adversary are shares of the public output and therefore
provide no information on the actual output. As soon as (in the simulation) all outputs have
been distributed, S queries the functionality FDCorr and receives the actual outputs Rm+1, . . . , Rn
of the adversary. S changes the last n − m components of the share of p1 ∈ H (i.e., the ones
corresponding to the adversary’s outputs) so that so that together with the remaining shares (i.e.,
shares of parties in P \{p1}) they reconstruct to Rm+1 + K̂m+1, . . . , Rn+ K̂n, where K̂m+1, . . . , K̂n

are the simulated one-time pad keys that S handed A as part of his ΠΠVOT output. Furthermore,
the simulator generates a valid signature on p1’s modified shares with the key he used during
his emulation of FDCorr during the simulation of ΠΠVOT in the previous step. Finally, S emulates
towards A broadcast of the shares of honest parties and the corresponding signatures and receives
from A the ones corresponding to the corrupted parties. If A broadcasts, on behalf of some pi, an
inconsistent share or an invalid signature, then S sends FDCorr the message (abort, pi). Otherwise, S
halts with A’s output.

26

The indistinguishability of the above simulation follows from the fact that the outputs of A from
ΠΠVOT are shares from an n-out-of-n sharing of the public output and therefore independent of the
actual outputs. Indeed, exactly as in the real protocol, in the above simulation the adversary sees
shares of a sharing of a vector where the last n−m components are encryptions of his output with
the keys he received from the simulation of ΠΠVOT , whereas the first m components (corresponding
to honest parties) are encryptions of values for which A does not get any information on the
keys.

By combining Theorems 6 and 12 with the universal composition theorem, and instantiating
ΠΠVOT with, e.g., the IPS protocol [32] we obtain the following corollary.

Corollary 13. There exists a protocol which UC realizes any given functionality with identifiable
abort, while making black-box use of a protocol for UC realizing FOT and a protocol for UC realizing
F̂com in the CRS model.

The Stand-alone model. The proof of Theorem 12 does not use the equivocality of the com-
mitments. Therefore, assuming an adaptive 12OT protocol and extractable commitments, it can
be carried over to the stand-alone setting. Such extractable commitments can be constructed by
making a black-box use of a one-way function [38], which in turns can be obtained via a black-box
use of OT [27]. Thus, we get the following result for the stand-alone model.

Lemma 14 (Stand-alone). There exists a protocol which securely realizes any given functionality
with identifiable abort in the plain model making black-box use of an adaptively secure OT protocol
in the plain model.

Proof (sketch). First, it is straight-forward to verify that replacing in ΠVOT the calls to the UC
secure OT protocol by an adaptively secure OT protocol in the plain model, we get an adap-
tively secure protocol for realizing the stand alone version of FPOT, i.e., evaluating the function
fPOT ((x0, x1), b, λ, . . . , λ) = (⊥, xb,⊥, . . . ,⊥), which is also P-verifiable.16 In fact both the simula-
tor and the detector D follow the same strategy as in Lemma 10.

Similarly, by replacing uses to ΠVOT with the above stand-alone protocol in ΠΠVOT (and ensuring
that no two instances are run at the same time) we obtain a stand-alone counterpart of ΠΠVOT ,
which securely implements any given functionality in the stand-alone model making black-box use
of the underlying OT protocol. Again, both the simulator and the detector D follow the same
strategy as in Lemma 11, where the fact that no two OT’s are run at the same time ensures that
we can use the modular composition theorem instead of the UC one.

For the remainder of the proof, we show that the protocol ΠDSA-Corr that results by replacing
in ΠDCorr the protocol ΠΠVOT and the commitments with with the above stand-alone SFE protocol
and stand-alone extractable commitments securely implements the sampling functionality FDCorr.
Indeed, we observe that the simulator of Theorem 12 does not use the adversary’s committed
randomness in his simulation unless it has been openly revealed (i.e., properly decommitment).
Hence, extractable commitments suffice for the simulation. However, to ensure unanimous abort
we need to make sure that the used commitments have public opening (i.e., are one-to-many
commitments). Such commitments making black-box use of the underlying one-way function can
be easily derived by modifying the construction of Pass and Wee [38] as follows: all the messages

16The definition of P-verifiability in the standalone plain setting is analogous with the one in the CRS model with
the difference that D does not take the CRS as input.

