
Maliciously Circuit-Private FHE

Rafail Ostrovsky∗ Anat Paskin-Cherniavsky† Beni Paskin-Cherniavsky‡

May 21, 2013

Abstract

We present a framework for constructing compact FHE (fully homomorphic encryption)
which is circuit-private in the malicious setting. That is, even if both maliciously formed public
key and ciphertext are used, encrypted outputs only reveal the evaluation of the circuit on some
well-formed input x∗. Previous literature on FHE only considered semi-honest circuit privacy.
Circuit-private FHE schemes have direct applications to computing on encrypted data. In that
setting, one party (a receiver) holding an input x wishes to learn the evaluation of a circuit C
held by another party (a sender). The goal is to make receiver’s work sublinear (and ideally
independent) of C, using a 2-message protocol. Maliciously circuit-private FHE immediately
gives rise to such a protocol which is secure against a malicious receiver.

Keywords: Fully homomorphic encryption, computing on encrypted data, malicious setting.

∗Department of Computer Science and Mathematics, UCLA, Email: rafail@cs.ucla.edu. Research supported in
part by NSF grants CNS-1118126; CNS-1136174; and Defense Advanced Research Projects Agency through the U.S.
Office of Naval Research under Contract N00014-11-1-0392. The views expressed are those of the authors and do not
reflect the official policy or position of the Department of Defense or the U.S. Government.
†Department of Computer Science, University of California, Los Angeles. E-mail: anpc@cs.ucla.edu The work is

supported in part by the Defense Advanced Research Projects Agency through the U.S. Office of Naval Research
under Contract N00014-11-1-0392. The views expressed are those of the authors and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
‡E-mail: cben@users.sf.net

1

1 Introduction

In this paper, we devise a first fully homomorphic encryption scheme (FHE) [Gen09] that satisfies
(a meaningful form of) circuit privacy in the malicious setting — a setting where the public key
and ciphertext input to Eval are not guaranteed to be well-formed. We present a framework for
transforming FHE schemes with no circuit privacy requirements into maliciously circuit-private
FHE. The transformation technique may be of independent interest, and have various additional
applications. The framework uses techniques akin to Gentry’s bootstrapping and conditional dis-
closure of secrets (CDS [AIR01]) combining a non circuit private FHE scheme, with a HE scheme
for a smaller class of circuts which is circuit-private. We then demonstrate an instantiation of this
framework using schemes from the literature.

The notion of FHE does not require circuit privacy even in the semi-honest setting (but rather
standard IND-CPA security, the ability to evaluate arbitrary circuits on encrypted inputs and
encrypted outputs being“compact”). In [Gen09] and [vDGHV09, appendix C], the authors show
how to make their FHE schemes circuit-private in the semi-honest setting.

One natural application of (compact) FHE is the induced 2-message, 2-party protocol, where a
receiver holds an input x, and a sender holds a circuit C; the receiver learns C(x), while the sender
learns nothing. In the first round the receiver generates a public-key pk, encrypts x to obtain
c, and sends (pk, c). The sender evaluates C on (pk, c) using the schemes’ homomorphism, and
sends back the result. An essential requirement is that receiver’s work (and overall communication)
is poly(λ, n, o(|C|)), where λ is a security parameter, ideally independent of |C| altogether. This
application of homomorphic encryption was studied both in several works predating Gentry’s first
fully homomorphic scheme [IP07, BKOI07], and mentioned in [Gen09], and termed computing on
encrypted data.

The underlying scheme’s IND-CPA security translates into the standard simulation-based notion
of privacy against a malicious sender in the stand-alone model (but not any form of correctness
against a malicious sender). The circuit privacy of the scheme translates into a privacy guarantee
against malicious receiver for that protocol. While standard FHE (without extra requirements) does
not imply any security against malicious receiver, the semi-honestly circuit-private schemes from
(e.g.) [vDGHV09] implies standard simulation-based security against semi-honest receivers. Thus,
such a scheme induces a protocol which is private against malicious corruptions in the stand-alone
model.

Back to maliciously circuit-private FHE, we say a scheme is circuit-private if it satisfies the
following privacy notion ala [IP07]:

Definition 1. (informal). We say a C-homomorphic encryption scheme (KeyGen,Enc,Eval,Dec)
is (maliciosuly) circuit-private if there exists an unbounded algorithm Sim, such that for all se-
curity parameters λ, and all pk∗, c∗ there exists x∗, such that for all C ∈ C over |x∗| variables
Sim(1λ, C(x∗)) =s Eval(1λ, pk∗, C, c∗) (statistically indistinguishable). We say the scheme is semi-
honestly circuit-private if the above holds for all well-formed pk∗, c∗ pairs. 1

An FHE satisfying Definition 1 induces a protocol private against a malicious sender as be-
fore, but private against a malicious receiver with unbounded simulation (as usual, no correctness
guarantees against a malicious sender are given).

1 In particular, for a fully homomorphic schemes, C is the class of all circuits.

2

On one hand, this privacy notion is weaker compared to full security as the simulation is not
efficient; on the other hand, it is stronger in the sense that it holds against unbounded adversaries
as well.

Due to impossibility results for general 2-round sender-receiver computation in the plain model
(e.g. [BLV04]), this notion has become standard in the (non-interactive, plain model) setting of
computing on encrypted data [AIR01, Kal05, IP07] as a plausible relaxation.

It is important to note that we only consider the plain model. If preprocessing, such as CRS
was allowed, then Enc could have added a NIZK proving that the key is well-formed, and that the
ciphertext is a valid ciphertext under that public key. However, this straight-forward approach
does not provide an immediate solution, as it does not guarantee the public key (for example) has
the proper distribution. In particular, the (ad-hoc) DGHV [vDGHV09] scheme variant which is
circuit-private in the semi-honest setting (where (pk, c) is generated as prescribed by the scheme),
needs that pk has the proper distribution (KeyGen(1k)), rather than just being in the support of
that distribution.

1.1 Previous Work

Two-message two party protocols in a setting of computing on encrypted data, robust against
malicious receivers, can be often interpreted as circuit-private (not necessarily compact) HE for
that class of circuits. This is roughly by viewing the receivers’ randomness as the secret key,
round-1 message as an encryption for his input, and the senders’ reply as Eval’s output (also, the
encryption is not necessarily applied bit-by-bit, as done in contemporary definitions of FHE). Such
circuit-private (non-compact) FHE can be obtained by combining an information-theoretic version
of Yao’s garbled circuits with oblivious transfer (OT) secure against malicious receivers [AIR01,
Kal05, IP07]. As information-theoretic Yao is only efficient for NC1, the resulting HE scheme
captures only functions in NC1. Also, this construction has encrypted output size at least |C|,
while the crux of HE is having compact encrypted outputs. Ideally polynomial only in the security
parameter λ. Ciphertext size poly(λ, n) (yet independent of |C|) is also reasonable in the setting
of computing on encrypted data, since the receiver is at least linear in its input size n. Another
relevant work is a recent work on 2-message 2-party evaluation of a public function f(x, y), where
the work of the party holding y (wlog.) is poly(λ, n, log |f |), where |f | is the size of f ’s circuit
representation [DFH12]. The protocol is UC-secure against malicious parties under a new type of
assumption they call “extractable” collision resistant hash functions along with some additional
(more standard) assumptions. Instantiating f with the universal function for evaluating circuits,
would have resulted in HE with good compactness properties for circuits of certain size. However,
this protocol requires CRS, and thus does not translate into (circuit private) HE in the plain model.

