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Abstract

We describe a procedure which may be helpful to

any disorganized carpenter who has a mixed pile of

bolts and nuts and wants to �nd the corresponding

pairs of bolts and nuts. The procedure uses our

(and the carpenter's) ability to construct e�ciently

highly expanding graphs. The problem considered

is given a collection of n bolts of distinct widths

and n nuts such that there is a 1-1 correspondence

between the nuts and bolts. The goal is to �nd for

each bolt its corresponding nut by comparing nuts

to bolts but not nuts to nuts or bolts to bolts. Our

objective is to minimize the number of operations

of this kind (as well as the total running time).
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The problem has a randomized algorithm similar

to Quicksort. Our main result is an n(logn)O(1)-

time deterministic algorithm, based on expander

graphs, for matching the bolts and the nuts.

1 Introduction

Given a collection of n bolts of pairwise distinct

widths and n corresponding nuts, our objective

is to �nd for each bolt its corresponding nut.

By trying to match a bolt and a nut we can see

which one is bigger, and our aim is to minimize

the number of operations of this kind (as well

as the total running time of the rest of the

algorithm). Note that we are not allowed to

compare two bolts or two nuts directly. The

mathematical description of the problem is thus

the following; given two sets B = fb1; : : : ; bng
and S = fs1; : : : ; sng, where B is a set of n

distinct real numbers (representing the widths

of the bolts) and S is a permutation of B, we

wish to �nd e�ciently the unique permutation

� 2 Sn so that bi = s�(i) for all i, based on

queries of the form compare bi and sj. The

answer to each such query is either bi > sj or

bi = sj or bi < sj .

The nuts and bolts matching problem is

�rst mentioned as an exercise in [14], page 293.

There is a simple randomized algorithm along

the lines of Quicksort for this problem and this

solution is described later in this section.

Since there are n! possibilities for �, the ob-

vious information theoretic lower bound shows
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that any bounded degree decision tree that

solves the problem has depth at least log(n!) =

�(n log n). In particular, at least 
(n log n)

comparisons are needed. This is a lower bound

for the expected number of comparisons in any

randomized algorithm for the problem as well.

A simple modi�cation of Quicksort shows

that there are randomized algorithms whose

expected number of comparisons (and running

time) are O(n log n): pick a random bolt, com-

pare it to all the nuts, �nd its matching nut

and compare it to all the bolts, thus split-

ting the problem into two problems, one con-

sisting of the nuts and bolts smaller than the

matched pair and one consisting of the larger

ones. Repeating in this manner yields an al-

gorithm whose expected running time can be

analyzed by imitating the known analysis for

Quicksort (see, e.g., [8]) showing that it is

�(n log n). Moreover, it is easy to modify the

above algorithm and make sure that the proba-

bility its running time will considerably exceed

its expectation will be exponentially small.

Deterministic algorithms seem more di�-

cult to �nd. In fact, even obtaining an o(n2)

algorithm appears to be a non-trivial task. We

have two di�erent approaches for the problem.

If we count only comparisons, and allow our-

selves to deduce implications by transitivity for

free, then we can apply some of the techniques

used in the study of parallel approximate sort-

ing and selecting comparison algorithms (see

[1], [2], [3] [7] [13]) and obtain deterministic,

explicit algorithms with O(n(log n)3+�) compar-

isons. Moreover, these algorithms can be paral-

lelized and we can also show that the minimum

number of comparisons needed in a k-round al-

gorithm is ~�(n1+1=k), where here we use the

common f = ~�(g) notation to indicate that

f and g are equal up to polylogarithmic fac-

tors. More details will be given in the �nal ver-

sion of this paper. Let us just remark that the


(n1+1=k) lower bound for the number of com-

parisons in any (deterministic or randomized)

k-round algorithm follows by counting from the

well known fact that the number of acyclic ori-

entations of any graph with m edges and n ver-

tices is at most ((2m+ n)=n)n.

The problem becomes harder if one is in-

terested in a \real" algorithm, i.e. we count

both the number of comparisons and the time

to decide which comparisons to perform. Our

main result is an n(log n)O(1)-time algorithm for

matching nuts and bolts. The algorithm con-

structs \deterministic samples" by applying ex-

pander graphs in an interesting way.

An outline of the algorithm is given in the

next section and a detailed description together

with a proof of correctness are given in Section

3.