27

are broadcasted and the challenges are computed via a multi-party coin-tossing protocol, e.g. [23].
The proof that the above is a good one-to-many commitment scheme follows easily from the proof
from [38].

Finally, we point out that the one-way function in the above commitments can also be con-
structed using black-box OT [27]. Such instantiation makes ΠDSA-Corr a protocol which only makes
black-box use to an OT protocol in the plain (standalone) model. Hence, per the modular compo-
sition theorem, we can use ΠSA-Corr to instantiate the sampling functionality in Corollary 8. Since,
Corollary 8 is unconditional, the resulting protocol makes black-box use of the underlying OT.

References

[1] Amos Beimel, Yehuda Lindell, Eran Omri, and Ilan Orlov. 1/p-Secure multiparty compu-
tation without honest majority and the best of both worlds. In Phillip Rogaway, editor,
CRYPTO 2011, volume 6841 of LNCS, pages 277–296. Springer, August 2011.

[2] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for noncryp-
tographic fault-tolerant distributed computations. In 20th ACM STOC, pages 1–10. ACM
Press, May 1988.

[3] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic
encryption and multiparty computation. In Kenneth G. Paterson, editor, EUROCRYPT 2011,
volume 6632 of LNCS, pages 169–188. Springer, May 2011.

[4] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of
Cryptology, 13(1):143–202, 2000.

[5] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

[6] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 19–40. Springer, August 2001.

[7] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-
party and multi-party secure computation. In 34th ACM STOC, pages 494–503. ACM Press,
May 2002.

[8] Ran Canetti and Tal Rabin. Universal composition with joint state. In Dan Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 265–281. Springer, August 2003.

[9] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure proto-
cols. In 20th ACM STOC, pages 11–19. ACM Press, May 1988.

[10] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Simple, black-box
constructions of adaptively secure protocols. In Omer Reingold, editor, TCC 2009, volume
5444 of LNCS, pages 387–402. Springer, March 2009.

[11] Seung-Geol Choi, Jonathan Katz, Hoeteck Wee, and Hong-Sheng Zhou. Efficient, adaptively
secure, and composable oblivious transfer with a single, global crs. In Kaoru Kurosawa and
Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 73–88. Springer Berlin
Heidelberg, 2013.

28

[12] R Cleve. Limits on the security of coin flips when half the processors are faulty. In Proceedings
of the Eighteenth Annual ACM Symposium on Theory of Computing, STOC ’86, pages 364–
369, New York, NY, USA, 1986. ACM.

[13] Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Multiparty computation from thresh-
old homomorphic encryption. In EUROCRYPT, pages 280–299, 2001.

[14] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Christian Miles, and Nigel P. Smart. Im-
plementing AES via an actively/covertly secure dishonest-majority MPC protocol. In Ivan
Visconti and Roberto De Prisco, editors, SCN 12, volume 7485 of LNCS, pages 241–263.
Springer, September 2012.

[15] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P.
Smart. Practical covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits.
In Jason Crampton, Sushil Jajodia, and Keith Mayes, editors, ESORICS 2013: 18th European
Symposium on Research in Computer Security, volume 8134 of Lecture Notes in Computer
Science, pages 1–18, Egham, UK, Sep 9–13, 2003. Springer, Berlin, Germany.

[16] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 643–662. Springer, August 2012.

[17] Tore Kasper Frederiksen, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Peter Sebastian Nord-
holt, and Claudio Orlandi. Minilego: Efficient secure two-party computation from general
assumptions. In EUROCRYPT, pages 537–556, 2013.

[18] Juan A. Garay, Philip D. MacKenzie, Manoj Prabhakaran, and Ke Yang. Resource fairness and
composability of cryptographic protocols. In Shai Halevi and Tal Rabin, editors, TCC 2006,
volume 3876 of LNCS, pages 404–428. Springer, March 2006.

[19] Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cambridge University
Press, Cambridge, UK, 2001.

[20] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge
University Press, Cambridge, UK, 2004.