Without the circuit privacy requirement, FHE candidates have been proposed in a line of work
following the seminal work of Gentry [Gen09, vDGHV09, BV11], to mention a few. However, these
works typically do not have circuit privacy as a goal. Circuit privacy in the semi-honest setting, for
properly generated pk and ciphertext has been addressed in [Gen09, vDGHV09]. In both works, the
solution method is akin to that used in additively homomorphic cryptosystems [GM84, DJ01]. The
idea in the latter is to (homomorphically) add a fresh encryption of 0. In FHE, the situations is a bit
more complicated, as the output of Eval typically has a different domain than “fresh” encryptions,
so adding a 0 is not straightforward. However, a generalization of this technique often works (see
e.g. [vDGHV09]). Another approach suggested in [vDGHV09, appendix C] for the semi-honest
setting is adding a Yao circuit for decryption, and homomorphically performing the decryption

3

operation during Eval, thereby transforming any scheme into a semi-honestly circuit-private one
(as the decryption circuit is of size poly(λ), the lack of compactness of Yao-based schemes is not
an issue). As mentioned before, the malicious setting (with compact encrypted outputs) has been
addressed in the context of OT [AIR01, Kal05]. For broader classes of functions [IP07] addressed
the question for depth-bounded branching programs. Many of the above protocols rely on the
Conditional Disclosure of Secrets (CDS) methodology [GIKM98]. This is a light-weight alternative
to Zero-knowledge proofs, allowing to disclose a secret string s conditioned on some encrypted input
c satisfying some condition. The idea is that instead of making the client prove that its queries are
well formed, it suffices for the server to disclose its answer c′ to the receiver and only under the
condition that the queries are well formed. Using the homomorphic property of the encryptions,
the latter conditional disclosure can be done without the server even knowing whether the condition
is satisfied. The original CDS solutions from [AIR01] relies on additively homomorphic encryption
over groups of a prime order. An efficient extension to groups of a composite order was suggested
in [Lip05], assuming that the order of the group is sufficiently “rough”. This technique turned
out to generalize to a certain extent to situations where the key and ciphertexts may not be well-
formed. Roughly, for malformed the secret luckily remained hidden even if the CDS was obliviously
performed on the (possibly malformed) encryptions and pk as if they were proper.

1.2 Our result

We devise a framework for transforming FHE schemes with no circuit privacy requirements into
maliciously circuit-private FHE. We use 2 ingredients which have implementations in the literature:
powerful (evaluate circuits) compact FHE without privacy M, and weak (evaluate formulas) non-
compact maliciously circuit-private HE A (here, by “compact” we refer to the strong requirement
that encrypted outputs have size poly(λ), where λ is the security parameter). Our construction
proceeds in three steps:

Lemma 1 (folklore). A (compact) FHE without privacy can be upgraded to (compact) semi-honestly
circuit private by decrypting it under a (possibly weaker and non-compact) semi-honestly private
HE.

Lemma 2 (this paper). A semi-honestly private FHE can be upgraded to maliciously circuit-private
by homomorphically validating its keys and inputs under a (possibly weaker and non-compact)
maliciously circuit-private FHE.

Unfortunately, for known instantiations the scheme resulting from Lemma 1 doesn’t satisfy the
requirements of lemma 2 (validation becomes hard) but we show that combining the two steps in
a simple way does work. The resulting output is not compact but fortunately:

Lemma 3 (this paper). A non-compact circuit-private FHE can be upgraded to compact by homo-
morphically decrypting it under a compact (F)HE.

Let us now elaborate on each of the steps.

Step 1. The first step transforms a (compact) FHE schemeM into a semi-honestly circuit-private
scheme. For that purpose, it uses an auxiliary circuit-private schemeA to re-randomizeM’s output,
which may in principle contain structural information about C, beyond C(x) on some input vector
x. Eval produces an encrypted output via EvalM - denoted by outM . It then homomorphically

4

evaluates the decryption circuit of M using A with outM hardwired, and an encryption of skM ,
askM used as input, and outputs the result outA. The encryption askM and the public key for A
are provided as part of the public key pk. This process in fact re-encrypts the output under skA,
so The decryption (of the result) is done via skA (skM is not needed).

Indeed, in the above solution, since decryption outputs exactly the information (a single bit -
C(x)) we are supposed to learn, and since A is circuit-private, it is all the information we learn. It
can also be viewed as applying a re-encryption via A gadget to EvalM ’s output.

Note that sinceM is compact |outA| = poly(λ) even ifA is not compact. In particular, [vDGHV09]’s
solution of using Yao for evaluating the decryption circuit can be viewed as a special case of that ap-
proach. This is a general form of “re-randomization”, independent of the structure of the ciphertext
domain.

Step 2. However, this approach generally fails in the malicious setting, even if A is maliciously
circuit-private. One problem is that the input to EvalM may be arbitrarily malformed, and thus
outM is not guaranteed to be a valid encryption of (the right, or even) a bit, and applying decryption
to it might reveal extra information about the circuit. Moreover, even if the input vector encryption
cM and public key pkM are well formed, skM “reported” via askM may be mal-formed in a way
that the decryption circuit outputs some invalid structural information about C, rather than a
decryption of the input ciphertext.

Therefor, we devise a second step which transforms a semi-honestly circuit-private scheme M
into a maliciously circuit-private scheme. The idea is to apply (during Eval) a form of CDS that dis-
closes the encrypted output ofM conditioned that its public-key is well-formed, and the encrypted
input bits are valid encryptions under that key. The validation circuit also gets a purported addi-
tional randomness rM,k, rM,e as used by the key generation and encryption algorithms. This CDS is
implemented by homomorphically evaluating the validation circuit (where the purported public key
and encryptions are hardwired) under an auxiliary scheme A which is (maliciously) circuit-private,
and supports the evaluation of such a circuit. The inputs of the circuit of the “secret” random
strings rM,k, rM,e, provided as bit-by-bit encryptions under A provided as part of the public key
(along with pkA). One way to perform the disclosure it to evaluate an augmented validation circuit
(with several output bits) that output the string outM (known upon circuit construction, and can
be hardwired into it) or a string of zeros according to whether the validity condition is satisfied.
The main observation showing why this works is that (malicious) circuit privacy of A ensures that
even if pkA and the encryptions of rM,k, rM,e under A are malformed, they induce some values x∗A,
such that all the output of the validation circuit reveals is its output corresponding to these values
(and the hardwired pkM , cM). Now, if everything was well formed, the validation circuit outputs
outM . By semi-honest privacy of M, this reveals only C(x), where x is the bit vector encrypted
via c. Otherwise, the validation circuit’s output on x∗A is 0, and thus reveals nothing about outM .
The resulting scheme is compact if A is, and is “somewhat compact” if A is not compact, with
encrypted outputs of size poly(λ, n).

Note that the scheme A does not need to be the same one in both steps, as long as each scheme
supports the corresponding functionality (decryption and validation respectively).

What do we have so far? Running steps 1,2 above onM,A results in (possibly non-compact)
maliciously circuit-private FHE. Fortunately, this can be addressed by applying Lemma 3 to com-
pact the scheme using (the compact) M itself.

5

More problematically, this clean two-step transformation runs into technical difficulties, since
it is unclear how to implement the first step in a way that results in a semi-honestly secure M′
which has validation circuits, supported by any maliciously circuit-private scheme A we know
how to implement. Concretely, we do not know of maliciously circuit-private OT with decryption
circuits in NC1. We note that some schemes obtained by direct ad-hoc re-randomization (see
e.g. [vDGHV09][Section 6]) do have efficient enough circuits, and can be plugged into the second
step of the transformation.

However, it turns out we can combine the decryption and validation circuits into one, which
either outputs the decrypted bit if validation passed, and 0 otherwise. We can then evaluate this
circuit under a single maliciously private scheme A, obtaining a single, direct transformation from
(compact) FHE with no circuit private into a maliciously circuit-private FHE. This is the version
we present in the technical part of the paper.

We instantiate A with a variant of Yao’s garbled circuits combined with malicious-receiver OT,
obtaining a scheme for evaluating NC1. Then M can be instantiated with several FHE schemes
from the literature, such as [vDGHV09], or [BV11]. Note that (e.g.) [BV11] has negligible (non-
zero) decryption error, when the added noise happens to be too high. As circuit privacy of our
construction relies on perfect correctness, this is not acceptable. However, properly truncating the
noise in [BV11] yields a (still secure) scheme which is perfectly correct. Thus, after running step
3, we obtain the following theorem.

Theorem 4. (informal) Assume there exists an OT-homomorphic maliciously circuit-private scheme.
Assume further that there exists a compact FHE scheme with decryption and validation circuits in
NC1. Then there exists a compact circuit-private FHE scheme F .

Before describing step 3, let us see look more closely at the compactness of the scheme we
already achieve.

The Yao-based instantiation of A described above is not compact. That is, the encrypted output
size depends on λ,m, where m is the size of the input to the evaluated circuit C, and |C| as well.
The first observation is that we only evaluate a family of functions in NC1, so the depth of formulas
for these functions are bounded by O(log n).

Thus, circuit size is at most 2O(logm) = mc. Since m = poly(λ, n) for the validation circuit (and
poly(λ) for the decryption circuit), overall encrypted output size is poly(λ, n).