2 Outline of the algorithm

Our idea is to try to �nd a good pivot for

the partitioning in the Quicksort like algorithm

described above. For a nut s 2 S de�ne rank(s)

as jfs0 2 S : s � s0gj: The rank of a bolt b 2 B

is de�ned similarly. A good pivot is a nut whose

rank is roughly n=2. To decide whether a nut

is a good pivot we can take a sample of the

bolts and compare the nut to all the bolts in the

sample. As a �rst try we associate with every

nut s a sample Ts of bolts. The algorithm is as

follows:

1. For every nut s compare s to all the bolts

in Ts.

2. Delete from further consideration all the

nuts s where s is not larger than roughly

half of Ts and smaller than roughly half of

Ts.

3. Start exhaustively testing the remaining

nuts until you �nd one that is a good pivot.

The number of comparisons such an algorithm

requires is the sum of the sizes of the sam-

ples, plus n times the number of bad pivots re-

maining at Step 3 of the algorithm. One can

show that constructions for the samples Ts ex-

ist where the size of each Ts is
p
n log n, and
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at Step 3 of the algorithm at most
p
n log n

bad pivots remain. Thus the total complexity

is O(n1:5
p
log n). As for explicit constructions,

one can choose the samples Ts according to a

projective plane and get an explicit O(nc)-time

algorithm for some c < 2. We omit the details.

However, O(n1:5) seems to be the limit of

any such scheme, regardless of the construction

of the samples. To get down to O(n log nO(1))

we need a more sophisticated algorithm.

Our scheme consists of ` = log
2
n iterations

where in each iteration half the nuts survive for

the next one. We associate with every nut s 2 S

a sequence of ` samples T 0

s ; T
1

s ; : : : T
`
s where the

size of T i
s is ti for 0 � i � `. The ti's increase

with i. Our algorithm starts with a pile of nuts

and a pile of bolts. Over time it discards nuts

until it has a single nut remaining. The set

of nuts that survived till the ith iteration is

denoted by Si.

For i = 0 to `

1. For every remaining nut s 2 Si compare s

to all the bolts in T i
s .

2. For every remaining nut s 2 Si see how

close to ti=2 is the rank of s in T i
s .

3. Delete from further consideration half the

nuts, those whose ranks are the furthest

from ti=2.

The remaining nut is our candidate for a good

pivot.

The complexity of the algorithm is now

X̀

i=0

n=2i � ti:

Therefore ti can double in each iteration with-

out e�ecting the total complexity by much.

What we still must specify is:

1. An e�cient construction for the samples

T i
s .

2. The relationship between the nuts in Si

and in Si+1. This relationship should some-

how allow us to deduce that the surviving

element after ` iterations is a good pivot.

The samples T i
s 's are constructed via ex-

pander graphs. We identify the nuts with the

nodes of such a graph, associate every surviv-

ing nut s with a disjoint set of 2i nodes and

take Ts to be the set of all neighbors of the set

associated with s.

The property that the surviving nuts Si

should maintain is that most of them are good

pivots, however the de�nition of a good pivot

should relax somewhat in time,since we should

leave room for errors from the sampling. The

exact property we will maintain is that for half

the elements of Si their rank among all the bolts

is between n
4
� i �c and 3n

4
+ i �c, where c is some

number smaller than, say, n=8 log n. It is easy

to verify that if S` maintains this property, then

its only surviving member is a good pivot.

3 An O(n(log n)4) algorithm

We now provide a detailed description of the

algorithm and the proof of correctness. Subsec-

tion 3.1 introduces the main tool our carpen-

ter uses, the expander graph, and shows how

to construct the required samples from it. Sub-

section 3.2 gives the main Lemma on expanders

which is used in the proof of correctness in Sub-

section 3.3.

3.1 The algorithm

For a nut s 2 S de�ne rank(s) by rank(s) =

jfs0 2 S : s � s0gj: The rank of a bolt

b 2 B is de�ned similarly. A nut s is called

an approximate median if n=10 � rank(s) �
9n=10. As described above, an approximate

median is a good pivot: given an approximate

median s we can compare it to all bolts, �nd

its matching bolt b, compare b to all nuts

and split the problem into two subproblems

of the same type, each of size between n=10

and 9n=10. Therefore, in order to get the

required O(n(log n)4) algorithm it su�ces to

design an O(n(log n)3) algorithm for �nding an
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approximate median.