[21] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game, or a
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM
STOC, pages 218–229. ACM Press, May 1987.

[22] S. Dov Gordon and Jonathan Katz. Partial fairness in secure two-party computation. In Henri
Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 157–176. Springer, May
2010.

[23] Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti. Constructing non-malleable
commitments: A black-box approach. In FOCS, pages 51–60. IEEE Computer Society, 2012.

[24] Iftach Haitner, Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. Black-box
constructions of protocols for secure computation. SIAM J. Comput., 40(2):225–266, 2011.

29

[25] Martin Hirt and Ueli M. Maurer. Player simulation and general adversary structures in perfect
multiparty computation. Journal of Cryptology, 13(1):31–60, 2000.

[26] Martin Hirt, Ueli M. Maurer, and Vassilis Zikas. MPC vs. SFE: Unconditional and compu-
tational security. In Josef Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of LNCS, pages
1–18. Springer, December 2008.

[27] Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity-based
cryptography. In 30th FOCS, pages 230–235. IEEE Computer Society Press, October / Novem-
ber 1989.

[28] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers effi-
ciently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–161. Springer,
August 2003.

[29] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. On combining privacy with
guaranteed output delivery in secure multiparty computation. In Cynthia Dwork, editor,
CRYPTO 2006, volume 4117 of LNCS, pages 483–500. Springer, August 2006.

[30] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure
multiparty computation. In David S. Johnson and Uriel Feige, editors, 39th ACM STOC,
pages 21–30. ACM Press, June 2007.

[31] Yuval Ishai, Rafail Ostrovsky, and Hakan Seyalioglu. Identifying cheaters without an honest
majority. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 21–38. Springer,
March 2012.

[32] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer
- efficiently. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 572–591.
Springer, August 2008.

[33] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally composable
synchronous computation. In TCC 2013, volume 7785 of LNCS, pages 477–498. Springer Berlin
Heidelberg, 2013. Full version available at Cryptology ePrint Archive, Report 2011/310.

[34] Marcel Keller, Peter Scholl, and Nigel P. Smart. An architecture for practical actively secure
MPC with dishonest majority. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung,
editors, ACM CCS 13: 20th Conference on Computer and Communications Security, pages
549–560, Berlin, Germany, Nov 4–8, 2013. ACM Press.

[35] Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. Information-theoretically secure protocols
and security under composition. In Jon M. Kleinberg, editor, 38th ACM STOC, pages 109–118.
ACM Press, May 2006.

[36] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A
new approach to practical active-secure two-party computation. In CRYPTO, pages 681–700,
2012.

[37] Shien Jin Ong, David C. Parkes, Alon Rosen, and Salil P. Vadhan. Fairness with an honest
minority and a rational majority. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS,
pages 36–53. Springer, March 2009.

30

[38] Rafael Pass and Hoeteck Wee. Black-box constructions of two-party protocols from one-
way functions. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 403–418.
Springer, March 2009.

[39] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and com-
posable oblivious transfer. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,
pages 554–571. Springer, August 2008.

[40] Birgit Pfitzmann and Michael Waidner. Unconditional byzantine agreement for any number
of faulty processors. In Alain Finkel and Matthias Jantzen, editors, STACS 92, volume 577 of
LNCS, pages 337–350. Springer Berlin Heidelberg, 1992.

[41] Michael O. Rabin. How to exchange secrets with oblivious transfer. Technical Report TR-
81, Aiken Computation Lab, Harvard University, 1981. Online version available at http:

//eprint.iacr.org/2005/187.

[42] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority. In 21st ACM STOC, pages 73–85. ACM Press, May 1989.

[43] Takenobu Seito, Tadashi Aikawa, Junji Shikata, and Tsutomu Matsumoto. Information-
theoretically secure key-insulated multireceiver authentication codes. In Daniel J. Bernstein
and Tanja Lange, editors, AFRICACRYPT 10, volume 6055 of LNCS, pages 148–165. Springer,
May 2010.

[44] Hakan Seyalioglu. Reducing Trust When Trust is Essential. PhD thesis, UCLA, 2012.