This is acceptable for our main application of computing on encrypted data, as receiver’s input is
of size n. However, it would be nice to meet the current standard for FHE where encrypted output
size is independent of n. More importantly, it is currently unknown how to achieve (compact)
FHE without assuming so called (weak) circular security for a certain HE scheme, referred as
“somewhat homomorphic” (see [Gen09]). This assumption is generally considered somewhat risky
and undesirable. A common solution found in the FHE literature to avoid a circular security
assumption is using a different key per circuit layer; the price is that the scheme becomes leveled.
That is, KeyGen takes a bound d on the circuit depth, and the size of public key passed to Eval grows
with d. 2 The size of all other outputs of the scheme (pkEnc, sk, encrypted inputs and outputs)
remains independent of d.

As to our application of computing on encrypted data, using leveled FHE instead of FHE
makes receiver’s complexity worse, by making his work depend on d. Although this dependence
is sublinear, this is quite undesirable but inherent when using leveled FHE (even without circuit

2This also (mildly) constrains circuit privacy — a bound on the circuit size must always be leaked.

6

privacy). To minimize the ill effect of this dependence, we would like to limit it to the key generation
complexity. This way, a single expensive key generation can be followed by multiple cheap evaluation
queries, amortizing the dependence on circuit depth.

Going back to our framework, if M is leveled and A is not compact, then validation should
take pkEval as input as well, making the input to the validation circuit of size poly(λ, n, d). Thus,
by similar computation to the above, encrypted output size is now poly(λ, d, n) — a dependence
which is better to avoid.

Step 3. The idea is to combine circuit-private (non-compact) HE P with (non-circuit-private)
FHE S “in the other direction”. That is, use S to homomorphically decrypt the encrypted output
of the HE scheme to “deflate” it. Intuitively, even though the FHE S used for decrypting is not
circuit-private, the resulting scheme is, because homomorphic decryption merely acts upon a string
that we originally sent “in the plain”, so there is no need to protect it.

To avoid circular security for the FHE scheme in this construction, we use leveled FHE as well,
resulting in leveled circuit-private HE for NC1. We then plug this compact HE scheme as A into
our main construction. Resolving some technical issue related to bounding the depth of circuits to
be evaluated by S is now leveled, we obtain a compact leveled circuit-private FHE.

2 Preliminaries

Notation We use vector to denote over Dt, for some t > 0, and some finite domain D. For a pair
of vectirs v1, v2 (v1, v2) denotes the vector resuting from concatenating v1, v2. For vectors v1, v2 over
some Dt

1, D
t
2 (v1; v2) denotes ((v1,1, v2,1), . . . , (v1,t, v2,t)). For a function f(a, b, c, . . .), f(a, b, c, . . .)

is a shorthand for f(a1, b, c1, . . .), f(a2, b, c2, . . .), When considering function vectors, all inputs
which are the same in all executions do not appear in bold (even if they are vectors by themselves).
For a function f(a, b, c, . . .), we denote the set of functions fixing some of its parameters (here b, c)
as follows f|b,c(a, . . .). f|b=B,c=C denotes a function fixing the parameters to particular values B,C
respectively. For randomized algorithms A(x, r), we sometines write out ∈ A(x) as a shorthand for
out ∈ support(A(x, r)). By neg(k) we refer to a function that for all polynomials p(k), neg(k) <
p(k) for all k > K, where K is a constant determined by p.

Definition 2 (Indistinguishability of distributions). Let {Xλ(x)}λ∈N,x∈{0,1}∗ , {Yλ(x)}λ∈N,x∈{0,1}∗
be two distribution ensembles. We say that the ensembles are statistically indistinguishable, if for
all circuit families {Cn(x1, . . . , xn)}n x ∈ {0, 1}

n, |Pr[Cn(Xλ(x))] − Pr[Cn(Yλ(x))]| = neg(λ). We
denote Xλ =s Yλ. If the above holds for all circuit families of polynomially bounded size, we say
Xλ, Yλ are computationally indistinguishable, denoted by Xλ =c Yλ.

2.1 Representation Models

By a program C, we mean a string representing a function f : {0, 1}n → {0, 1}. The correspondence
between programs C and the function it represents is determined by an underlying representation
model U . A representation model U : {0, 1}∗ × {0, 1}∗ → {0, 1} is an effecient algorithm taking an
input (C, x), and returning f(x), where f is the function represented by C. By |C| we simply refer
to the length of the string C (as opposed to size(C), which is a related measure depending on U ,
such as the number of gates in a boolean circuit).

7

Two models we will be interested in are boolean circuits and variants thereof such as formulas.
More concretely, by circuits we mean boolean circuits over AND (denote ∧), XOR (denote ⊕) gates
of fan-in 2, and NOT gates (no constants).

We assume wlog. that the circuit graph (a DAG) is connected, in the sense that all input nodes
are connected to the output wire; we also assume wlog. that all not gates are applied to input
nodes. For completeness, for circuits and other models we let U(C, x) = 0 whenever the input
(C, x) is syntactically malformed, such as, for isntance, when C is not a valid encoding of a circuit
at all, or the underlying DAG is not connected, x contains less variables then expected by C etc.

The size of a circuit is the number of wires in the circuit’s underlying graph. The depth of the
circuit is the number of gates on the longest path between an input wire and the output wire of the
circuit. As circuits are the strongest model one can hope for in the sense of program compactness
(up to polynomial factors), and as HE candidates for general circuits (FHE) are known since the
seminal work of [Gen09], this is the model typically considered in modern literature on homomorphic
encryption. This is also the default representation model used throughout the paper.

By formulas we mean circuits as above for which the underlying graph is a tree. Furthermore,
valid formulas have depth at most c log size(C), where c is a global constant. c is picked large
enough, so that the expressive power of formulas remains the same (that is, it is known every
formula can be transformed into this form with polynomial blowup in size).

Complexity Classes. When we consider a family of circuits, this family is (polynomial time)
uniform unless stated otherwise. The class poly denotes the set of all (boolean) families of functions
with circuits of size bounded by some polynomial p(n). NCi denotes the class of all (boolean)
functions with c log size(C)-depth bounded formulas C for some constant c, and size poly(n).

2.2 Homomorphic encryption

A (public-key) homomorphic encryption scheme (HE) E = (KeyGenE ,EncE ,EvalE ,DecE) is a
quadruple of PPT algorithms as follows. Throughtout the paper λ denotes the security parameter
taken by a scheme.

KeyGen(1λ): Outputs a public key, secret key pair (pk, sk).

Enc(pk, b): Takes a public key and a bit b to encrypt, and returns an encryption c of the bit under
pk.

Eval(pk,C, c = (c1, . . . , cn)): Takes a public key pk, a bit-by-bit encryption c of a bit vector x ∈
{0, 1}n, a function represented by a program C (encoded in a pre-fixed representation model
U) and outputs an encryption out of bit U(C,x). We assume wlog. that pk includes 1λ

(intuitively, this is intended to handle maliciously generated public keys). We refer to outputs
of Eval as “encrypted outputs”.

Dec(sk, out): Takes a secret key sk, and a purported output out of Eval, outputs a bit.

Throughout the paper, HE is semantically secure if (KeyGen,Enc,Dec) satisfies standard IND-
CPA security for public key encryption schemes as in [GM84]. An HE scheme is weakly circular-
secure if even knowing a bit-by-bit encryption of the schemes’ secret key sk, the adversary still has
negligible advantage in the IND-CPA experiment.

8

Definition 3 ((U, C)-homomorphic encryption). Let C =
⋃
Cλ. We say a scheme E is (U, C)-

homomorphic if for every family of programs C1(x1, . . . , xn1), C2, . . . , so that Ci ∈ C〉, and for all
λ

Dec(sk,Eval(1λ,KeyGen(1l), Cλ,Enc(pk,x))) = U(Cλ, x)

for all λ, and all random choices of the algorithms involved. We say the scheme is λ-independent if
Cλ = Cλ for all λ. By default our scheme are λ-independently homomorphic (in particular the Cλ’s
are not explicitely defined).

Definition 4. We say a (U, C)-homomorphic scheme E is compact if there exists an output bound
B(λ, n, |C|) = poly(λ) on all outputs of Eval on 1λ and programs C ∈ Cλ. We say the scheme is
input-compact if B(·) = poly(λ, n) (but does not depend on C). If the scheme is compact (input-
compact) λ-independetly homomorphic for all circuits, we (and elsewhere in the literature) call it
a comact (input-compact) FHE (fully homomorphic scheme).