Our algorithm for �nding an approximate

median uses a sequence of bipartite (multi-)

graphs Hi. All these graphs will be constructed

from a single expander. Let G = (V;E) be

a d-regular graph on a set V = fv1; : : : ; vng
of n vertices in which the absolute value of

all nontrivial eigenvalues is at most 2
p
d� 1.

There are known explicit constructions of such

graphs (see [10], [11]) for any d for which d�1 is

a prime power congruent to 1 modulo 4, where

for each such d there are constructions for an

in�nite set of values of n containing a number

between x and cx for all large x, where c is

some absolute constant. By adding dummy

bolts and nuts, if necessary, we may assume,

thus, that a graph G as above exists, where n

is the number of bolts (and nuts). Moreover,

the known constructions of these graphs enable

one to construct them in time proportional to

their number of edges. For our algorithm we

take d = (1+o(1))108 log2
2
n, where here, and in

what follows, we make no attempt to optimize

the multiplicative constants.

For each i, 0 � i � log
2
n, de�ne a bipartite

graph Hi with classes of vertices U and W ,

where jU j = bn=2ic and jW j = n as follows.

Put I = bn=2ic and let V = V1 [ V2 [ : : : [ VI
be an arbitrary partition of V into I almost

equal pairwise disjoint parts. Thus n=2I �
bn=Ic � jVj j � dn=Ie � 2n=I for all j. Denote

U = fu1; : : : ; uIg and W = fw1; : : : ; wng. The

number of parallel edges between uj and wk is

simply the number of neighbors of vk in Vj in

the original graph G.

The algorithm consists of ` = blog2 nc
iterations. In the beginning of iteration number

i, (0 � i < blog
2
nc) we have a subset Si of

cardinality jSij = I = bn=2ic of the set of

nuts. (For i = 0, S0 = S is the set of all nuts,

and each Si will be a subset of Si�1 de�ned as

described below). Suppose Si = fs1; : : : ; sIg
and let B = fb1; : : : ; bng be the set of all bolts.

In the ith iteration, we compare sj to bk for

every edge ujwk of Hi. For each nut sj 2
Si, de�ne the outdegree outdeg(sj) to be the

number of comparisons as above for which sj
turned out to be at least as big as bk. Note that

since the graphs Hi may have parallel edges,

a comparison may contribute more than 1 to

such an outdegree. The normalized outdegree

ndeg(sj) is now de�ned as outdeg(sj)=deg(uj),

where deg(uj) (= djVj j) is the total degree of

uj in the graph Hi. Intuitively, ndeg(sj)n gives

an approximation to the actual rank of sj. The

set Si+1 is now chosen as the subset of those

bn=2i+1c elements sj of Si whose normalized

outdegrees are closest to 1=2 (equalities are

broken arbitrarily). The algorithm ends after

i = blog2 nc iterations with a set Si of one

element. As we show in the next subsection

this element is an approximate median, i.e. a

nut whose rank is between n=10 and 9n=10.

3.2 A lemma on expanders

We now state and prove the technical lemma

required to show that the algorithm described

above works. It essentially says that for any ex-

pander and any partition of its vertices, every

subset of the vertices A has the property that

the fraction of parts for which the number of

edges between A and the part deviates signi�-

cantly from the \expectation" is small.

Lemma 3.1. Let G = (V;E) be a d-regular

graph on n vertices and suppose that the ab-

solute value of each nontrivial eigenvalue of G

is at most �. Suppose I � n, and let V =

V1[V2[ : : :[VI be a partition of V into I pair-

wise disjoint sets, so that n=2I � jVjj � 2n=I

for all j. Let A be a subset of V , and let e(Vj; A)

denote the total number of ordered pairs (vj; a),

with v 2 Vj and a 2 A such that vja is an edge

of G. De�ne

l = jfj : je(Vj; A)� jAjjVjjd=nj � �jVjjdgj:

Then
l

I
� 8�2jAj

d2�2n
:
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In particular, if � � 2
p
d � 1 and � = 100p

d
, then

l=I < 1=200:

Proof. Let n(v) = nA(v) denote the number of

neighbors of v in A. By [4] (see also [5], page

122),

X

v2V

(n(v)�jAjd=n)2 � �2jAj(1�jAj=n) � �2jAj:

By the Cauchy-Schwartz Inequality, for each

�xed j,

1

jVjj(e(Vj; A)� jAjdjVj j=n)2

=
1

jVjj(
X

v2Vj

(n(v)� jAjd=n))2

� X
v2Vj

(n(v)� jAjd=n)2:

Since jVjj � 2n=I for all j this implies that

I

2n

IX

j=1

(e(Vj; A)� jAjdjVjj=n)2

�
IX

j=1

X

v2Vj

(n(v)� jAjd=n)2

=
X

v2V

(n(v)� jAjd=n)2 � �2jAj:

By the de�nition of l, and since jVjj � n=2I for

all j, we conclude that

I

2n
l�2

n2

4I2
d2 � �2jAj;

implying the desired upper bound for l. 2

3.3 The proof of correctness

The discussion at the end of Section 2

implies that in order to prove that the algorithm

in Subsection 3.1 indeed �nds an approximate

median it is su�cient to show the following.

Claim 3.1. For each i, the ranks of at least

half of the elements in Si are between n
4
�200 inp

d

and 3n
4
+ 200 inp

d
.

Proof: We apply induction on i. The result

clearly holds for i = 0. Assuming it holds for i

we prove it for i+ 1. Let Sgood
i be the set of all

members of Si whose ranks r satisfy

n

4
� 200

inp
d
� r � 3n

4
+ 200

inp
d
:

Let Smedium
i be the set of all members of Si

whose ranks r satisfy

n

4
� 200

(i + 1)np
d

� r <
n

4
� 200

inp
d

or

3n

4
+ 200

inp
d
< r � 3n

4
+ 200

(i + 1)np
d

;

and let Sbad
i be all the other members of Si.

We must show that it is impossible that more

than half of the members of Si+1 will come from

Sbad
i . Assume this is the case. Then there is a

subset T � S
good
i and a subset Z � Sbad

i , so

that jT j = jZj � jSij=4 and in the ith iteration,

the normalized outdegree of every z 2 Z was

closer to 1=2 than the normalized outdegree of

every t 2 T . We show that this is impossible

by applying Lemma 3.1.

Indeed, by this lemma, with A being the

set of all vertices in W corresponding in the

graph Hi to bolts whose ranks are below n=4�
200ni=

p
d and with � = 100=

p
d we conclude

that all but at most jSij=200 members of S
good
i

have normalized outdegree strictly bigger than

1=4 � 200i=
p
d � 100=

p
d. Similarly, by ap-

plying this lemma with A being the set of all

vertices corresponding to bolts of ranks above

3n=4 + 200ni=
p
d we conclude that all but at

most jSij=200 members of S
good
i have normal-

ized outdegree strictly less than 3=4+200i=
p
d+

100=
p
d. Thus, the normalized outdegrees of all

but at most 0:01jSij members of Sgood
i are be-

tween these two bounds.

A similar application of the lemma with A

being the set of all vertices corresponding to

bolts of ranks less than n=4 � 200n(i + 1)=
p
d
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(as well as to the symmetric set corresponding

to bolts of ranks greater than 3n=4 + 200n(i +

1)=
p
d) shows that all but at most 0:01jSij

members of Sbad
i have normalized outdegrees

which are either smaller than 1=4 � 200(i +

1)=
p
d + 100=

p
d or bigger than 3=4 + 200(i +

1)=
p
d� 100=

p
d. Therefore, the existence of T

and Z as above is impossible, completing the

proof. 2

4 Conclusions

We have presented an O(n log4 n) time deter-

ministic algorithm for the nuts and bolts match-

ing problem. It is worth noting that since we

applied expanders of polylogarithmic degrees

there are simpler explicit constructions than

those given in [10] and [11] and we can take ap-

propriate Cayley graphs of the groups Zk
2
by ap-

plying some known constructions of Linear Er-

ror Correcting Codes, as described in [6]. This

gives somewhat simpler graphs at the cost of

increasing the complexity by a polylogarithmic

factor. We omit the details.

It is conceivable that using the techniques of

this paper one can get an O(n log2 n) algorithm.

However getting below O(n log2 n) seems to re-

quire a new method. In particular our method

does not reduce the set of active bolts at all, but

keeps all of them \alive". Finding a O(n log n)

algorithm seems to require a way of sampling

from both the nuts and the bolts while keeping

many of the sampled ones matched.

We can think of two problems where our

deterministic sampling methods may be helpful:

one is local sorting where the goal is to answer

all the the relationships between elements who

are neighbors in a given graph. An optimal

probabilistic algorithm is known [9]. The other

problem is selection where the input is stored in

a read only memroy and ther is also some small

read/write memory [12].
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