[45] Junji Shikata, Goichiro Hanaoka, Yuliang Zheng, and Hideki Imai. Security notions for uncon-
ditionally secure signature schemes. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume
2332 of LNCS, pages 434–449. Springer, April / May 2002.

[46] Colleen Swanson and Douglas R. Stinson. Unconditionally secure signature schemes revisited.
In Serge Fehr, editor, ICITS, volume 6673 of Lecture Notes in Computer Science, pages 100–
116. Springer, 2011.

[47] Andrew C. Yao. Protocols for secure computations. In 23rd FOCS, pages 160–164. IEEE
Computer Society Press, November 1982.

[48] Vassilis Zikas, Sarah Hauser, and Ueli M. Maurer. Realistic failures in secure multi-party
computation. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 274–293.
Springer, March 2009.

A The model (Cont’d)

In this section we give complementary material to Section 2.

31

http://eprint.iacr.org/2005/187
http://eprint.iacr.org/2005/187

A.1 Overview of the UC Security Definition

We provide a high-level description of the UC security definition which should be sufficient for un-
derstanding our results, and we refer interested readers to [5] for a thorough and detailed definition.

In a nutshell, security of protocols is argued via the ideal-world/real-world paradigm. In the real-
world the players execute the protocol over some communication resource, usually authenticated
channels or a broadcast channel. In the ideal-world a specification of the task we want the protocol
to implement is described in terms of code of a trusted functionality F, where: the player sends
their input(s) to F; F runs its program on the received inputs (while running the program, F
might receive additional inputs from the players or the adversary or send values to the adversary),
and returns to the players their specified outputs. The specification of F is such that this ideal-
evaluation captures, as tightly as possible, the goals of the designed protocol.

Intuitively, a protocol π securely realizes a functionality F, when the adversary cannot achieve
more in the protocol than what she could achieve in an ideal-evaluation of F. This is formalized
by requiring that for every real-world adversary A, there exists an ideal-world adversary S, aka the
simulator, such that no environment Z can distinguish between interacting with players running the
protocol π in the presence of A and players simply acting as dummy forwarders of inputs/outputs
between Z and F (in an ideal evaluation of F) in the presence of the simulator S. We refer to [5]
for a formal description of the real-world/ideal-world experiment.

The F-hybrid model The power of the simulation-based definition is that it allows arguing
about security of protocols in a composable manner. In particular, let π1 be a protocol which
securely realizes a functionality F1. If we can prove that π2 securely realizes a functionality F2

using ideal-calls to F1 (we say that π1 is an F1-hybrid protocol) then it follows automatically that
the protocol ππ1

2 which results by replacing, in π2, the calls to F1 by invocations of π1 also securely
realizes F2. Therefore we only need to prove the security of π2 in the so-called F1-hybrid model,
where the players run π2 and are allowed to make ideal-calls to F1. We point out that, in UC
protocols come with their hybrids, e.g., in the above example one does not have to write πF1

2 and
can simply write π2; nevertheless, at times we might want to make the actual hybrid used by a
protocol explicit, in which case we write it as in πF1

2 .

Secure Implementation as Protocol Emulation In order to unify the terminology, in [5]
the notion of protocol emulation was introduced which is a generalization of the realization notion
discussed above. More concretely, let π be an F-hybrid protocol. Using the UC notation, for
an adversary A and an environment Z we denote by {execπ,A,Z(k, z)}k∈Z,z∈{0,1}∗ the random
variable ensemble describing the output of Z in an execution of π with adversary A, input z (for
the environment), and security parameter k. (As in [5], for sake of simplicity, whenever it is implied
by the context we omit the parameter k and the environment’s input z from the above notation,
i.e., we write execπ,A,Z instead of {execπ,A,Z(k, z)}k∈Z,z∈{0,1}∗ .)

For a protocol ρ (recall that ρ might have its hybrids) we say that a protocol π (UC) securely
emulates protocol ρ if for every adversary A attacking π there exists an adversary S attacking
protocol ρ and running in time polynomial in the runtime of A such that for any environment Z
the ensembles execπ,A,Z and execρ,S,Z are indistinguishable; formally

execπ,A,Z ≈ execρ,S,Z .