Definition 5 (Bootstrappable homomorphic encryption). For a C-homomorphic scheme E =
(KeyGen,Enc,Eval,Dec), let Dec⊕λ (c1, c2, sk),Dec∧λ(c1, c2, sk),Dec¬λ(c, sk) denote the augmented de-
cryption circuits of the scheme, taking two encrypted outputs out1, out2, decrypting them to obtain
bits b1, b2 or b and returning b1⊕b2 and b1∧b2 or ¬b respectively. We say the scheme is bootstrappable
if for all λ, Dec⊕λ

∣∣
c1,c2

, Dec∧λ
∣∣
c1,c2

, Dec¬λ |c are in Cλ.

Another standard variant of HE we consider is leveled HE. In this variant, KeyGen is modified
to take another parameter 1d. KeyGen outputs keys (pk, sk), where pk inludes a fixed part pkEnc,
depends only on λ; likewise, sk depends only on λ. Enc is modified to accept pkEnc as the public
key, and only Eval receives the entire public key pk. In particular, Enc is the same algorithms for all
d. The notions of compact and input-compact HE are as for non-leveled schemes (the bound B(·)
on output size is independent of d). For compact schemes, the algorithm Dec is also independent of
d. We say such a leveled scheme is an FHE if the (standard) scheme E(D) induced by fixing d = D
when calling KeyGen(1d, ·) induces a λ-independently C-homomorphic scheme E(D), where C is the
set of all depth-D circuits. In such FHE, the encrypted outputs’ size is still poly(λ) (for a global
polynomial independent of d).3

Standard FHE schemes can be thought of as a special case of leveled FHE schemes where
KeyGen simply ignores d. Thus, all schemes E(d) are the same (standard) FHE scheme. We refer
to this special case as unleveled FHE.

The reason this relaxation is considered, is that so far, all FHE schemes were obtained using Gen-
try’s bootstrapping theorem, which assumes circular security of an underlying bootstrappable HE
scheme. Constructions of bootstrappable HE schemes from (more) standard assumptions (rather
than just assuming circular security) are currently unknown. On a high level, leveled FHE schemes
allow to circumvent this difficulty by encrypting each key under a different key, according to an
acyclic sequence of independently generated keys, and publishing them all as pk. We need the
following properties of the bootstrapping theorem.

Theorem 5 ([Gen09]). Let E = (KeyGenE ,EncE ,EvalE ,DecE) denote a bootstrappable, C-homomorphic
HE scheme. Then there exists a compact leveled FHE scheme BS with the following properties:

3All but output compactness are not a strict requirement, but it is typically achieved in leveled schemes form
the literature. Also, for our application of computing on encrypted data, we want to minimize the dependence of
receiver’s work on circuit parameters.

9

• KeyGenBS(1d, 1λ) outputs (pkBS , sk`, for pkBS = (p1, . . . , p`, e1, . . . , e`), where the (pki, ski)’s
are output by KeyGenE(1λ); for all i < ` ei ∈ Enc(pki+1, ski) where ` = O(d).

• Enc,Dec apply Enc,Dec to pk1 and sk` respectively.

If E is weakly circular secure, one can set pki = pk1 and ski = sk1, where (pk1, sk1) are sampled
from KeyGen(1λ) (which results in a standard FHE scheme).

Definition 6. Let E = (KeyGen,Enc,Eval,Dec) denote a (U, C)-homomorphic scheme. We say
E is (maliciously) circuit private if there exist unbounded algorithms Sim(1λ, pk∗, c∗, b), deter-
ministic Ext(1λ, pk∗, c∗), such that for all λ, and all pk∗, c∗ = c∗1, . . . , c

∗
n and all programs

C : {0, 1}n → {0, 1} ∈ (U, C) in Cλ the following holds:

• x∗ = Ext(1λ, pk∗, c∗).

• Sim(1λ, pk∗, c∗, U(C,x∗)) =s Eval(1λ, pk∗, C, c∗).

In particular, for circuits C(x1, . . . , xn) ∈ Cλ the output distribution of Eval (including length)
depends only on n, λ. For leveled schemes, Sim and Ext also take a depth parameter 1d. We
say a scheme is semi-honestly circuit-private if the above holds, where pk∗, c∗ belong to the set of
well-formed public-key, ciphertext pairs.

3 Framework

We introduce the following representation model (USI , C) (from “split-input”) we will need. Pro-
grams in the model are represented by a pair (Cp, Cs), where Cp is a circuit on some m vari-
ables, and Cs ∈ {0, 1}t form some t ≤ m. A program (Cp, Cs) is intepreted as a function f over
n = m − |Cs| variables via USI((Cp,Cs),x) = Cp(Cs,x). Typically, we will consider (USI , C-
homomorphic schemes where for each (Cp, Cs), all (Cp, Z) for Z ∈ {0, 1}∗ of length t ≤ m are in C.
In this case, we specify C as just a set of circuits.

We say a (USI , C)-homomorphic scheme is input-private if it satisties Definition 6, with the only
modification that Sim receives Cp as an input.

Observe that picking n = mo(1) results in a program of size superpolynomial in n. This setting
of parameters will in fact be useful in our constructions (resulting in efficient constructions).

Remark. The purpose of introducing this seemingly unnatural representation model and relaxed
circuit privacy definition is to allow for simpler implementations of auxiliary HE schemes we use.
The scenario there is that a function f known to the adversary is to be homomorphically evaluated
on a (partially) secret input z, together with the adversary’s input x, so hiding f would be an
overkill. More specifically, we will need to devise scheme for formulas with depth bounded by
c log n for a specific constant c. It is possible to implement standard circuit privacy for this family
using an information-theoretic version of Yao for universal formulas (note that on input x ∈ {0, 1}n,
the relevant formulas are of size poly(n) for a prefixed polynomial, and that formula evaluation is
indeed in NC1.) However, using ad-hoc Yao garbled circuits for each formula Cp to evaluate is a
simpler approach.

10

3.1 From compact FHE to circuit-private FHE

In this section we formalize the decryption and validation transformations described in the intro-
duction. In this transformation, we combine a main scheme M which is a (compact) FHE scheme
with no circuit privacy, and combine it with an circuit-private auxiliary sheme A which is circuit-
private. More precisely, we evaluate C via M. Then, A is used to (homomorphically) decrypt
outM (under A) and obtain a purported encryption outA. If outM was generated semi-honestly,
this ”re-randomzises” outM to depend only on the encrypted output bit. Then we disclose outA
conditioned on the public-secret key and encryptions (of M) are well-formed. The condition is
homomorphically verified under A.

For simplicity of implementation we combine the decryption and validation step into a single
circuit, to be homomorphically evaluated by A.

Given a leveled FHEM we define a set of programs CM (to be interpreted via USI) as follows.

1. Let V alidateλ,d,n(pkM , cM , sk′M , rM), where:

• (pkM , skM) is a purported public-key private-key pair output by KeyGenM (1λ, 1d). sk′M =
(skM , rk) where rk is the purported random string used in the generation of (pkM , skM).

• cM = (cM,1, . . . , cM,n) is a purported encryption under pkM of a bit vector and rM is a
purported vector of randomness used when generating the ci’s.

V alidateλ,d,n(. . .) =


1 if (pkM , skM) ∈ KeyGenM (1λ, 1d), and

∀i (cM,i ∈ EncM (bi, rM,i) for some bit bi ∈ {0, 1})
0 otherwise.

2. Let Decλ(skM , out) denote the decryption circuit ofM instantiated with security parameter
λ (recall Dec,Enc are independent of d).

3. DefineOutλ,d,n(pkM , cM , sk
′
M , rM , outM) = V alidateλ,d,n(pkM , cM , sk

′
M , rM)∧Decλ(skM , outM).

4. Let CM include all pairs of the form C = (Outλ,d,n(. . .), (pkM , cM , outM)).

Theorem 6 (Main). Let M = (KeyGenM ,EncM ,EvalM ,DecM) denote a compact leveled FHE
scheme, and A denote a (USI , CM)-homomorphic, input-private scheme. Consider the resulting
scheme P as specified in Construction 1 when instantiating withM,A. P is a circuit-private FHE.
It is unleveled iff M is unleveled, and is compact iff A is compact. If A is not compact, P’s output
complexity is poly(λ, d, n) (poly(λ, n) if M is unleveled).

Construction 1. Let M,A be schemes as above. We construct the following scheme P.