32

In this work we consider both indistinguishability with respect to computationally bounded
environments and adversaries, also known as computational or cryptographic security, as well as for
unbounded adversaries/environments which we refer to as information-theoretic (i.t.) or statistic

security. For clarity, we shall use
c
≈ for computational and

s
≈ for statistical indistinguishability.

Having defined protocol emulation, (secure) realization of a functionality F is equivalent to
secure emulation of the dummy F-hybrid protocol, i.e., the protocol that simply forwards all its
inputs (as received from Z) to F and relays all messages received from F to Z (as outputs).

P-verifiable Information-Theoretic Signatures We recall the definition and construction of
information-theoretic signatures [45, 43] but slightly modify the terminology to what we consider
to be more intuitive. The signature scheme (in particular the key-generation algorithm) needs to
know the total number of verifiers or alternatively the list P of their identities. Furthermore, as
usually for i.t. primitives, the key-length needs to be proportional to the number of times that
the key is used. Therefore, the scheme is parameterized by two natural numbers `S and `V which
will be upper bounds on the number of signatures that can be generated and verified, respectively,
without violating the security.

A P-verifiable signature scheme consists of a triple of randomized algorithms (Gen,Sign,Ver),
where

1. Gen(1k, n, `S , `V) outputs a pair (sk, ~vk), where sk ∈ {0, 1}k is a signing key, ~vk =
(vk1, . . . , vkn) ∈ ({0, 1}k)n is a verification key-vector consisting of (private) verification sub-
keys and `S , `V ∈ N

2. Sign on input a message m and the signing-key sk outputs a signature σ ∈ {0, 1}poly(k)

3. Ver on input the message m, a signature σ and a verification sub-key vki outputs a decision-bit
d ∈ {0, 1}.

Definition 15. A P-verifiable signature scheme (Gen,Sign,Ver) is said to be information-
theoretically (`S , `V)-secure if it satisfies the following properties:

(completeness) A valid signature is accepted from any honest receiver:

Pr[Gen → (sk, (vk1, . . . , vkn)); for i ∈ [n] : (Ver(m,Sign(m, sk), vki) = 1] = 1

Let OSsk denote a signing oracle (on input m, OSsk outputs σ = Sign(m, sk)) and OV~vk denote a

verification oracle (on input (m,σ, i), OV~vk outputs Ver(m,σ, vki)). Also, let A
OSsk ,OV~vk denote an

adversary17 that makes at most `S calls to OSsk and at most `V calls to OV~vk , and gets to see the

verification keys indexed by some set I ([n]. The following properties hold:

(unforgeability) A computationally unbounded adversary cannot generate a valid signature
on message m′ of his choice, other than the one he queries OSsk on (except with negligible
probability). Formally,

Pr


Gen → (sk, ~vk); for some I ([n] chosen by A

OSsk ,OV~vk :(
A
OSsk ,OV~vk

(
~vk|I

)
→ (m,σ, j)

)
∧ (m was not queried to OSsk) ∧

(j ∈ [n] \ I) ∧
(
Ver(m,σ, vkj) = 1

)
 = negl.

17For the purpose of information-theoretic security, the assumed adversary is computationally unbounded.

33

(consistency)18 A computationally unbounded adversary cannot (except with negligible
probability) create a signature that is accepted by some (honest) party and rejected by
some other even after seeing `S valid signatures and verifying `V signatures:

Pr

 Gen → (sk, ~vk); for some I ([n] chosen byA
OSsk ,OV~vk (sk) :

A
OSsk ,OV~vk (sk, ~vk|I)→ (m,σ)

∃i, j ∈ [n] \ I s.t. Ver(m,σ, vki) 6= Ver(m,σ, vkj)

 = negl.

In [45, 46] a signature scheme satisfying the above notion of security was constructed. These
signatures have a deterministic signature generation algorithm Sign. In the following (Figure 1) we
describe the construction from [45] (as described by [46] but for a single signer). We point out that
the keys and signatures in the described scheme are elements of a sufficiently large finite field F (i.e.
|F| = O(2poly(k)); one can easily derive a scheme for strings of length ` = poly(k) by applying an
appropriate encoding: e.g., map the ith element of F to the ith string (in the lexicographic order)
and vice versa. We say that a value σ is a valid signature on message m (with respect to a given
key setup (sk, ~vk)), if for every honest pi : Ver(m,σ, vki) = 1.