KeyGenP (1λ): let (pkA, skA)
$←− KeyGenA(1λ), (pkM , skM)

$←− KeyGenM (1λ, 1d), and let sk′M =
(skM , rk), where rk is the randomness used by KeyGenM ; ask′

M
= EncA(pkA, sk

′
M). Re-

turn (pkP , skP) = ((pkA, pkM ,ask′
M

), (skA, skM)). Here pkP,Enc = (pkA, pkM,Enc, askM) (we
naturally denote ask′M = (askM , ark)).

EncP (pkP = (pkA, pkM,Enc, askM), b ∈ {0, 1}): Return (c,arM) = (EncM (pkM,Enc, b),EncA(pkA, rM),
where rM is the randomness used by EncM .

EvalP (1λ, pkP = (pkA, pkM , ask′M), C, c = (cM ;arM)):

11

1. If C is syntactically malformed, or |x| does not match the number of inputs to C, replace
C with the circuit returning x1 ∧ x1.

2. Set outM = EvalM (pkM , C, c)).

3. Let (Cp, Cs) = (Outλ,d,n, (outM , pkM , cM))

4. Compute and output outA = EvalA(pkA, (Cp, Cs),ask′
M
,arM).

DecP (skP = skA, outA): Output out = DecA(skA, outA).

Proof of Theorem 6. It is easy to see that the proposed scheme remains correct if all keys and
ciphertexts are well-formed. Then outA encrypts C(x)∧ V alidateλ,d,n(. . .), where the latter equals
1, and thus equals C(x).

As to efficiency: We run EvalA on some Outλ,d,n on input (pk, sk′, cM , rM , outM). By definition
of leveled schemes, this input to Outλ,d,n is of size m = poly(λ, d, n). The dependence on d is only
because |pk| may depend on d in leveled schemes. Thus, if A is compact, the encrypted output size
|outA| is poly(λ) (a compact shceme). Otherwise, if M is standard (not leveled), m = poly(λ, n),
thus encrypted output size is also poly(λ, n) (input-compact).

Semantic security. Follows by standard techniques. In particular, the analysis is similar to
that of semantic security of leveled FHE schemes [Gen09] (as we avoid “cycles” in the graph of
encryptions under the various keys).

Circuit privacy. We describe a pair of algorithms ExtP ,SimP , as required.

ExtP (1λ, 1d, pk∗ = (pk∗A, pk
∗
M , a

∗
sk′M

), c∗ = (c∗M , a
∗
rM

)): 1. Let SimA,ExtA as guaranteed by Defini-

tion 6, and let x∗A = (r∗M , sk
′∗
M) = ExtA(1λ, pk∗A,a

∗
rM

, a∗sk′
M

).

2. If (pk∗M , sk
∗
M) 6= (KeyGenM (1λ, 1d, r∗k)), return 0. Here, the “secret” parts r∗k, r

∗
M , sk

∗
M

are taken from ExtA’s output, and the rest are taken from the input.

3. Otherwise, If c∗M = EncM (pk∗M , r
∗
M , b) for some bit b, return b.

4. Otherwise, return 0.

SimP (1λ, pk∗ = (pk∗A, pk
∗
M , a

∗
sk′M

), c∗ = ((c∗M,1, a
∗
rM,1

), . . . , (c∗M,n, a
∗
rM,n

)), b): 1. Let SimA,ExtA as

guaranteed by Definition 6, and let x∗A = ExtA(1λ, pk∗A, (a
∗
rM

, a∗sk′
M

))).

2. If the check in Ext(1λ, pk∗, c∗i) fails for (pk∗M , sk
′∗
M) or for some i ∈ [n]:

Output SimA(1λ, pk∗A, Outλ,d,n,a
∗
sk′

M
, a∗rM , 0).

3. Otherwise: output SimA(1λ, pk∗A, Outλ,d,n,a
∗
sk′

M
, a∗rM , b).

We have specified ExtP of the proper form, so it remains to analyze SimP . Let x∗A = (sk∗M , r
∗
M , r

∗
k) =

ExtA(1λ, pk∗A,DecM,λ, (a
∗
skM

, a∗rM))). There are several cases.

• Assume V alidateλ,d,n|c=c∗M ,pk=pk∗M
(sk′∗M , r

∗
M) = 0. Then by definitionOutλ,d,n|c∗M ,pk∗M ,outM (sk′∗M , r

∗
M) =

0 for all outM . By construction of SimP ,ExtP , this condition is always correctly deteced (line
2). By circuit privacy of A, and as the bit passed to SimA is Outλ,d,n(Cs, sk

′∗
M , r

∗
M) for

12

Cs = (c∗M , pk
∗
M , outM), which exactly equals Outλ,d,n|c∗M ,pk∗M ,outM (sk′∗M , r

∗
M) = 0 (as computed

in EvalP). Thus, SimA (in line 2) receives b = Outλ,d,n|c∗M ,pk∗M ,outM (sk′∗M , r
∗
M) = 0 and statis-

tically simulates EvalP ’s output in this case.

• Otherwise, (pk∗M , sk
∗
M) = KeyGen(1λ, 1d, r∗k), and c∗M = EncM (pk∗M ,xM , r∗M) for some xM ∈

{0, 1}n. T In other words, pk∗M , c
∗
M are a valid public-key, encryption-vector pair. Thus the

call to Outλ,d,n in EvalP always returns C(CM) by (perfect) correctness of M.

If we show that xM is exactly the vector returned by ExtP , then byOutλ,d,n|c∗M ,pk∗M ,outM (sk′∗M , r
∗
M) =

Outλ,d,n(Cs, sk
′∗
M , r

∗
M) for Cs = (c∗M , pk

∗
M , outM) and correctness of SimA, validity of SimP fol-

lows. So, let x∗M denote a vector as extracted in the series of executions of ExtP on c∗. This
is so, since ExtP exits in line 3 on all c∗i , and it can not return a different bit x∗i 6= xM,i, or we
obtain two valid decryptions of some encryption c∗i , contradicting the correctness M (Plug
the identity function f(x1) = x1 into Definiton 3). Thus, SimP receives b = C(bM) as its last
output.

3.2 Compactization of circuit-private FHE

Recall that for the application of computing on encrypted data, it is ideal that the underlying FHE
has encrypted inputs of size poly(λ, n) (independent of |C|), or better still, just “constant size”
poly(λ). If A in Theorem 6 is compact, then we indeed get encrypted inputs of size poly(λ). There
exist instantiations of M from the literature with validation and decryption procedures in NC1.
Since (e.g) validation typically needs to read all the input bits, this is the best one can hope for.
Unfortunately, we do not know of compact circuit-private circuit-private HE for this class, but do
know of non-compact ones. Thus, a plausible solution is obtained for unleveled compact unleveled
FHE as M and a suitable (non-compact) A.

In this section, we devise a simple transformation (corresponding to Lemma 3 in the intro-
duction) for making a (possibly leveled) scheme’s output compact (only poly(λ)), while preserving
circuit privacy.

The idea is to use bootstrapping similar to the one described in Lemma 2 the introduction for
transforming FHE into FHE with semi-honest circuit privacy. That construction applies a gadget
that homomorphically evaluates a circuit using a (compact) FHEM, and then (homomorphically)
decrypts the result using a (not necessarily compact) maliciously circuit-private HE A (which is
only input-compact, homomorphic for a weaker class of functions) resulting in a (compact) FHE
which is semi-honsetly circuit-private. It turns out that reversing the roles of M and A in the
gadget, results in a scheme which is both compact and preserves malicious circuit privacy (for the
class A it is homomorphic for).

Theorem 7 (Compaction theorem). Let P be a leveled C-homomorphic circuit-private scheme. Let
S denote a compact FHE scheme.4 Then the scheme PS in the following construction is a compact
C-homomorphic circuit-private scheme.

Construction 2. Let P,S be HE schemes as in Theorem 7.

4In fact, S should only be compact and homomorphic for the circuit family it is used for. It doesn’t need to be
an FHE.

13

KeyGenPS(1λ, 1d): Sample (pkP , skP)
$←− KeyGenP (1λ, 1d, rk); let sk′p = (skP , rk); (pkS , skS)

$←−
KeyGenS(1λ); ssk′

P

$←− EncS(pkS , (skP , rk)). Output (pk, sk) = ((pkP , pkS , sskP), skS) Here
pkEnc = (pkP,Enc, pkS , sskP).

EncPS(pk, b): Output EncP (pkP,Enc, b).
5

EvalPS(1λ, pk, C, c):

• outP
$←− EvalP (1λ, pkP , C, c).

• Let DecP,λ,d denote the decryption circuit of P with parameter λ.

Then DecP,λ,d|out=outP (skP) is a circuit for decrypting (hard-wired) outP under secret
keys generated by KeyGenP .

• Compute and output outS = EvalS(1λ, pkS , Dec, sskP).

DecPS(sk = skS , out): Output DecS(skS , out).

Proof sketch. The main observation is that Eval computes the output of EvalP on the input
pk∗, c∗, which reveals no “redundent” information, and perform some randomized computation
on it (homomorphically decrypt via S), using randomness which is independent of outP . More
precisely, we can define:

ExtPS(1λ, 1d, pk∗, c∗): return x∗ = ExtP (1λ, pk∗, c∗).

SimPS(1λ, 1d, pk∗ = (pk∗P , pk
∗
S , s
∗
skP

), c∗, b = C(ExtP (1λ, pk∗, c∗))):

• Let out′P = SimP (1λ, pk∗, b).

• Output out′S = EvalS(1λ, pk∗A, DecS,λ|out=outP , sskP)).

Let C ∈ C, and set some pk∗, c∗. Conditioned on out′P = outP , out′S is distributed exactly like
outS , as both SimPS and EvalPS run the same process on the same input distribution. Now, out′P
is statistically close to outP by circuit-privacy of P, so outS , out

′
S are also statisically close, and

validity of SimPS follows.

Putting things together. Let us set P to be a scheme obtained by instantiating Theorem 6
via an unleveled M and a suitable, non-compact A. Then, letting S =M in Theorem 7, we get a
compact scheme “for free”.6

Theorem 8. Let M = (KeyGenM ,EncM ,EvalM ,DecM) denote an unleveled FHE scheme, and A
denote a (USI , CM)-homomorphic input-private scheme. Then there exists a circuit-private compact
unleveled scheme PS.

5Here and elsewhere, we do not distinguish between the parts of pk used in Eval and Enc, and refer to both as pk.
The distinction is implied by the context.

6The construction would have worked for leveled M as well, but since we need a compact FHE in Construction 2,
it does not buy us relaxated assumptions.

14

3.2.1 Getting rid of circular security

In the previous section we showed how to transform (unleveled) circuit-private FHE into compact
(unleveled) FHE while preserving circuit privacy (Theorem 8). Fortunately, we are able to instan-
tiate Theorem 8 with known constructions from the literature. Unfortunately, we need to assume
compact FHE, which we currently do not know how to implement without assuming circular secu-
rity of a related bootstrappable somewhat homomorphic scheme, which is considered a somewhat
risky assumption. As explained before, a common solution to this issue in the FHE literature is
constructing compact leveled FHE. We would like to follow this direction for constructing circuit-
private compact FHE, relaxing circuit privacy to reveal d (if such a relaxation is not desired, one
could settle for assuming circular security and using Theorem 8).

We follow a similar path of combining Theorem 6 with Theorem 7. Naturally, we pick a leveled
scheme M in Theorem 6 (and a suitable non-compact A), resulting in a circuit-private scheme P.
To eliminate the need of assuming circular security, we modify Theorem 7 to use a leveled compact
S as well. The modification is straightforward, by passing the right bound d′ on the (decryption)
circuit depth to evaluate by C. However, estimating d′ poses a technical problem. The encrypted
output of P is of size m = poly(λ, d, n), where d, n is the bound on circuits C the scheme (PS) is
to evaluate, and n is the number of variables of the concrete circuit to evaluate. The depth of the
decryption circuit S needs to evaluate is then generaly some poly(m) as well.

However, n is only known upon Eval, while d′ should be estimated at KeyGen! The first obser-
vation is that we can bound n ≤ 2d, as circuits are assumed to have connected underlying DAGs.
Still, this leaved as with circuits of size (and possibly depth) poly(m) = poly(λ, 2d). Thus, KeyGenS
may run in exponential time in λ, d, n, and thus explode, making KeyGenPS inefficient as well.
Assume P had decryption circuits Decλ,d of depth poly(logm, d, λ). Then m would be polynomial
in λ, d, solving both the potential inefficiency problem, and the need to know n. Luckily, such
schemes P can be obtained, namely, there exist such schemes with decryption circuits of depth
O(logm, poly(λ)).

A concrete implementation. With a particular instantiation in mind, we impose some ad-
ditional efficiency requirements on both A,M in Theorem 6 allowing to use a combination of a
leveled M and non-compact A resulting in compact leveled P.

Theorem 9. Assume there exists a compact leveled FHEM and A which is (USI , CM)-homomorphic
input-private. Additionally, assume DecA,λ(out, sk) has encrypted output complexity poly(depth(Cp), λ),
where Cp is the circuit used to generate out in EvalA, and {Outλ,d,n} induced by M is in NC1.7

Then there exists a compact leveled circuit-private scheme PS.

Proof Sketch. We create P by using the output of Theorem 6 on M,A as P in Theorem 7,
augmented to accept a (compact) leveled S (and M as S as well). As explained before, the
main technical difficulty arises in KeyGenPS , calculating d′ passed to KeyGenS at KeyGen by some
poly(λ, d). By construction, the input to Outλ,d,n is of size m = poly(λ, n, d) (for some global
polynomial independent of d). As {Outλ,d,n} is in NC1, the depth of Outλ,d,n is c logm for some
(global) constant c. By assumption on A, the size of its encrypted output is poly(c logm,λ) ≤
poly(d, λ), using n ≤ 2d.

7We could do with weaker efficiency for the sake of estimating d′, but as the only suitable implementations of A
we know of support only formulas, we do not state the more realxed version.

15

Another minor issue to note is that the resulting scheme’s decryption algorithm is indeed in-
dependent of d, since it applies DecM,λ (on an outuput of EvalM), where M is a compact leveled
scheme.

4 Instantiations of the framework

We devise instantiations of schemes M,A as required in Theorem 9. As these requirements are
strictly stronger then the requirements in Theorem 8, they immediately yield an instantiation of
Theorem 8 as well.

Lemma 10. Consider the compact leveled FHEM obtained by applying the bootstrapping theorem 5
to [vDGHV09]’s bootstrappable somewhat homomorphic scheme (the variant without privacy). It
is semantically secure assuming the approximate GCD and succinct subset sum assumptions hold.
For this scheme, the function family {Outλ,d,n} induced by M is in NC1.

The proof of the above lemma is quite straightforward, see next section for details.

Lemma 11. Assume the existence of circuit-private schemes which are homomorphic for (bit)
OT.In particular, the DDH, QR, Paillier or the DCRA assumptions yield such OT schemes [AIR01,
GM84, Kal05]. Then there exists a circuit-private (USI , C)-homomorphic scheme A where C con-
sists of all formulas (recall that we consider formulas as valid if they are sufficiently “balanced”,
satisfying depth(C) ≤ D log size(C) for a global constant D). Furthermore, A has decryption cir-
cuits DecA,λ(sk, out) of depth depth(Cp)poly(λ), where Cp is the circuit used to generate out (for
some Cs).

The lemma above can be obtained by combining an information theoretic variant of Yao’s
garbled circuits [IK02] with maliciously circuit-private OT-homomorphic schemes.

We obtain the following instantiation of Theorem 9.

Corollary 12.

Assume the existence of circuit-private schemes which are homomorphic for (bit) OT. Assume fur-
ther that the sparse subset sum and the approximate GCD assumptions hold (implying the somewhat
homomorphic bootstrappable scheme described in [vDGHV09] is secure).Then there exists a leveled
compact circuit-private FHE PS. Additionally, if the bootstrappable scheme from [vDGHV09] is
weakly circular secure, then PS is also unleveled.

Proof Sketch. The only non-trivial point to observe here is that EvalPS is efficient. A is C-
homomorphic for C consisting of all (balanced) formulas. Since Outλ,d,n ∈ NC1, it has formulas
of size polynomial in their input, and and are balanced (c is as required by our representation of
formulas). As the input to Outλ,d,n is in turn polynomial in EvalPS ’s input (in fact, it depends on
pk, c), the observation follows.

In fact, most instantiations of FHE nowadays have decryption and validation circuits in NC1.
For instance, LWE-based constructions, such as [BV11] have validation (and decryption) based on
linear algebra over Zp for large integers p, and verifying some c mod p (noise) is not too high. These

16

operations are typically in NC1, allowing various instantiations of M.8 Furthermore, alternative
approaches to Gentry’s bootstrapping theorem have been recently suggested, so one does not need
to go through the sparse subset sum assumption to bootstrap (although weak circular security is
still required). Thus, the following generic theorem is arguably the most useful instantiation of our
result.