Key Generation: The algorithm for key generation Gen(1k, n, `S) is as follows:

1. For (j, k) ∈ {0, . . . , n − 1} × {0, . . . , `S} : choose aij ∈R F uniformly at random and set the
signing key to be (the description of) the multi-variate polynomial

sk := f(y1, . . . , yn−1, x) =

`S∑
k=0

a0,kx
k +

n−1∑
j=1

`S∑
k=0

aj,kyjx
k

2. For i ∈ [n], choose vector ~vi = (vi,1, . . . , vi,n−1) ∈R Fn−1 uniformly at random and set the ith
verification key to be

vki = (~vi, f~vi(x)),

where f~vi(x) = f(vi,1, . . . , vi,n−1, x).

Signature Generation The algorithm for signing a message m ∈ F given the above signing key is (a
description of) the following polynomial

Sign(m, sk) := g(y1, . . . , yn−1) := f(y1, . . . , yn−1,m)

Signature Verification The algorithm for verifying a signature σ = g(y1, . . . , yn) on a given message
m using the i’th verification key is

Ver(m,σ, vki) =

{
1, if g(~vi) = f~vi(m)
0, otherwise

Figure 1: Construction of i.t. signatures [46]

Theorem ([46]). Assuming |F| = Ω(2k) and `S = poly(k) the above signature scheme (Figure 1)
is an information-theoretically (`S , poly(k))-secure P-verifiable signature scheme.

18This property is often referred to as transferability.

34

B The Stand-alone Definition

Because this work is the first to provide a systematic and comprehensive study of security with
identifiable abort, in this section we also provide the definition corresponding to the simple stand-
alone secure function evaluation (SFE) with a static adversary as discussed in [20, 4]. As in UC
security, the stand-alone definition is based on an ideal-world/real-world paradigm.

The real world The real word is the same as in the stand-alone security definitions of [20, 4].
Note that there, the protocols are by default synchronous and are executed over ideally secure
channels. (Hybrid worlds where the parties have access to a broadcast channel and or additional
setup assumptions such as correlated randomness are also supported.) Initially the parties p1, . . . , pn
are given their inputs x1, . . . , xn, respectively (denote ~x = (x1, . . . , xn)). The adversary A is allowed
to corrupt parties and learn their input xi and randomness. Then, a semi-honest adversary allows
the corrupted parties to faithfully execute their protocol but gets read-access to pi’s internal state;
whereas a malicious adversary gets full control over the corrupted parties. As the protocol is
synchronous it proceeds in rounds where every message sent in some round ρ is delivered by the
beginning of round ρ+ 1. At the last round every honest party pi outputs some string yi ∈ {0, 1}∗
which we refer to as pi’s output. For any adversary A and an honest party pi denote by Outπ,A,i(~x)
the random variable describing the output of pi in an execution of protocol π with (inputs) x1, . . . , xn
in the presence of A; 19 for corrupted parties we set Outπ,A,i(~x) =⊥. Denote also by Viewπ,A(~x)
the view of the adversary consisting of his input and randomness, along with all the message that
A sees in the protocol execution. Finally, let

Realπ,A(~x) = (Outπ,A,1(~x), . . . ,Outπ,A,n(~x),Viewπ,A(~x)) .

The ideal world Next we describe the ideal world experiment corresponding to securely eval-
uating a multi-party function f with identifiable abort. As in [20, 4] the ideal experiment involves

the parties interacting with a trusted party computing f , denoted as FfID-SFE. In fact, the experi-
ment is identical to the ideal experiment from [20, 4] with the only difference that the simulator S
is allowed to make the experiment abort with the identity of a corrupted party. We point out that
the simulator can do so even after seeing the outputs of corrupted parties.

19Formally, Outπ,A,i(~x) is a random variable ensemble parameterized by a security parameter k ∈ N; furthermore,
in order to prove/use (modular) composition one also needs to assume that in addition to its inputs, the parties also
have some auxiliary string. To avoid overcomplicating our description we abstract away from these details and refer
to [4] for a detailed and formal handling.