Theorem 13. Assume leveled compact FHE with decryption and validation circuits (CM) in NC1

exists. Assume further that there exist (bit) OT-homomorphic circuit-private HE. Then there exists
a leveled circuit-private compact FHE.

4.1 Proof of Lemma 10.

Notation In the following bve denotes the closest integer to v, and a mod b denotes a− ba/beb
(which falls within (−b/2, b/2]).

For completeness, we present DGHV’s bootstrappable scheme (after squashing [vDGHV09,
Section 6]). For simplicity we describe the slightly simplified variant where p | v0 [vDGHV09,
Section 3.3.2]; we could have used the original scheme as well. (We do not use their re-randomized
semi-honestly circuit-private variant from [vDGHV09, Appendix C].)

Construction 3.

KeyGenDGHV (1λ):

1. Let p
$←− (2Z + 1) ∩ [2η−1, 2η); r0 = 0; (r1, . . . , rτ)

$←− Z ∩ [−2ρ, 2ρ]τ .

q0, . . . , qτ
$←− [0, 2γ)τ ; relabel so that q0 is the largest. Set vi = pbzi/pe+ 2ri.

Restart unless v0 is odd.

2. Pick a random vector s ∈ {0, 1}Θ of Hamming weight θ. For i ∈ [Θ] choose at random
integers ui ∈ Z ∩ [0, 2κ+1) subject to the condition that

∑θ
i=1 siui = b2κ/pe mod 2κ+1.

Let w = (u1/2
κ, . . . , uΘ/2

κ), where the wi’s are computed with precision κ bits.

3. Output (pk, sk) = ((v,w), (p, s)).

EncDGHV (pk, b): r
$←− Z ∩ (−2ρ

′
, 2ρ); s

$←− {0, 1}τ ; set c′ = (b+ 2r + 2
∑

i sivi) mod v0.

For i ∈ [Θ], set zi = (c′ ·wi) mod 2, keeping only dlog θe+ 3 bits of precision after the binary
point. Output c = (c′, z).

EvalDGHV (pk, C, (c1, . . . , cn)): Proceed from the bottom up, labeling input wires by the correspond-
ing ci’s; output wires of XOR gates by (a+ b) mod v0, of AND gates by (a∧ b) mod v0, and
of NOT gates by (a+ 1) mod v0 where a, b are labels of the input wires to that gate.

Let out′, denote the label of the output wire. Compute a vector z from out′,w as in Enc, and
output out = (out′, z).

DecDGHV (sk = (p, s), out = (out′, z)): Output out′ − b
∑

i sizie mod 2.

8In fact [BV11] and some other schemes from the literature offer only statistical correctness, while we need perfect
correctness for our transformations to work. In BV11, for instance, this issue can be easily addressed by properly
trancating the noise used in Enc. As the resulting distribution is statistically close to the original one, the truncation
does not affect the scheme’s security.

17

The parameters are set as in [vDGHV09] (and for the same reasons) in the following way.

• ρ = ω(log λ); ρ′ = ρ+ ω(log λ).

• η ≥ ρ ·Θ(λ log2 λ).

• γ = ω(η2 log λ).

• τ = γ + ω(λ).

• κ = γη/ρ′, θ = λ,Θ = ω(κ log λ): squashing related parameters.

In [vDGHV09], the authors prove that the scheme is indeed bootstrappable. Let DGHVBS be
a leveled scheme obtained by applying the transformation in Theorem 5 to the above scheme. We
prove that the relevant {V alidateλ,d,n(pkM , cM , sk′M , rM)}λ,d,n, and {Decλ(out, skM)}λ function

families are in NC1.

Construction validity proof.

• Let us first understand the complexity of relevant operations in DGHV (Construction 3).
Given a purported key pair (pk = (v,w), sk = (p, s)), it suffices to check:

– parity of p, v0.

– Check that p | v0, and that vi mod p is not too high for all i.

– Verify the ui’s against p.

To verify encryption of a bit (out,w), given randomness w, r verifying out =
∑

i viwi+2r+b,
and that z = out′ · u with the right precision again involves only integer arithmetics, and is
in NC1. Similarly, decryption involves integer arithmetics in NC1.

• By the bootstrapping construction, DGHVBS ’s public key has O(d) purported public-key
private-key pairs of DGHV to be verified. The private keys are ski’s corresponding to the
pki’s are specified as part of the randomness rk (except for sk`, which is included as the
private key). One thing to check is that the (pki, ski) pairs are valid DGHV keys. As noted
before, there are O(log ·) formulas for this task. Then we need to check that each ei is in
Enc(pki, ski−1). We accomplish this using the parpoted randomness for each encryption
(part of rk) to check validity of encryptions. Then we decrypt using ski to obtain sk′i, and
check that ski = sk′i. As noted above, each of these individual operations (key validation,
decryption and encryption validation for DGHV) is in NC1. There are poly(λ) · (d+ n) such
conditions to verify, that is, a conjunction of the conditions is to be computed. The input
size to each individual check is poly(lambda). Performing the conjunction using a tree of ∧’s,
the depth of the formula is O(λ+ log n+ log d) which is O(log ·) depth in its input size.

4.2 Proof of Lemma 11

Let OT = (KeyGenOT ,EncOT ,EvalOT , DecOT) denote a bit-OT homomorphic scheme. That is,
“programs” are bit pairs (s0, s1) and the input is always a single bit x1. OT ((s0, s1), b) = sb. Such
schemes can be instantiated using one of the following results [AIR01, Kal05, IP07]. Fix such a
scheme.

We define our scheme using an information theoretic version of Yao’s garbled circuits as in [IK02].

18

Theorem 14 (information theoretic Yao). Let C denote the set of formulas (recall that wlog. for-
mulas satisfy depth(C) ≤ D log(size(C)), for some global constact D). For each C(x1, . . . , xn) ∈ C,
there exists a randomized, efficiently computable, functionality
pC(x, r) : {0, 1}n × {0, 1}m → {0, 1}t of the form pC = (p1(x1, r), . . . , pn(xn, r), pn+1(r) = (mask, rest)),
where each pi(·) outputs strings of length ti, and mask ∈ {0, 1}. It satisfies:

1. There exists a uniform efficient algorithm A, such that A(C) = pC . In particular, m, t ≤
q(size(C)) for a global polynomial q.

2. Privacy: For a random r ∈ {0, 1}m, the distribution pC(x, r) depends only on C(x). More
precisely, for every C (of proper depth) there exists an (efficient) simulator SimC , such that
for all x, SimC(C(x)) is distributed identically to pC(x). Moreover, all but joint distribution
of all but mask is independent of x.

3. Correctness: There exists a decoding circuit DecC of depth O(depth(C)) that for all x ∈
{0, 1}n , r ∈ {0, 1}m, outputs f(x) given pC(x, r).

(Such a functionality is referred in the literature as a “randomized encoding” of the function
fC).

Proof sketch. The statement and proof of this theorem already appear (in a slightly different
form) in [IK02]. The only aspect that is not explicitly mentioned is the decryption complexity of the
randomized functionality pC . Roughly, evaluating pC involves an evaluation of a garbled circuirt
for C gate-by gate, to compute a relevant output key, as in “standard” computational Yao [Yao86].
More precisely, every input wire is assigned a key-index pair (k, c) for every input value, where
both are just portions of the randomness r. The perform the evaluation, one learns the pair (k, c)
corresponding to the value of xi for each input varialbe xi (one of two options). Now, every gate g
(g ∈ {⊕,∧}) has a table of four strings of the form (kc1,c2 , c), indexed by bits (c1, c2). Entry (c1, c2)
is encrypted via the keys from (ki, c1),(kj , c2) corresponding to its input wires i, j. The encryption
here is simply bitwise XOR with ki ⊕ kj . To complete the decryption, the final gate includes a
value rg, so that c⊕ rg is the output.

Thus, having keys corresponding to the input wires, choosing and decrypting the right entry
in a gate’s table is a degree-3 vector of polynomials in the ci, cj , ki,c1 , kj,c2 and g’s plain (kg,·, ·)
(decryption is done by XORing once more). Overall, the resulting depth of the decryption circuit
is O(depth(C)).

Thus, we suggest the following scheme for (USI , C) where C includes formulas of depth ≤
D log(size(C)) (D is a constant as in theorem 14).

Construction 4.

KeyGenP (1λ): Let (pkOT , skOT)
$←− KeyGenOT (1λ).

EncP (pk, b): output EncOT (pkOT , b).

EvalP (pk, (Cp(Cs, x),Cs), c): Denote ` = |Cs|+ |x|.
Let pCp(x, r) = p1, . . . , p`+1 be as in Theorem 14.

• Let r
$←− {0, 1}m, (m is as in pCp).

19

• For i ≤ |Cs|, set outi = pi(Cs,i, r).

• For |Cs|+ 1 ≤ i ≤ `:
– Let v0 = pi(0, r), v1 = pi(1, r), both of length ti.

– Set outi = EvalOT (pkOT , (v0;v1), ci).

• Let vr = p`+1(r).

• Output (Cp,out, vr)).

DecP (skOT , (Cp,out, vr)): For i ≤ |Cs|, recover a key ki = outi; for |Cs| + 1 ≤ i ≤ `, recover a
key ki = DecOT (skOT , outi). Let DecCp,λ(·) be a circuit that recovers the output bit from
pCp(x, r). Output DecCp,λ(k1, k2, . . . , k`, vr).

Theorem 15. The scheme in Construction 4 is (USI , C)-homomorphic and input-private for C
consisting of formulas (of depth ≤ D log |C|) where D is the global constant in our definition of the
formulas representation model). The depth of its encrypted circuits is poly(λ, log (size(C))).

As to decryption circuit complexity of the functions Dec is indeed bounded by poly(λ, log size(C)),
since the circuit constructed runs the OT decryption circuit on the xi’s in parallel, and then runs
Yao’s decryption on vr and the resulting (ki, ci) pairs. This computation has logarithmic depth in
|C|.9

Circuit privacy of Construction 4. The extractor ExtP (1λ, pk∗, c∗) outputs x = ExtOT (1λ, c∗).
A simulator SimP (1λ, Cp(z, x), pk∗, c, out = Cp(Cs, x

∗)), where x∗ is the output of Ext(1λ, pk∗, c∗)
proceeds by:

1. Let ` = |(z, x)|. Sample (p1, . . . , p`, prest) at random according to the partial distribution of
pCp with mask omitted (recall this distribution is independent of x).

2. For i ≤ |z| let outi = pi.

3. For |z|+ 1 ≤ i ≤ `, let outi = SimOT (1λ,pi, c
∗
i)).

4. Set mask so that (p1, . . . , p`, (mask, prest) decrypts to out. Set p`+1 = (mask, prest). Output
(out1, . . . , out`, p`+1).

We now show that the above simulation is a perfect one. First observe that the sampling in

item 1 is a perfect simulation since p
(−)
Cp

= (p1, . . . , p`, prest) is independent of Cp’s input. Also, the

recovery of mask in item 4 results in a perfect simulation of pCp(out, r), as it is uniquely determined

by p
(−)
Cp

by correctness of pCp , and the fact that p(−) is independent of x.
Now, consider the distribution of out in EvalP . By circuit-privacy of EOT , each OT call corre-

sponding to some xi determines a single query bit bi. Thus, sampling pCp(Cs, x), where pi for i ≤ |z|
correspnds to input bit Cs,i, and to xi for |z|+ 1 ≤ i ≤ `, EvalP ’s output on pk∗, out∗ is statistically
indistinguishable from the following “hybrid” distribution (where OT replies are simulated using
the bits queried for, but the bits “not asked for” are not given to the simulator):

9That is, the decryption algorithm computes the decryption circuit that extracts the encrypted output bit some-
what inderectly. It doesn’t plug Cp into a universal Yao decryption circuit, but rather preprocesses it to be “directly
embedded” into the circuit’s structure, using Cp included in the encrypted output. Although a universal Yao decryp-
tor of the proper complexity exists, this construction is more straightforward. The simplicity advantage is obtained
since the decryption circuit can be precomputed using the encrypted output in polynomial time, without the extra
efficiency requirements.

20

• Let x∗ = ExtOT (pk∗OT , c
∗).

• Sample pCp(Cs, x, r) to obtain p1, . . . , p`, p`+1.

• The output of Eval is statistically close to

(p1, . . . , p|z|,SimOT (pk∗OT ,p|z|+1, c
∗
|z|+1, . . . , p`+1(r)).

By the privacy property in Theorem 14, the simulation of pCp(Cs, x) in SimP is perfect. Thus,
the simulated OT replies in SimP are statistically indistinguishable from the ones in the hybrid
distribution, and the result follows (through comparing the real and simulated distributions to the
hybrid distribution).

5 Open questions

• What other properties of FHE schemes can be combined in a “getting the best of both worlds”
manner by using similar bootstrapping gadgets?

• Extend to settings where the input is distributed among several parties (encrypters and a “key
generator”). Provide definitions and explore what happens for various corruption thresholds.
In particular, maybe it’s possible for the adversary to not even learn n. Even in the current
setting, can we make the distribution of encrypted outputs independent of the purported
encrypted inputs vector (or even their number n)? This property seems to be useful when
using the scheme as part of larger scheme, as for instance “strong OT” used in [IP07] to
construct circuit-prive HE for branching programs.

References

[AIR01] Bill Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to sell
digital goods. In Advances in CryptologyEUROCRYPT 2001, pages 119–135. Springer,
2001.

[BKOI07] Dan Boneh, Eyal Kushilevitz, Rafail Ostrovsky, and William E. Skeith III. Public key
encryption that allows pir queries. In Alfred Menezes, editor, CRYPTO, volume 4622
of Lecture Notes in Computer Science, pages 50–67. Springer, 2007.

[BLV04] Boaz Barak, Yehuda Lindell, and Salil P. Vadhan. Lower bounds for non-black-box
zero knowledge. Electronic Colloquium on Computational Complexity (ECCC), (083),
2004.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) lwe. Cryptology ePrint Archive, Report 2011/344, 2011. http://

eprint.iacr.org/2011/344.

[DFH12] Ivan Damg̊ard, Sebastian Faust, and Carmit Hazay. Secure two-party computation
with low communication. In Ronald Cramer, editor, TCC, volume 7194 of Lecture
Notes in Computer Science, pages 54–74. Springer, 2012.

21

http://eprint.iacr.org/2011/344
http://eprint.iacr.org/2011/344

[DJ01] Ivan Damg̊ard and Mads Jurik. A generalisation, a simplification and some appli-
cations of paillier’s probabilistic public-key system. In Kwangjo Kim, editor, Public
Key Cryptography, volume 1992 of Lecture Notes in Computer Science, pages 119–136.
Springer, 2001.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Univer-
sity, 2009. http://crypto.stanford.edu/craig.

[GIKM98] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting data privacy
in private information retrieval schemes. In Jeffrey Scott Vitter, editor, STOC, pages
151–160. ACM, 1998.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
28(2):270–299, 1984.

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via
perfect randomizing polynomials, 2002.

[IP07] Yuval Ishai and Anat Paskin. Evaluating branching programs on en-
crypted data. In Salil P. Vadhan, editor, TCC, volume 4392 of Lecture
Notes in Computer Science, pages 575–594. Springer, 2007. Full version in
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/2012/PHD/PHD-2012-
16, chapter 5.

[Kal05] Yael Tauman Kalai. Smooth projective hashing and two-message oblivious transfer.
In Ronald Cramer, editor, EUROCRYPT, volume 3494 of Lecture Notes in Computer
Science, pages 78–95. Springer, 2005.

[Lip05] Helger Lipmaa. An oblivious transfer protocol with log-squared communication. In
Jianying Zhou, Javier Lopez, Robert H. Deng, and Feng Bao, editors, ISC, volume
3650 of Lecture Notes in Computer Science, pages 314–328. Springer, 2005.

[vDGHV09] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homo-
morphic encryption over the integers. Cryptology ePrint Archive, Report 2009/616,
2009. http://eprint.iacr.org/2009/616.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
FOCS, pages 162–167. IEEE Computer Society, 1986.

22

http://crypto.stanford.edu/craig
http://eprint.iacr.org/2009/616

	Introduction
	Previous Work
	Our result

	Preliminaries
	Representation Models
	Homomorphic encryption

	Framework
	From compact FHE to circuit-private FHE
	Compactization of circuit-private FHE
	Getting rid of circular security

	Instantiations of the framework
	Proof of Lemma 10.
	Proof of Lemma 11

	Open questions