35

SFE with Identifiable abort– Ideal Model. Each pi ∈ P has input xi. The function to be computed
is f(·) and is given to the corresponding trusted party/functionality FfID-SFE as parameter. The simulator S
chooses the parties to corrupt, denote by I the set of corrupted parties, and gets to see and possibly replace
the inputs they hand to the functionality. In the output phase, S gets to see the outputs of corrupted parties
and decide whether or not to abort with the identity of some pi, i ∈ I, depending on them.

1. Every pi ∈ P \ I sends his input to the trusted party. For each pi ∈ I, S after seeing ~x|I sends some

input x′i to FfID-SFE (if S sends no value or an invalid value for some pi ∈ I then the functionality

takes a default value λ for this input). FfID-SFE denotes the vector of received values by (x′1, . . . , x
′
n).

2. FfID-SFE computes f(x′1, . . . , x
′
n) = (y1, . . . , yn) (if f is randomized then FfID-SFE internally generates

the necessary random coins).

3. FfID-SFE sends to S the outputs of corrupted parties. I.e., for each pi ∈ I, FfID-SFE sends yi to S.

4. S sends FfID-SFE a message abt ∈ {(abort, i), ok}. If S sends abt = (abort, i) where i ∈ I, then for

every (honest) pj ∈ P \ I, FfID-SFE updates yj := (abort, j).

5. For each pj ∈ P \ I : FfID-SFE sends pj his output yj (corrupted parties output ⊥).

As above, for any simulator S denote by Outf,S,i(~x) the random variable describing the output
of pi in the above ideal experiment and denote also by Outf,S(~x) the output of S; and, let

idealf,S(~x) = (Outf,S,1(~x), . . . ,Outf,S,n(~x),Outf,S(~x)) .

Definition 16. We say that protocol π information-theoretically securely evaluates the function
f (in the stand-alone model) if for any input vector ~x and for every adversary A there exists a
simulator S with running time efficient in the running time of A such that

idealf,S(~x)
s
≈ Realπ,A(~x).

Similarly, we say that protocol π computationally securely evaluates the function f with identifiable
abort (in the stand-alone model) if for any input vector ~x and for every adversary A there exists a
simulator S as above such that

idealf,S(~x)
c
≈ Realπ,A(~x).

As in the UC case, for abort respecting protocols, the modular composition theorem extends
directly to the case of security with identifiable abort.

C SFE Using Black-box OT (Cont’d)

Here we include complementary material to Section 5 such as formal definitions, protocol descrip-
tions and detailed security proofs. The appendix follows the structure of the main body of the
paper.

For clarity we provide the formal specification of the “dual-opening-mode” one-to-many com-
mitment functionality F̂com which allows for both private and public opening of a committed value.

36

F̂com(P)

Commit Phase: Upon receiving message (msg id, commit, i,m) from party pi ∈ P (or the adversary if
pi is corrupted) where m ∈ {0, 1}∗ and msg id is a valid message ID, record the tuple (msg id, pi,m)
and send the message (msg id, receipt, pi) to every party in P (and to the adversary). Every future
commit message with the same ID msg id is ignored.

Reveal Phase:

Public Reveal Upon receiving a message (msg id, reveal) from party pi ∈ P, if a message
(msg id, commit, i,m) was previously recorder, then send the message (msg id, reveal,m) to
all parties in P (and to the adversary); otherwise ignore the message.

Private Reveal Upon receiving a message (msg id, reveal, pj) from party pi ∈ P, if a message
(msg id, commit, i,m) was previously recorder, then send the message (msg id, reveal,m) to
pj ∈ P (and to the adversary); otherwise ignore the message.

37

	Introduction
	The Model
	Security with Identifiable Abort
	Unconditional ID-MPC from Correlated Randomness
	Commitments with Identifiable Abort
	Setup-Commit-Then-Proof
	The ``Semi-honest to Malicious with Abort'' Compiler

	SFE Using Black-box OT
	The model (Cont'd)
	Overview of the UC Security Definition

	The Stand-alone Definition
	SFE Using Black-box OT (Cont'd)

